x

Behavior of Beam Shear Connections in Steel Buildings Subject to Fire

Hu, Guanyu

2011

This dissertation presents the results of experimental and computational investigations on the behavior of steel simple beam end framing connections subjected to fire. While significant progress has been made in understanding the overall structural response of steel buildings subject to fire, the behavior of connections under fire conditions is not well understood. Connections are critical elements for maintaining the integrity of a structure during a fire. Fire can cause large force and deformation demands on connections during both the heating and cooling stages, while reducing connection strength and stiffness. Of particular importance are simple beam end framing connections. These are the most common type of connection found in steel buildings and are used at beam-to-girder and girder-to-column connections in the gravity load resisting system of a building. This dissertation focuses on one particular type of beam end connection: the single plate connection, also known as a shear tab connection. This connection is very commonly used in U.S. building construction practice.

In this study, material properties of ASTM A992 structural steel at elevated temperatures up to 900°C were investigated by steady state tension coupon tests. Experimental studies on the connection subassemblies at elevated temperatures were conducted to understand and characterize the connection strength and deformation capacities, and to validate predictions of connection capacity developed by computational and design models. In the computational studies, a three-dimensional finite element connection model was developed incorporating contact, geometric and material nonlinearity temperature dependent material properties. The accuracy and limitations of this model were evaluated by comparison with experimental data developed in this research as well as data available in the literature. The computational studies investigated the typical behavior of the connection during heating and cooling phases of fires as well as the connection force and deformation demands. The finite element model was further used to study and understand the effects of several key building design parameters and connection details.

Based on the test and analysis results, some important finding and conclusions are drawn, and future work for simple shear connection performance in fire are discussed.

The free Adobe Acrobat Reader can be used to view PDF files.