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Alkali-silica reaction (ASR) and delayed ettringite formation (DEF) deterioration 

have been a problem for the concrete infrastructure in the state of Texas and around the 

world in recent decades.  A great deal of research into the causes and mechanisms of the 

deterioration has helped to prevent the formation of ASR and DEF in new construction, 

but the evaluation and maintenance of existing structures remains a problem.  The goal of 

this research is to investigate the use of several nondestructive testing (NDT) methods to 

evaluate the level of ASR and DEF deterioration in a structural element.  Based on the 

results, recommendations are made as to which NDT methods have the most potential to 

be incorporated into the evaluation process. 
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CHAPTER 1 

Introduction 

 

1.1 MOTIVATION 

Alkali-silica reaction (ASR) and delayed ettringite formation (DEF) have been 

responsible for early deterioration of concrete structures around the world.  This has been 

a particular problem for the infrastructure in the state of Texas in recent decades.  

Through several research programs, ASR and DEF have been largely eradicated in new 

construction, but the evaluation and maintenance of existing deteriorated structures 

remains a problem.  Mitigation strategies and repairs have proved ineffective in the long-

term, and replacement of all affected structures is not an economical option.  However, 

laboratory research and load-testing of field structures have indicated that moderate 

levels of deterioration are unlikely to pose a threat to structural safety.  Thus, effective 

evaluation techniques are valuable for the development of an economically feasible 

maintenance plan for these existing structures. 

Despite the large volume of research pertaining to ASR and DEF in the literature, 

very little work has been done involving the use of nondestructive testing (NDT) methods 

to evaluate the deterioration in large-scale reinforced concrete elements.  The behavior of 

field structures is affected by ASR and DEF differently than that of the small, often 

unreinforced, specimens tested in laboratories.  This research aims to investigate the use 

of several NDT methods on near full-scale reinforced concrete specimens deteriorated by 

ASR and DEF, and to determine which methods are most suitable for the evaluation of 

existing field structures. 

1.2 OBJECTIVES AND SCOPE 

The Texas Department of Transportation (TxDOT) provided funding for a joint 

research project between the University of Texas at Austin and Texas A&M University to 

combine the knowledge and capabilities of both universities in the realms of ASR, DEF 
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and NDT.  The primary objectives of the research were to (1) investigate the use of 

several NDT methods on a variety of large-scale test specimens deteriorated by ASR and 

DEF, and (2) make recommendations for the incorporation of NDT methods into the 

evaluation process for existing deteriorated structures.  Structural testing of the specimens 

was also included as a secondary research objective.  The research presented in this 

document covers a portion of this project completed in the first two years of the three-

year project.  All work was done at the Ferguson Structural Engineering Laboratory at the 

University of Texas. 

This portion of the project began with performing a comprehensive literature 

review of previous research involving the use of NDT on specimens affected by ASR and 

DEF.  Additional NDT methods that may potentially be used for evaluating the 

deterioration were also identified.  Next, three near-full scale bent cap specimens were 

fabricated and conditioned outdoors to accelerate the deterioration.  These specimens 

were monitored for approximately one year.  Monitoring consisted of measuring the 

expansive strains caused by the deterioration, and performing several NDT methods as 

the deterioration progressed.  Conclusions and recommendations were made based on the 

correlations between the NDT results and the level of deterioration. 

1.3 ORGANIZATION 

The details of the work completed in this two-year study are presented in the 

following chapters.  Background information regarding the mechanisms of ASR and DEF 

and the effects of the deterioration on plain and reinforced concrete is provided in 

Chapter 2.  A literature review of several NDT methods and their use on elements 

affected by ASR and DEF is given in Chapter 3.  The test specimens and experimental 

program are described in detail in Chapter 4 and Chapter 5, respectively.  All results from 

the monitoring program are presented and discussed in Chapter 6.  Finally, conclusions 

and recommendations summarizing the findings of this research are made in Chapter 7. 
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CHAPTER 2 

Background 

 

2.1 OVERVIEW 

In the past few decades, an outbreak of deterioration in highway structures 

brought on by alkali-silica reaction (ASR) and delayed ettringite formation (DEF) has 

occurred in Texas.  A thorough description of this problem is provided by Deschenes 

(2009), with the key points summarized here. 

This deterioration outbreak was largely caused by the increased use of cement 

with high early strength properties in both precast and cast-in-place elements, raising 

both the alkali content and the curing temperature to induce ASR and DEF.  Deterioration 

has been found mostly in mass concrete structures, where elevated temperatures naturally 

form during hydration and curing, and in elements exposed to excessive moisture from 

runoff or nearby water sources.  Several research projects have been funded by TxDOT 

in the past 15 years to investigate the prevention and mitigation of deterioration as well as 

the performance of affected structures.  Large strides have been taken to prevent 

deterioration in new structures, but less success has been achieved with mitigation 

techniques and structural performance.  The main concern now is with the evaluation of 

existing structures suffering from ASR and DEF, with a focus on determining the level of 

damage as well as the safety and performance implications of the deterioration. 

This chapter begins with an overview of the mechanisms by which ASR and DEF 

occur (Section 2.2).  Section 2.3 discusses the effects of deterioration on mechanical 

properties and behavior for both unreinforced and reinforced concrete.  Finally, the major 

concerns that deterioration imposes on the safety and integrity of structures are 

highlighted in Section 2.4. 
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2.2 REACTION MECHANISMS 

Though the effects are similar, specifically expansion and cracking, the 

mechanisms by which ASR and DEF occur in concrete are very different.  Bauer et al. 

(2006) gives an in-depth explanation of the chemical reactions behind both deterioration 

processes.  The following two sections summarize that work to give an overview of how 

ASR and DEF deteriorate concrete. 

2.2.1 Alkali-Silica Reaction (ASR) 

Deterioration from alkali-silica reaction (ASR) takes place in two stages, as 

illustrated in Figure 2-1.  First, hydroxyl ions and alkalis from the cement paste react with 

silica from certain aggregates to form alkali-silica gel.  The alkalis are typically sodium 

and potassium (Na
+
 and K

+
), while the silica is usually in non-crystalline or cryptoc-

crystalline form (SiO2).  The gel is initially formed at the interface between the paste and 

the aggregate, although it can expand throughout both the paste and aggregate as 

deterioration progresses.  Next, the gel absorbs available moisture and expands.  When 

the tensile strength of the material is reached, cracks form in the cement paste and, in the 

case of high reactivity, in the aggregates as well.  Because more moisture becomes 

available when cracks form and grow, the reaction can be self-propagating.  It is 

important to note that if sufficient moisture is not available, the gel will not expand and 

deterioration will not occur.  Thus, three components are required for deterioration by 

ASR: sufficient alkalis, reactive silica and the presence of moisture.  Additionally, 

elevated temperatures tend to drive the reaction, encouraging more rapid deterioration. 
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Figure 2-1: Alkali-Silica Reaction Mechanism 

A great deal of research has been done to prevent ASR in new structures.  Simple 

control of the materials used in the concrete mixture can diminish the chances of severe 

deterioration.  Limiting the quantity of available alkalis and silica reduces both the 

likelihood and the magnitude of the reaction.  This can be done by using low-alkali 

cement along with aggregates with lower silica contents or with less reactive forms of 

silica.  Additionally, a portion of the cement can be replaced by fly ash, slag or silica 

fume to control or slow down the reaction.  Fly ash reduces the availability of alkalis by 

more effectively binding them to the pore solution than cement alone.  The presence of 

both slag and silica fume restricts the mobility of ions in the pore solution, limits the 

water permeability of the concrete, and reduces the pore solution pH. 
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2.2.2 Delayed Ettringite Formation (DEF) 

Ettringite, a normal product of the concrete curing process, is formed by the 

combination of calcium aluminate and sulfate.  At high curing temperatures, however, 

ettringite formation is inhibited.  Instead, the compound forms slowly over time, causing 

expansive forces and cracking.  This process is called delayed ettringite formation (DEF). 

DEF deterioration, illustrated in Figure 2-2, also occurs in two stages.  First, 

temperatures must exceed 158°F during curing of the concrete.  At these high 

temperatures, the aluminates and sulfates that typically form ettringite are instead 

released into the pore solution.  The aluminates combine with calcium to form products 

like monosulfoaluminate (an AFm phase), and the sulfates adsorb to other curing 

products (usually C-S-H gel).  Then, over a long period of time, the sulfates dissolve back 

into the pore solution where they can move through the network of microcracks.  The free 

sulfates react with the AFm phases to form ettringite, long after the curing process is 

complete. 
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Figure 2-2: Delayed Ettringite Formation Mechanism 

It is thought that expansion occurs as a result of the formation and growth of 

ettringite crystals in locations of limited space, such as the tips of microcracks.  This 

applies pressure to the cement paste, causing cracking throughout the paste, similar to 

ASR.  However, the aggregates do not expand or crack.  Often gapping is seen as the 

paste expands away from the aggregate. 

Deterioration due to DEF can be mitigated in several ways.  Reducing curing 

temperatures below 158°F will essentially eliminate temperature-induced DEF.  Note that 

in some cases, alternative forms of DEF can occur when sulfates are released from other 

sources after curing.  Also, similar to ASR, replacing a portion of the cement with fly ash, 
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slag or silica fume can significantly inhibit DEF deterioration by limiting the mobility of 

water and dissolved ions and by altering the early hydration process. 

2.3 EFFECTS OF ASR AND DEF DETERIORATION 

Deterioration from ASR and DEF has a detrimental effect on the concrete 

material.  As the reactions advance and the concrete expands, microcracks develop in the 

concrete core while significant cracking is observed on the surface.  As a result, the 

strength and stiffness of the concrete are reduced.  However, very different behavior is 

observed in reinforced concrete, as even a small amount of reinforcement can restrain the 

expansions to some degree.  This is often described as having an effect analogous to 

prestressing.   

Typical cracking patterns caused by ASR and DEF are presented in the next 

section, followed by a discussion of the mechanical properties and behavior of 

unreinforced and reinforced concrete deteriorated by ASR and DEF.  Most of the 

information presented here is summarized from a report by The Institute of Structural 

Engineers (1992) on the structural implications of ASR.  However, the structural effects 

of DEF are assumed to be very similar, because the two reactions induce similar 

expansion and cracking behavior. 

2.3.1 Cracking 

In an unrestrained element, expansion due to ASR and DEF causes distributed 

microcracking which is randomly oriented throughout the concrete core.  At the surfaces, 

less reaction and expansion occurs, since alkalis typically have leached out over time.  

The difference in expansion between the cover and the core concrete causes wide surface 

cracks.  Additionally, the concrete is not restrained from expanding in the out of plane 

direction, as it is by the surrounding concrete in all other directions.  Thus, most surface 

expansion occurs in outward, rather than in-plane.  Randomly oriented “map” cracking 

patterns can be observed on the surface of unreinforced elements, as shown in Figure 2-

3a.  However, reinforcement provides restraint to expansion in certain directions (see 

Section 2.3.2).  For this reason, cracks on the surface of reinforced elements tend to be 
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oriented in the direction of the primary reinforcement, as illustrated in Figure 2-3b.  

These photos were taken of ASR and DEF deteriorated specimens from previous research 

at the University of Texas at Austin. 

 

Figure 2-3: Crack Patterns for (a) Unreinforced Element and (b) Reinforced Element with 

Primary Reinforcement in the Longitudinal Direction 

2.3.2 Mechanical Properties and Behavior 

The strength and stiffness of unreinforced concrete is reduced as a result of 

cracking from ASR and DEF.  Both the tensile strength and elastic modulus show a 

maximum of a 50% reduction in the range of expansion typically seen in field structures 

(up to 2%).  The compressive strength is less affected, showing a maximum loss of 

around 25%.  Because the compressive strength of concrete in field structures is often 

significantly higher than the design strength, this loss is not typically a concern.  

However, results from several researchers are widely scattered, making it difficult to 

uniquely relate the loss in strength and stiffness to the amount of deterioration. 

Coupled with the visible surface cracking, these results can be alarming to most 

engineers as well as the general public.  Nevertheless, many structures around the world 

have suffered from ASR and DEF deterioration for decades with no severe performance 

problems.  This is largely due to the presence of restraint from reinforcement in field 

structures, which limits the expansion in the direction in which the restraint is applied. 

(b)(a)



 

10 

As the concrete in a reinforced element expands, the steel resists that expansion.  

The steel goes into tension, while the concrete undergoes counteracting compressive 

stresses.  As in a prestressed element, this increases the stiffness, offsetting the loss in 

modulus caused by the cracking.  Expansions in reinforced elements are significantly 

lower than unrestrained expansions, even at low reinforcement ratios.  One researcher 

cited in the ISE report observed a 30% decrease in expansion at a reinforcement ratio of 

0.1%, and a 75% decrease in expansion with a reinforcement ratio of 0.5%, as compared 

to unreinforced specimens (The Institute of Structural Engineers 1992). 

Several small-scale studies have been performed to investigate the structural 

behavior of reinforced concrete.  Clark (1989) gave a comprehensive critical review of 

the structural implications of ASR, including research on flexural and shear behavior as 

well as bond strength in reinforced and prestressed concrete beams and columns.  General 

findings indicate that ASR deterioration causes little or no significant loss in stiffness, 

flexural strength, shear strength, or fatigue strength of reinforced or post-tensioned beams 

and columns with low axial loads.  Not enough tests were performed on prestressed 

beams and heavily loaded columns to obtain conclusive results.  Additionally, bond 

strength was not reduced in specimens with transverse reinforcement. 

Most of the more recent studies confirmed these findings (Bungey 1991; Bach et 

al. 1992; Chana & Korobokis 1992; Ahmed et al. 1998; Fan & Hanson 1998; Monette et 

al. 2000).  However, a few researchers reported a loss of flexural strength and stiffness, 

leading to some continued concern about the integrity of ASR-affected structures 

(Swamy & Al-Asali 1989; Hajighasemali et al. 2008).  In addition to laboratory tests, a 

few load tests have been performed on field structures suffering from ASR and DEF 

damage around the world.  Two such tests were described in detail by Deschenes (2009) 

and are briefly summarized here.  First, in South Africa, two full-scale load tests were 

performed on a portal frame with severe visual damage from ASR (Blight et al. 1983).  

After loading to around 85% of the design strength, the frame was deemed adequate for 

stiffness and strength.  In 1988, six years later, a second load test yielded very similar 

results, although crack widths had significantly increased since the first test.  Also, in 
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Japan, full-scale load tests were conducted on two bridge piers showing signs of severe 

ASR deterioration (Imai et al. 1983).  Two undamaged piers were tested as well.  No 

significant loss of stiffness or capacity was reported for any of the piers. 

Three large-scale studies of the structural effects of ASR and DEF in reinforced 

concrete were performed in the past decade at the University of Texas at Austin (Boenig 

2000; Deschenes 2009; Larson 2010).  Boenig (2000) tested prestressed box beams that 

were fabricated for use in a Texas bridge, but were never implemented due to signs of 

ASR and DEF deterioration.  Testing yielded no significant reduction in flexural 

capacity.  However shear capacities of nearly 15% lower than expected were found in the 

most heavily deteriorated beam.  Deschenes (2009) fabricated two near full-scale bent 

caps with accelerated ASR and DEF deterioration, along with a third control specimen.  

The specimens were nearly identical to those in the current research, so for more details, 

see Chapter 4.  Shear testing of these beams indicated that low to moderate levels of 

deterioration did not reduce the shear capacity.  Additionally, load-induced shear cracks 

first appeared at much higher loads in the deteriorated beams than in the control.  Larson 

(2010) tested 15 year old prestressed trapezoidal box beams with dapped ends that had 

been rejected for use in a Texas bridge due to void rotation and poor consolidation.  

During storage in the precast yard, these beams developed severe deterioration from ASR 

and DEF.  Though shear tests were conducted, anchorage failure of the primary flexural 

reinforcement controlled the load-carrying capacity.  In the most heavily damaged beam, 

the failure load was 15% lower than that of the beams exhibiting much less deterioration.  

However, all failure loads were at or above the predicted capacity of the beams. 

2.4 STRUCTURAL CONCERNS 

Although a great deal of research has already been performed on ASR and DEF in 

concrete, there are still many concerns about the behavior and safety of deteriorated 

structures.  Most of these concerns lie in the serviceability realm, as large cracks pave the 

way for other deterioration processes to occur.  Because engineers fear that laboratory 

and field testing may not have covered all possible cases, strength concerns also linger.  

The following sections describe these concerns. 
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2.4.1 Serviceability 

The laboratory and field tests performed to this point have indicated that the most 

detrimental effects of ASR and DEF are likely serviceability problems.  Firstly, the 

extensive surface cracking can be visually alarming, not only to engineers, but also to the 

general public.  Severe cracking of concrete always invokes concern for the integrity of a 

structure.  More importantly, the large surface cracks allow water and other contaminants 

to penetrate into the element, opening up the way for corrosion, freeze-thaw, and other 

deterioration mechanisms, which are often found in combination with ASR and DEF in 

field structures.  The presence of any of these types of deterioration can ultimately lead to 

a loss in capacity. 

Additionally, because load-induced cracks tend to form at higher levels of stress 

in elements deteriorated by ASR and DEF, less warning is given when the structure is 

nearing an overload.  This is a minor effect of deterioration but should be taken into 

account when assessing a field structure. 

2.4.2 Strength 

Generally, research has indicated that the strength of structural elements with 

typical design details is not compromised by ASR and DEF deterioration.  This is largely 

due to the presence of reinforcement which restrains the expansion and effectively 

prestresses the element (see Section 2.3.2).  However, despite the countless laboratory 

tests that show no significant capacity loss, the sheer amount of material damage remains 

a safety concern. 

Recently, a more pressing strength concern has been observed in Japan.  Fracture 

of the transverse reinforcement has been found in structures exhibiting severe ASR 

deterioration (Miyagawa et al. 2006; Torii et al. 2008).  In several bridge piers, fractures 

have occurred in the 90° bend of the stirrups, as shown in Figure 2-4.  It is not clear 

whether these fractures are a direct result of ASR expansions, or of a combination of 

ASR and another type of deterioration such as corrosion or freeze-thaw.  However, 

regardless of the cause, the fracture of rebar in an ASR-affected element is a major 

concern.  Without the restraining effects of the reinforcement, a loss in strength and 
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stiffness may occur, as in unreinforced concrete.  This calls into question the safety and 

integrity of the structure. 

Rebar fracture in structures affected by ASR or DEF has not been reported 

outside of Japan.  Due to different detailing practices, such as larger bend radii, rebar 

fracture may or may not be a realistic concern for Texas.  This is being investigated as 

another portion of this project (Webb 2011). 

 

Figure 2-4: Fracture of Rebar in Bridge Piers in Japan Deteriorated by ASR (Miyagawa et al. 

2006; Torii et al. 2008) 

2.5 SUMMARY 

ASR and DEF are chemical deterioration processes that cause expansion and 

cracking in concrete structures in Texas and around the world.  From the great deal of 

research that has been done, it seems that the deterioration causes no significant loss in 

stiffness or strength in typically detailed structures because of the restraining effects of 

the reinforcing steel.  Laboratory research and full-scale load tests on field structures 

generally have confirmed this.  However, serviceability concerns arise with the 

development of large surface cracks, which allow contaminants such as water and de-

icing salts to penetrate into the concrete, causing corrosion or freeze-thaw damage.  

Additionally, fracture of rebar may occur due to the large levels of expansion or as a 

result of other deterioration mechanisms.  If the restraining effects of the reinforcement 

are removed due to rebar fracture, the structure may exhibit poor behavior or fail 

prematurely.  
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CHAPTER 3 

Nondestructive Evaluation Methods 

 

3.1 OVERVIEW 

Several nondestructive evaluation, or testing, (NDE or NDT) methods have been 

developed for use in estimating the strength and stiffness of concrete, as well as detecting 

cracks, delaminations and voids that may or may not be visible from the surface.  Most of 

these methods are based on the propagation properties of mechanical waves through the 

concrete.  Many have already been used in laboratory and field testing to evaluate 

specimens exhibiting ASR and/or DEF deterioration.   

In this chapter, an overview of elastic wave propagation in solids will first be 

given in Section 3.2.  Sections 3.3 through 3.7 describe nine different NDT methods that 

have the potential to assess ASR and DEF deterioration. Any relevant results from the 

literature are also reviewed.  The NDT methods described in this chapter can be 

organized into five categories: 

1. Ultrasonic methods, including ultrasonic pulse velocity (UPV) and 

ultrasonic attenuation 

2. The impact echo method 

3. Resonant frequency methods, on small and large scale specimens 

4. Surface wave methods, including spectral analysis of surface waves 

(SASW) and surface wave transmission (SWT) 

5. Nonlinear behavior methods, including harmonic generation, resonant 

frequency shift and frequency modulation. 

3.2 ELASTIC WAVE PROPAGATION IN SOLIDS 

When a disturbance occurs on the surface of a solid material, the energy is 

transferred into the solid by mechanical waves.  In nondestructive testing, the disturbance 

is usually created by impacting the surface with a hammer or steel ball, or by placing a 
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vibrating transducer on the surface.  In a solid half space, the three main types of 

mechanical waves are compression waves, shear waves, and surface waves (also known 

as P-, S- and R- waves) respectively.  Lamb waves belong to another family of waves that 

occur only in thin plates. 

Compression and shear waves propagate through the body of the medium.  In 

compression waves, the particles oscillate parallel to the direction of wave propagation, 

inducing compressive and dilational forces.  Conversely, particles in shear waves vibrate 

perpendicular to the propagation direction (see Figure 3-1).  Compression waves travel 

faster than shear waves and are used most often in nondestructive testing (Malhotra & 

Carino 2004). 

 

Figure 3-1: Compression and Shear Wave Propagation 

Surface waves propagate along the surface of the medium, rather than in the body.  

As depicted in Figure 3-2, the particles experience both longitudinal and transverse 

motion while traveling along elliptical paths.  The energy diminishes exponentially with 

depth, reaching about one-tenth of the surface amplitude at a depth of around 1.5 

wavelengths (Malhotra & Carino 2004). 
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Figure 3-2: Surface and Lamb Wave Propagation 

Lamb waves, which only exist in thin elements such as plates, can be thought of 

as elastic waves which are guided by the boundaries of the plate.  They are formed 

through the interaction of compression and shear waves, and the individual particles 

translate in both the longitudinal and transverse directions, following elliptical paths 

(Gibson 2004).  These waves can be symmetric or antisymmetric, and the particle motion 

of a symmetric Lamb wave is illustrated in Figure 3-2. 

3.3 ULTRASONIC METHODS 

Ultrasonic waves are high-frequency sound waves that exceed the human audible 

frequency range.  For testing concrete, frequencies between 25 and 100 kHz are typically 

used.  While all three main types of ultrasonic waves exist simultaneously in an element, 

the properties of compression waves are most often observed because they travel the 

fastest and tend to have higher energy (Malhotra & Carino 2004). 

Clockwise rotation

Counterclockwise
rotation

Counterclockwise
rotation

Surface of solid

Body of solid

Surface
wave

Symmetric
Lamb wave

Original
state



 

17 

The compression wave velocity is often used as a simple indicator of uniformity 

and overall quality of concrete.  The ultrasonic pulse velocity (UPV) method is based on 

this principle and is described in the following section.  Additionally, the amount of 

energy dissipated as the wave travels through the concrete can be measured, as in the 

ultrasonic attenuation method described in Section 3.3.2. 

3.3.1 Ultrasonic Pulse Velocity (UPV) Method 

The most common technique that has been used to assess deterioration in concrete 

is the ultrasonic pulse velocity (UPV) method.  As depicted in Figure 3-3, the test is 

performed by placing two transducers on opposite sides of the concrete specimen.  The 

transmitter emits a series of ultrasonic pulses and the time it takes for each pulse to reach 

the receiver is measured.  The velocity is then calculated by dividing the distance the 

wave has traveled by the measured time. 

 

Figure 3-3: Ultrasonic Pulse Velocity Testing 

3.3.1.1 Factors Affecting UPV Measurements 

The velocity of a compression wave is dependent on the density and elastic 

properties of the material.  For a perfectly elastic material of infinite dimensions, the P-

wave velocity is (ACI Committee 228 1998): 
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   √
       

            
 Equation 3-1 

where    is the compression wave velocity through material with density  , and    and   

are the dynamic modulus of elasticity and Poisson’s ratio, respectively.  However, 

concrete is not a well-defined, homogeneous elastic material.  The elastic properties and 

density of a particular concrete mixture, and thus the P-wave velocity, are largely 

affected by a variety of factors.  These include the composition and uniformity of the 

concrete as well as environmental factors (Malhotra & Carino 2004). 

The concrete composition has a significant effect on the compression wave 

velocity.  Because the pulse velocity is generally lower in the paste than in the 

aggregates, a higher aggregate-cement ratio tends to yield a faster velocity. The type of 

aggregate may also influence the velocity.  For example, a concrete mixture with crushed 

limestone aggregate will have higher compression wave velocity than a similar mixture 

with river gravel aggregate.  Additionally, the presence of rebar in reinforced concrete 

will increase the velocity, because steel has a higher compression wave velocity than 

concrete.  A high water-cement ratio tends to decrease the stiffness and thus lower the 

velocity. 

The UPV method is often used to assess the quality and uniformity of concrete 

based on the presence of cracks and voids.  It can be difficult to specifically locate small 

defects by measuring the compression wave velocity, but the method can indicate 

distributed damage in a certain region.  As depicted in Figure 3-4, the shortest travel time 

will occur when the wave can pass unobstructed through the specimen.  When passing 

through a defect, the wave will propagate more slowly, resulting in a longer total travel 

time.  Additionally, traveling around a defect results in a longer travel path, and thus a 

longer travel time.  If a defect is present that the wave can neither pass through, nor travel 

around, it would be impossible to measure the velocity at that location. 
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Figure 3-4: Paths of Ultrasonic Waves through Concrete (Adapted from ACI Committee 228 

(1998)) 

Moisture content is the most significant environmental factor that affects the 

compression wave velocity through concrete.  When fully saturated, a concrete specimen 

can have velocities up to 5% greater than a dry specimen of the same composition 

(Ohdaira & Masuzawa 2000).  This can be explained by the fact that ultrasonic waves 

travel faster through water than through air.  In the case of ASR, gel may also fill some of 

the cracks, resulting in an increased P-wave velocity as compared to a case with 

microcracks that are not filled with gel.  The other major environmental factor, 

temperature, has been shown to be insignificant between about 40 and 85°F.  For 

temperatures outside that range, correction factors have been empirically developed 

(Malhotra & Carino 2004).  Also, the presence of load does not seem to affect the 

compression wave velocity under normal levels of stress.  Direct compression tests have 

shown that the velocity will slightly increase up to a load that induces about 30% of the 

compressive strength, when microcracks begin to form.  The velocity remains fairly 

constant as the microcracks develop until a load inducing around 70% of the compressive 
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strength is reached.  At this point, the microcracks have developed into a dense network, 

resulting in a sharp decrease in velocity (S. Popovics & J. S. Popovics 1991). 

In undamaged concrete, the compression wave velocity increases rapidly after 

placement as the concrete begins to harden.  The velocity continues to increase through 

the curing process before leveling off to a relatively constant value.  The time it takes to 

reach a steady velocity varies widely between concretes of different composition, but 

typically by 28 days the velocity has reached its peak value.  In fact, most velocity gain 

occurs in the first day.  Velocities between 3700 and 4200 m/s are typical for normal 

concrete, although high strength concrete can have P-wave velocities of over 5000 m/s 

(Malhotra & Carino 2004; Ravindrarajah et al. 2002). 

3.3.1.2 Laboratory Studies 

Several laboratory-based studies have investigated the effects of ASR 

deterioration on the compression wave velocity using the UPV method.  All of the 

research addressed here was performed on small specimens, many unreinforced, with the 

largest cross sectional dimension being 5″.  To accelerate the deterioration, all specimens 

were subjected to a harsh conditioning regime.  The P-wave velocity was monitored over 

time, as was the expansion in at least one direction.  Expansions reported here are the 

approximate average longitudinal expansions, taken in the same direction in which the 

velocity was measured (see Figure 3-5). 

 

Figure 3-5: Direction of Expansion and UPV Measurements in Laboratory Studies 

Empirical results from six different researchers are presented in Figure 3-6, which 

shows the relationships between compression wave velocity and longitudinal expansion 

(Rivard & Saint-Pierre 2009; Saint-Pierre et al. 2007; Ahmed et al. 1998; Bungey 1991; 

Pleau et al. 1989; Swamy & Al-Asali 1989).  All percentage change values are based on 

the velocity reached after curing was complete.  Note that no documentation was found 
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of research involving DEF and UPV.  All of the results presented in this section pertain 

only to ASR. 

Generally, all of these studies have found that the compression wave velocity 

begins to decrease at the onset of expansion.  Some indicate that the velocity flattens out 

or shows tendencies to flatten out over time (Rivard & Saint-Pierre 2009; Saint-Pierre et 

al. 2007; Pleau et al. 1989).  Others have also reported a subsequent increase in velocity 

at larger expansions, which may be a result of the cracks filling with ASR gel (Ahmed et 

al. 1998; Swamy & Al-Asali 1989).  However, the reported results are quantitativly 

inconsistent between studies.  The slopes of the curves, which can be interpreted as how 

sensitive the velocity measurement is to the level of expansion, are vastly different, as are 

the maximum losses in velocity and the level of expansion at which the curve begins to 

flatten out.  These differences may be due to the variety in research parameters chosen for 

each study.  Factors such as specimen size, type of reactive aggregate, total alkali content, 

reinforcement, and storage conditions varied widely between researchers.  Table 3-1 

summarizes these factors. 
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Figure 3-6: UPV Laboratory Results from Literature 
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Table 3-1: Variation in Research Parameters between UPV Laboratory Studies 

Researcher 
Specimen 

Size 

Reactive 

Aggregate 

Total Alkalis    

(kg Na2Oeq/m3) 
Reinforcement 

Storage 

Conditions 

Rivard and 

Saint-Pierre 

(2009) 

3x3x12" 

prisms, 

4x8” 

cylinders 

Spratt 

limestone 

5.25 Unreinforced At 100°F, over 

water 

Saint-Pierre 

et al. (2007) 

3x3x12" 

prisms, 

4x8” 

cylinders 

Spratt 

limestone 

5.25 Unreinforced At 100°F, in 1 

mol NaOH 

solution 

Ahmed et 

al. (1998) 

3x5x51" 

beams 

Thames 

Valley sand 

7.0 Singly 

reinforced with 

and without 

stirrups 

At 104°F, in 

water 

Bungey 

(1991) 

3x3x11" 

prisms 

Fused silica 7.0 Unreinforced At 68°F, in 

water 

Swamy and 

Al-Asali 

(1989) 

3x4x32" 

beams 

Beltane 

opal and 

fused silica 

5.2 Singly 

reinforced with 

no stirrups 

At 68°F, in air 

at 96% RH 

Pleau et al. 

(1989) 

4x4x10" 

prisms 

Spratt 

limestone 

4.4 Unreinforced At 73 or 100°F, 

in air at 100% 

RH or in 6% 

NaCL solution 

 

3.3.1.3 Field Studies 

A few hydraulic and bridge structures exhibiting ASR deterioration around the 

world have undergone long term monitoring programs which include UPV testing.  

However, like the laboratory studies, none of these structures were reported having any 
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damage from DEF.  Compression wave velocity measurements were taken both on the 

structures themselves (in situ) and on drilled cores.  In general, low velocities were 

reported, indicating deterioration.  For example, P-wave velocities between 3450 and 

3650 m/s were found in a bridge pier in Japan over the course of 7 years (Ono 2000). 

Many researchers reported a wide variety of measured velocities within a 

structure.  Rivard and Saint-Pierre (2009) drilled cores 46 feet deep into a 50 year old 

hydraulic structure in Canada, and reported a compression wave velocity variation 

between 3400 and 4700 m/s through the depth.  There was no apparent pattern in the 

distribution of these measurements.  Similarly, Alexander et al. (1992) found velocities 

ranging from 3900 to 4400 m/s, with an average around 4000 m/s, on cores taken from a 

portal frame in South Africa.  Ishizuka et al. (1989) measured velocities between 2900 

and 4800 m/s on drilled cores from a bridge pier in Japan.  Alexander also reported an 

average near 4000 m/s for in situ UPV measurements on the same portal frame, and 

Ishizuka found a range of 2300 to 4500 m/s for in situ measurements of compression 

wave velocity on the bridge piers.  Additionally, Ishizuka noted that the lowest measured 

in situ velocities were at locations of very large crack widths. 

3.3.1.4 Interpreting UPV Results 

The results of these field studies indicate that in-service structures may exhibit 

very different compression wave velocity behavior than laboratory specimens.  

Combined with the inconsistencies in the laboratory results, this makes it difficult to 

adequately evaluate field structures using the UPV method at this stage.  Understanding 

the sources of the discrepancies and the inherent flaws in using this method is important, 

and may lead to better results in the future. 

First and foremost, the wide range of measured velocities found in a single 

element indicate that field structures do not deteriorate as uniformly as do specimens 

built and monitored in the laboratory.  This may be due in part to differences in moisture 

exposure in field structures, a factor that is easily controlled in a laboratory setting but 

can cause up to a 5% difference in velocity measurements.  Additionally, information 

about the composition of the concrete is rarely available for field structures, so knowing 
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such parameters as the aggregate type or alkali content is only possible by coring samples 

and estimating. 

Also, Rivard and Saint-Pierre (2009) mentioned that measuring the compression 

wave velocity on cores taken from a structure may yield different results than performing 

an in situ test.  Removing the core from the structure changes the stresses on the sample 

and distances the core from the actual field conditions that the structure experiences.  

Thus, for the most relevant results, in situ measurements should be taken whenever 

possible. 

One of the biggest weaknesses of many nondestructive testing methods for 

concrete is the need of a baseline to compare later results too.  In this case, knowing what 

the velocity would be in an identical undamaged specimen is very helpful in estimating 

the amount of deterioration in an element affected by ASR or DEF.  For example, both an 

undamaged and a severely deteriorated specimen could have P-wave velocities of 3800 

m/s.  Although it would almost certainly be possible to visibly distinguish between the 

two, the UPV measurement cannot make any distinction. 

Finally, it may be difficult to obtain high-quality UPV results on field structures 

as a result of coupling issues on rough or dirty surfaces, limited access to certain regions 

of the structure, or low amplitude signals due to high attenuation and scattering in large 

structural elements. 

3.3.2 Ultrasonic Attenuation Method 

A few researchers have suggested that the attenuation, or energy loss, of 

ultrasonic pulses is more sensitive to ASR or DEF deterioration than the velocity (Saint-

Pierre et al. 2007; Bungey 1991).  To measure the ultrasonic attenuation, the same test 

setup is used as for the UPV method (see Figure 3-3), except the transmitted and received 

waveforms are saved for later analysis.  The attenuation is measured from the frequency 

spectrum after performing a Fast Fourier Transform (FFT) on the received time domain 

signal.  The value of the attenuation can vary over different frequencies, so the central 

frequency of the signal is often chosen.  Saint-Pierre et al. (2007) provide a more detailed 

discussion of attenuation measurements. 
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Results from two studies investigating ultrasonic attenuation are shown in Figure 

3-7 and Figure 3-8.  Both studies were performed on small unreinforced concrete 

cylinders and prisms.  Details about the testing parameters can be found in Table 3-1.  In 

both cases, the attenuation shows about a 90% increase while the velocity decreases only 

10-20% (note the difference in scale of the horizontal axes in Figure 3-7).  This is an 

indication that attenuation may be a better assessment technique than velocity.  However, 

unlike UPV testing, attenuation measurements can be affected greatly by the coupling of 

the transducers to the concrete. 

 

Figure 3-7: Comparison of Ultrasonic Velocity and Attenuation Results (Saint-Pierre et al. 

2007) 

Reactive

Non reactive
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Figure 3-8: Comparison of Ultrasonic Velocity and Attenuation Results (Bungey 1991) 

3.4 THE IMPACT ECHO METHOD 

Although the impact echo method was originally developed to detect flaws in 

concrete slabs, it may have the potential to evaluate the distributed microcracking 

damage caused by ASR and DEF.  The basic concept is to observe the surface motion of 

an element after a short-term mechanical impact, usually from a small steel ball or 

hammer.  The impact induces stress waves into the material which reflect off boundaries 

and defects before returning to the receiver.  Analyzing the surface motion caused by 

these reflections can indicate the presence or severity of deterioration from ASR or DEF 

in several ways.  Two different theories explaining the impact echo method, the 

conventional and Lamb wave theories, are summarized in the following two sections.  

Section 3.4.3 discusses the effects of the impactor size, and Section 3.4.4 provides an 

overview of the use of the method in detecting distributed damage, as from ASR or DEF. 

3.4.1 Conventional Theory 

Conventional theory suggests that multiple reflections of the stress waves between 

the surfaces and any internal defects will be evident in the surface displacement 

measurements.  For an undamaged, plate-like specimen, the wave will repeatedly reflect 

between the receiver and back surface, as depicted in Figure 3-9a.  The time between 
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arrivals is constant, indicating periodic reflections.  If a large internal defect is present, 

the wave will reflect between the defect and the receiver, resulting in a shorter time 

between arrivals (see Figure 3-9b). 

 

Figure 3-9: Conventional Impact Echo Theory (Adapted from Sansalone and Streett (1997)) 

(a) Undamaged Specimen and (b) Specimen with a Defect  

Although the difference between these two signals is obvious from observing the 

time domain signal, the response is often more complex than the idealized waveforms 

shown here.  This can make time domain analysis challenging.  Using a Fast Fourier 

Transform (FFT) however, the signal can be transformed into the frequency domain, 

enabling a simpler analysis that clearly highlights the resonant frequencies as peaks in the 

spectrum.  As can be seen in Figure 3-9, the undamaged specimen has a lower resonant 
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frequency than does the specimen with a defect.  These frequencies are related to both the 

wave speed and the element thickness (or depth of defect) by (Sansalone 1997): 

 
  

   
  

 Equation 3-2 

where   is the measured resonant frequency of an element of thickness or defect depth   , 

   is the compression wave velocity, and   is a shape factor dependent on the cross 

sectional geometry.  Note that if the receiver is placed close to the impact source, the 

response will be dominated by compression waves, despite the presence of shear waves 

and surface waves.  Often, the initial large amplitude surface wave is clipped or removed 

in the analysis. 

The shape factor,  , accounts for the different vibrational modes induced in cross 

sections with different geometries.  Values of   were determined by finite element and 

eigenvalue analysis for a variety of cross sectional shapes.  For plate elements, for which 

this method was developed,   was thought to be equal to 1.0.  However, computer 

analysis indicated a shape factor of 0.96.  Sansalone explains that “this difference occurs 

because multiple reflections of P-waves excite a particular mode of vibration in the plate 

– the thickness mode – and the displacements caused by this mode produce the principal 

periodic patterns in the waveform” (Sansalone & Streett 1997).  Though this theory gives 

no clear mathematical explanation for this slight reduction in the shape factor, this 

method is widely accepted in practice, has been upheld by experimental results and finite 

element modeling, and has its own ASTM standard (ASTM C1383 2004). 

  varies between 0.75 and 0.96 for rectangular cross sections, depending on the 

aspect ratio.  As depicted in Figure 3-10, the aspect ratio is defined as the depth-to-width 

ratio of the cross section, where the depth is measured parallel to the direction of the 

impact (Sansalone & Streett 1997).  For an element to be classified as a plate, the aspect 

ratio must be less than 0.2.  Schubert and Köhler (2008) argue that along with 

dependence on the cross sectional geometry, the correction factor is also a function of the 

time duration of the signal collected.  Longer collection times allow for multiple 

reflections off of several boundaries, complicating the signal. 
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Figure 3-10: Definition of the Aspect Ratio in Impact Echo Testing 

3.4.2 Lamb Wave Theory 

Gibson and J. S. Popovics (2005) provide an alternate theory for the impact echo 

method, based on the propagation of Lamb waves (see Section 3.2), which offers a 

mathematical explanation for the shape factor of 0.96 in plate elements.  This theory 

suggests that the dominant resonant mode, which Sansalone called the “thickness mode”, 

is the non-propagating, first-order, symmetric Lamb wave vibrational mode.  In a non-

propagating Lamb wave, no energy is transmitted longitudinally and the particles 

undergo no rotation.  Instead the energy is captured and sustained in stationary resonant 

vibration.  These waves are said to have zero group velocity, since there is no associated 

energy propagation. 

Gibson’s Lamb wave theory has been upheld by both experimental and finite 

element tests.  Values derived for the geometric correction factor ranged from 0.945 to 

0.957 for plates, and are a function of Poisson’s ratio.  These results closely correspond to 

the empirically determined 0.96   factor for plates in conventional theory. 

3.4.3 Effect of Impactor Size 

A key factor in impact echo testing is using the correct impactor.  Typically, a 

steel ball of diameter between 3 and 15mm is used, inducing contact times ranging from 

15 to 100µs (Sansalone & Streett 1997).  The diameter of the impactor is directly related 

Impact Impact
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to the contact time and inversely related to the maximum frequency that can be detected.  

Because the frequency, in turn, is inversely related to the thickness of the element or 

depth of the defect, larger impactors are used to detect deeper defects or the back surfaces 

of thicker elements.  Conversely, smaller impactors can detect defects that are closer to 

the surface which reflect the wave at a higher frequency.  These relationships are shown 

in Figure 3-11. 

 

Figure 3-11: Impact Force Functions and Induced Frequency Ranges for (a) Small and (b) 

Large Impactor Diameters (Adapted from Sansalone and Streett (1997)) 

3.4.4 Detecting Distributed Damage with the Impact Echo Method 

As described in Chapter 2, ASR and DEF cause distributed microcracking 

through the core of an affected concrete element.  Though the impact echo method was 

initially developed to detect larger cracks and voids, two distinctly different techniques 

have been proposed to evaluate distributed deterioration, as from ASR or DEF.  These 

techniques are centered around analysis in either the time domain or the frequency 

domain and are described in the following two sections. 
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3.4.4.1 Time Domain Analysis 

The first technique to evaluate specimens with distributed damage using the 

impact echo method involves analysis in the time domain.  This method focuses on the 

attenuation rate of the reflected compression waves, rather than on the wave velocity.  

Kesner et al. (2004) has proposed an exponential decay curve to approximate the rate of 

energy loss in consecutive wave reflections: 

      
    Equation 3-3 

where   is the stress wave intensity at time  ,    is the initial stress wave intensity and   is 

the decay constant.  A typical idealized impact echo waveform is shown in Figure 3-12.  

The first portion is the surface wave, shown as a dotted line, followed by consecutive 

reflections of the compression wave, or signal cycles.  For this analysis, the surface wave 

is ignored, and an exponential decay curve is fit through the peaks of the cycles.  The 

decay constant,  , is determined from the best fit curve.  Larger values of   indicate 

faster attenuation and more damage. 

 

Figure 3-12: Impact Echo Attenuation Method (Adapted from Tinkey et al. (2000)) 

This method was developed by Kesner et al. using finite element modeling as well 

as laboratory and field testing on concrete specimens deteriorated by ASR and DEF.  

Typical results, shown in Figure 3-13, indicate that the laboratory results are significantly 

more scattered and irregular than those from the finite element modeling.  However, as 
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the microcracking worsened, Kesner et al. detected a trend of decreasing decay constants, 

although the relationship is not linear.  Damage estimation recommendations, 

summarized in Table 3-2, were made based on the decay constants and the number of 

discernable compression wave peaks.  Although no results were presented, Kesner stated 

that the field tests “were consistent with” the laboratory and finite element testing. 

 

Figure 3-13: Typical Results from Kesner et al. (2004) (a) Waveforms and (b) Attenuation 

Analysis 

 

 

 

 

 

(a)

(b)

Finite element model Laboratory testing
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Table 3-2: Damage Estimation by Impact Echo Attenuation Method (Kesner et al. 2004) 

Decay Constant 

(1/s) 

# of Compression 

Wave Peaks 
Crack Density Damage Level 

Less than 3100 Greater than 13 Less than 0.5% Little or none 

3100 to 4000 11 to 13 0.5 to 1% Minimal 

4000 to 5000 9 to 11 1 to 2% Moderate 

Greater than 5000 Less than 9 Greater than 2% Severe 

 

Tinkey et al. (2000) also used this method to evaluate box girders subjected to 

ASR and DEF deterioration.  The biggest difficulty encountered in this study was 

interpretation of the time domain signal.  It was unclear how many peaks should be 

skipped to eliminate any effect of the surface wave, as well as how many signal cycles 

should be included.  The decay constant from one time domain signal varied between 

3,000 and 10,000 depending on whether one or two peaks were skipped to account for the 

surface wave and on the number of cycles included in the curve-fitting process (between 

3 and 12 cycles). 

Another difficulty inherent in the use of this method to assess distributed damage 

is that the time domain signal becomes complex as reflections from boundaries and 

defects make it difficult to pick out clear compression wave arrivals.  Livingston et al. 

(2010) found that it was “not possible to evaluate the performance of this method for 

quantifying DEF-related damage” in bridges in Maryland without applying a bandpass 

filter to remove unwanted noise in the signal.  After filtering, the signal was easier to 

interpret, but no direct conclusions were drawn from the measurements. 

3.4.4.2 Frequency Domain Analysis 

The second technique focuses on the frequency spectrum obtained after 

performing an FFT on the time domain signal.  Two key features can be observed in the 

spectrum for damaged concrete as compared to an undamaged specimen.  Firstly, 
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increasing amounts of noise may be observed as the level of internal microcracking 

intensifies in an element.  Additional small peaks may form along the spectrum as a result 

of reflections from the distributed defects (Henriksen 1995).  The amplitude of the peaks 

depends on the depth of the microcracks and on the impactor size, as noted in Section 

3.4.3, making it difficult to quantitatively assess the damage. However, the presence of 

the peaks can be an indicator that distributed damage exists.  An example of this 

phenomenon is given in Figure 3-14 below, which shows a frequency spectrum from a 

bridge deck subjected to ASR deterioration. 

 

Figure 3-14: Example of a Noisy Frequency Spectrum (Henriksen 1995) 

The second feature that can be observed from the frequency spectrum is a 

downward shift of the peak frequency as the specimen accumulates distributed damage.  

This indicates a loss of stiffness.  Assuming the thickness remains constant, this results in 

a decrease in compression wave velocity, which is computed from the basic impact echo 

equation relating frequency, velocity and thickness (Equation 3-2, Section 3.4.1).  It is 

important to note here that in order to calculate the velocity, the thickness must be 

known.  Impact echo is often used in undamaged specimens to determine the 

compression wave velocity where only one side of the structure is accessible and UPV 

testing is not possible (Malhotra & Carino 2004). 

In general, concrete composition and moisture content tend to have less effect on 

the impact echo results than on UPV measurements.  This is because the low frequency 

stress waves induced by mechanical impact have much longer wavelengths than the size 

of aggregates and pores (Schubert & Köhler 2008).  However, as with all NDT methods, 

environmental factors need to be taken into account when interpreting the results.  An 
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additional source of error in the computed velocities comes from the   factor, which can 

be influenced by the time duration of the signal in non-plate elements (see Section 3.4.1). 

The ability to apply this method in the field is uncertain.  It can often be difficult 

to determine which frequency peak to choose from a noisy spectrum for velocity 

calculation.  This is exhibited in the spectrum in Figure 3-14, in which there are several 

peaks of similar amplitude, and it is not clear which frequency to use for computing the 

velocity.  Petersen (2000) actually detected an increase in the dominant frequency in a 

railroad tunnel exhibiting ASR deterioration, indicating that the compression wave 

velocity is faster than in undamaged portions of the tunnel.  However, the frequency 

spectrum (see Figure 3-15) has a significant amount of noise, and it is possible that the 

peak corresponding to the back surface is one with lower amplitude. 

 

Figure 3-15: Typical Frequency Spectra from Petersen (2000) (a) Undamaged and (b) 

Damaged by ASR 

3.5 RESONANT FREQUENCY METHOD 

Because the resonant frequency of vibration is related to the stiffness of the 

structure, monitoring the various vibrational modes of an element may provide insight to 

the quality and integrity of the structure.  Though the relationship is not linear, a decrease 
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in resonant frequency corresponds to a loss in stiffness, as the structure provides less 

resistance to motion.  This section describes methods for measuring the various resonant 

frequencies of elements and applications to detecting deterioration in small samples and 

in large structures. 

3.5.1 Resonant Frequencies of Small Specimens 

The resonant frequencies of vibration are dependent on the elastic properties and 

shape of the element.  Thus, a change in the resonant frequency could indicate the 

presence and severity of ASR and DEF deterioration.   

Most commonly, resonant frequencies are measured on smaller specimens or on 

cores taken from a structure.  ASTM C215 (2008) provides guidance for determining the 

fundamental transverse and longitudinal frequencies of concrete prisms and cylinders.  

As depicted in Figure 3-16, the specimen is subjected to a mechanical impact and the 

resulting vibrations are measured by an accelerometer.  By locating the impact point and 

accelerometer as shown, the fundamental resonant frequencies will be dominant after 

performing an FFT of the signal.  A typical time domain signal and its corresponding 

frequency spectrum are shown in Figure 3-17. 

 

Figure 3-16: Resonant Frequency Test Setup for Measurement of (a) Longitudinal and (b) 

Transverse Resonant Frequency (Adapted from ASTM C215 (2008)) 
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Figure 3-17: Typical Results from Resonant Frequency Testing (a) Time Domain Signal and 

(b) Frequency Spectrum 

The dynamic elastic modulus,   , can be computed from resonant frequency 

testing by (ASTM C215 2008): 

         Equation 3-4 

where   is the measured fundamental frequency of a particular mode of free vibration,   

is the mass of the element, and   is a constant based on the geometry.  Note that this 

simple relationship is only valid for cylinders or rectangular prisms in free vibration.   

Rivard and Saint-Pierre (2009) observed more than a 10% decrease of the 

longitudinal resonant frequency in ASR-damaged prisms and cylinders that had expanded 

nearly 0.2% longitudinally.  Conversely the frequency increased by around 3% in similar 

undamaged specimens over the same time period (see Figure 3-18). 
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Figure 3-18: Resonant Frequency Variation in Cylinders and Prisms Deteriorated by ASR 

(Rivard & Saint-Pierre 2009) 

3.5.2 Resonant Frequencies of Structures 

An alternate approach was taken by Ono (1992) to measure the resonant 

frequency of T-shaped bridge piers in Japan subjected to ASR under regular traffic 

loading.  As with small specimens, a lower resonant frequency was observed in piers that 

exhibited more ASR damage.  Additionally, the dynamic elastic modulus computed from 

the resonant frequency of the piers was in some cases more than twice that measured on 

cores taken from the structure.  These results may be promising for prediction of 

structural performance, since it has been shown that the mechanical properties of drilled 

cores are not good indicators of the behavior of the structure (see Chapter 2). 

However, Ono notes that the ability to detect damage is limited to the members of 

the structure that participate most in the vibration of the fundamental mode.  In this case, 

bending of the column dominated the vibration, so the tests were not able to detect 

deterioration in the beam.  Also, it is often difficult to model the vibrational modes of 

structures in order to relate the measured frequencies to the stiffness. Irregular 

geometries, support conditions, and the presence of load complicate the analysis. 
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3.6 SURFACE WAVE METHODS 

Analyzing the propagation of surface waves, rather than compression waves, in 

concrete is another nondestructive approach that may be able to detect ASR and DEF 

deterioration.  The two parameters that are typically measured are the velocity and 

attenuation of the surface wave.  The velocity is measured using the spectral analysis of 

surface waves (SASW) method while the energy transmission, which is the opposite of 

attenuation, is measured using the surface wave transmission (SWT) method.  The details 

of the SASW and SWT methods are described in Sections 3.6.1 and 3.6.2, respectively. 

The same test setup, shown in Figure 3-19, is used for both methods.  Two 

receivers are placed on either side of the test region.  The element is then impacted on 

one side, with the impact point in line with the receivers.  To remove error in the 

measurements, the process is repeated with the impact point on the opposite side of the 

receivers. 

 

Figure 3-19: Surface Wave Test Setup 

Typically, accelerometers are used as receivers.  However, the quality of the 

results depends largely on the coupling of the accelerometer to the surface.  In the field, 

surfaces are often rough, dirty or wet, making adequate coupling difficult.  Recent 

research has indicated that a microphone placed close to the surface can accurately 

measure the surface displacement through slight changes of air pressure (Zhu 2005; Kee 

& Zhu 2010).  These “air-coupled” sensors resolve coupling issues and yield very similar 

results to accelerometers.  Additionally, using non-contact sensors can significantly speed 

up the testing process, as no time is spent achieving proper sensor coupling.  However, 
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the microphones are sensitive to ambient noise, as from vehicular traffic or wind, so it is 

important to isolate the sensor as much as possible with sound insulation. 

3.6.1 Spectral Analysis of Surface Waves (SASW) Method 

Originally developed to analyze pavement and soil layers, the spectral analysis of 

surface waves (SASW) method measures the velocity of a range of frequencies present in 

a surface wave.  In a layered system, each layer has different stiffness and body wave 

velocity.  Because lower frequencies of a surface wave penetrate deeper into a medium 

(see Section 3.4.3), the variation of velocity with frequency indicates a changing stiffness 

with depth (Malhotra & Carino 2004).  The results are often presented in a dispersion 

curve, or a graph of phase velocity against frequency, where the term “phase velocity” 

refers to the speed at which a particular frequency within a wave travels.  In a 

homogeneous solid half space, like a concrete element, the stiffness remains the same 

throughout the depth.  Thus, velocity is constant and does not change with frequency.  

This velocity will be referred to as the “surface wave velocity”, as it is not related to any 

particular frequency. 

The signal processing to compute a dispersion curve is significantly more 

complex than for any of the previously mentioned methods (Zhu 2005).  The process is 

summarized graphically in Figure 3-20.  First, both time domain signals are windowed so 

that the first arrival of the surface wave is the only portion of the wave remaining.  Then, 

the windowed signals are converted to the frequency domain using a Fast Fourier 

Transform (FFT).  Next, the auto-power and cross-power spectra are computed, from 

which the phase difference between the two signals is calculated.  Finally, the phase 

velocity is computed as a function of the frequency.  Typically, little variation in the 

phase velocity is seen at high frequencies in a homogeneous system when the wavelength 

is smaller than the thickness. 
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Figure 3-20: Signal Processing for the SASW Method  

Reports of use of the SASW method to detect ASR or DEF deterioration were not 

found in the literature.  However, because the surface wave velocity depends on stiffness, 

which is affected by the cracking and expansion associated with ASR and DEF, the 

method may be effective in characterizing the deterioration.  It is important to note that 

this method is most sensitive to damage closer to the surface.  Lower frequency surface 

waves penetrate deeper into the core concrete of larger elements (see Section 3.4.3), but 

detecting small defects such as microcracking is more difficult with longer wavelengths. 

3.6.2 Surface Wave Transmission (SWT) Method 

The surface wave transmission (SWT) method is a newer method aimed at 

estimating the depth of a surface breaking crack by measuring the energy transmitted of a 
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range of frequencies across the crack.  The relationship between energy transmission and 

crack depth has been determined by several researchers (Achenbach et al. 1980; 

Mendelsohn et al. 1980; Angel & Achenbach 1984; Yew et al. 1984) but has only 

recently been applied to concrete structures (Hevin et al. 1998; J. S. Popovics et al. 2000; 

W. J. Song et al. 2003; Shin et al. 2008; Kee & Zhu 2010). 

Like the SASW method, the signal processing begins with taking an FFT of the 

windowed surface wave signal in the time domain.  The transmission coefficient 

variation,      , is then computed as the ratio of the amplitude spectra from the two 

receivers. 

 
      

     

     
 Equation 3-5 

where       and       are the amplitude spectra from the receivers closer to and farther 

from the impact point, respectively (Kee & Zhu 2010).  For comparative purposes, the 

transmission coefficient at the central frequency is often taken.   

Initial research at the University of Texas at Austin using the SWT method on 

ASR and DEF damaged concrete yielded promising results (Kee 2010).  Generally, a loss 

in energy transmission corresponded with an increase in expansion of the concrete.  

However, the trends varied between the tested specimens, which may potentially be 

explained by the different crack patterns caused by different loading histories. 

One potential problem with using the SWT method on elements with distributed 

damage is the “near-field effect”.  Because the method was developed to analyze one 

crack located between the receivers, multiple reflections and scattering from cracks near 

the impact location or the receivers can make interpreting the results difficult. 

3.7 NONLINEAR METHODS 

All of the nondestructive methods described previously are based on linear theory 

of wave propagation through a material with a linear stress-strain response.  These 

methods are very effective for locating large defects and open cracks.  In recent years 

however, several researchers have investigated methods based on nonlinear behavior, 

which tend to be orders of magnitude more sensitive to microcracking and distributed 
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damage (Muller et al. 2005; Stauffer et al. 2005; Payan et al. 2007; Kodjo et al. 2009).  

Section 3.7.1 gives a brief overview of the different types of nonlinearity in solids.  

Sections 3.7.2 through 3.7.4 describe nonlinear NDT methods that have been recently 

developed. 

3.7.1 Nonlinearity in Solids 

There are two types of nonlinearity in solids: classical and nonclassical 

nonlinearity.  Classical nonlinearity can be incorporated into material behavior by adding 

higher order terms to the stress-strain relationship.  For the simple one-dimensional case, 

the nonlinear version of Hooke’s Law is (P. A. Johnson 2007): 

                 Equation 3-6 

where   is the linear elastic modulus, and   and   are the 2
nd

 and 3
rd

 order nonlinear 

elastic coefficients, respectively.  The effects of   and   become more prominent as the 

level of strain increases. 

 Nonclassical, or contact, nonlinearity results from the opening and closing of 

microcracks and small defects as a wave propagates through a material (X. Chen & Y. 

Wang 2009; Kazakov et al. 2002).  While the compressional component of the wave can 

penetrate through the defect, the tensile portion is unable to pass through, creating 

nonlinearity in the received signal.  Note that open cracks and large voids, which are 

easily detected with linear NDT methods, do not induce nonclassical nonlinear behavior 

because of the lack of contact between the surfaces during the compressional portion of 

the wave (Kazakov et al. 2002).  Nonclassical nonlinearity is mathematically represented 

in the stress-strain relationship by incorporating a hysteresis function (P. A. Johnson 

2007): 

 
                 [       

  

  
 ] Equation 3-7 

where   is the hysteretic nonlinear parameter and is a function of both the magnitude of 

the strain and the sign of the strain rate.   

 The phenomenon of slow dynamics, or the gradual recovery of elastic properties 

over time after a disturbance, has been observed in several materials including concrete 
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and falls under the category of nonclassical nonlinearity (J. A. Ten Cate & Shankland 

1996; J. Ten Cate et al. 2000; P. Johnson & A. Sutin 2005; Tremblay et al. 2010).  The 

effects of slow dynamics are not captured in the higher order or hysteretic terms in 

Equation 3-6 and Equation 3-7.  However, researchers have developed various theories 

and models to describe the slow dynamics behavior (Delsanto & Scalerandi 2003; O. O. 

Vakhnenko et al. 2004).  Despite the potential for an NDT method based on slow 

dynamics to assess microcracking damage, it will not be further discussed here.  It is 

likely an impractical method for use on field structures due to the continuous excitation 

by traffic or wind loads. 

 There are several indicators of nonlinear behavior that can be observed and 

related to the nonlinear parameters  ,  , and   to estimate the level of damage or 

deterioration in a material.  These include the generation of higher and sub-harmonic 

frequencies, a shift in resonant frequency with increasing excitation amplitude, and the 

response of a material as a result of mixed input frequencies, among other indicators.  

Jhang (2009) provides a comprehensive review of nonlinear evaluation using ultrasonic 

methods.  The following three sections summarize key points from that review as well as 

from several other researchers to describe the methods of harmonic generation, resonant 

frequency shift, and mixed frequency response (also called “frequency modulation”), 

including the potential application for detecting distributed damage in materials. 

3.7.2 Harmonic Generation Method 

When a single frequency is used to excite a specimen, integer multiples of that 

frequency are also present in the received signal.  These integer multiples of the input 

frequency are called harmonics.  The first harmonic is the input frequency,   .  The 

second harmonic is 2  , the third harmonic is 3  , and so on.  As the damage level 

increases, the nonlinearity increases, and energy is redistributed to the higher harmonic 

frequencies (A. A. Shah & Ribakov 2009b). 

The level of nonlinearity is indicated by the  th harmonic ratio,   , which is 

defined as: 
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  Equation 3-8 

where    is the amplitude of the  th harmonic and    is the amplitude of the 

fundamental frequency,   .     is proportional to the  th order nonlinear elastic 

coefficient in Equation 3-6.  An increase in any of the harmonic ratios indicates a higher 

level of nonlinearity in the material and thus more damage.  Results indicate that as 

microcracking increases, the change in the harmonic ratios is orders of magnitude higher 

than the change in linear parameters such as compression wave velocity or resonant 

frequency (Stauffer et al. 2005). 

Though this method may be very sensitive to detecting microcracking in concrete, 

large attenuations may be a problem in the assessment of field structures.  The harmonics, 

which have higher frequencies by definition, will experience much greater attenuation 

than the lower fundamental frequency.  Additionally, the more microcracking in an 

element, the more scattering and attenuation will occur in general.  As a result, very 

powerful excitation signals may be necessary to observe the amplitude of higher 

harmonics in a field structure (A. A. Shah & Ribakov 2009a). 

3.7.3 Resonant Frequency Shift Method 

Another way to present Equation 3-6 and Equation 3-7 is to incorporate the higher 

order and hysteresis terms into the elastic modulus.  Because the resonant frequency 

depends on the elastic modulus, as described in Section 3.5, nonlinearity will be present 

in the resonant behavior as well.  As the excitation force increases, higher values of 

vibrational strain are achieved, and the higher order stiffness terms are more prominent.  

This leads to a downward shift in the resonant frequency with increasing excitation force 

and strain (Muller et al. 2005).  Using a linear approximation, the relationship is: 

   

  
 

    
  

     Equation 3-9 

where    is the shift in resonant frequency from    to  ,   is the hysteretic nonlinear 

parameter from Equation 3-7, and    is the increase in strain.  Nonclassical hysteretic 
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nonlinearity is the dominant form of nonlinear behavior for microcracked materials at 

large strains, although classical nonlinearity is also present (Muller et al. 2005). 

Typical results from undamaged and ASR-affected mortar bars are shown in 

Figure 3-21 (J. Chen et al. 2010).  As the excitation force increases in both samples, the 

amplitude of the peak is larger and the frequency is lower.  Note the difference in scale of 

the horizontal axes, indicating the frequency shift in the ASR-affected sample is much 

more prominent than that seen in the undamaged sample.  Additionally, Payan et al. 

(2007) has shown that the resonant frequency shift is significantly more sensitive than 

traditional resonant frequency methods. 

 

Figure 3-21: Resonant Frequency Shift Results (J. Chen et al. 2010) 

3.7.4 Mixed Frequency Response Method (Frequency Modulation) 

A simple and common way of evaluating the nonlinear properties is to modulate, 

or mix, signals of different frequencies.  Typically for NDT applications, a high 

frequency ultrasonic signal is modulated by large amplitude, low frequency vibrations.  

As the cracks open and close from the low frequency excitation, the phase and amplitude 

of the ultrasonic wave vary (Jhang 2009).  This is illustrated by the idealistic model in 

Figure 3-22.  When the crack is closed, the high frequency wave passes through 

normally, with little to no amplitude loss.  However, when the crack is open, the wave 

attenuates, resulting in amplitude modulation and creating sideband frequencies.  These 

sideband frequencies are more pronounced as microcracking worsens (A. M. Sutin & P. 

A. Johnson 2004; Van Den Abeele et al. 2000). 

Undamaged 
Mortar Bar

ASR-affected 
Mortar Bar
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Figure 3-22: Simple Model of the Behavior of a Material with Microcracks Subjected to Mixed 

Frequency Excitation (Jhang 2009) 

If a high frequency signal (     ) is modulated by a low frequency vibration 

(    ) in a damaged material, frequencies of            will also be present in the 

received signal.  This is evident in Figure 3-23, which shows the results of a high 

frequency ultrasonic signal modulated by a discrete low frequency in both a damaged and 

an undamaged Plexiglas sample. 



 

49 

 

Figure 3-23: Results of a Frequency Modulation Test with Discrete Low Frequency (Van Den 

Abeele et al. 2000) 

A more realistic way to generate large amplitude, low frequency vibration in a 

concrete structure is by mechanical impact, which induces a wide range of low 

frequencies into the specimen.  An example of the response to a high frequency signal 

modulated by an impact-generated low frequency is depicted in Figure 3-24.  Note that 

the sideband frequencies are still present, but the frequency distribution is much noisier 

because of the wide range of modulating low frequencies. 

 

Figure 3-24: Results of a Frequency Modulation Test with Impact-Generated Low Frequency 

(A. M. Sutin & P. A. Johnson 2004) 

Kodjo et al. (2009) has used a modified version of the mixed frequency method to 

analyze concrete structures and elements with several different types of damage, 

Intact Plexiglas

Cracked Plexiglas

Intact 
Sample

Sample with 
Crack



 

50 

including deterioration from ASR and DEF.  This method will later be referred to as the 

“time shift nonlinear acoustic method.”  Instead of observing just the amplitude 

modulation and creation of sideband frequencies after mixing a high frequency ultrasonic 

signal with a low frequency mechanical impact, the travel time (or phase) of the received 

signal is also taken into account.  The opening of a crack decreases the amplitude of the 

signal as well as increases the travel time, inducing a phase shift.  As the effects of the 

impact wear off over time, both the amplitude and phase return logarithmically to the 

original values.  This recovery of elastic properties over time is similar to the 

phenomenon of slow dynamics.  However, this method observes the phase and amplitude 

shifts for a short period of time immediately after the impact (usually 0.5 to 1 second), 

while slow dynamics is typically observed over a period of 15 minutes to 3 hours (P. 

Johnson & A. Sutin 2005). 

Figure 3-25 shows the typical results from a 15x15x28″ unreinforced concrete 

block with ASR damage (Kodjo et al. 2009).  The phase dependence on signal amplitude 

can be observed by plotting the phase shift against the amplitude of the received wave 

over a short period of time after the impact (see Figure 3-25c).    This yields a decreasing 

linear trend, with a slope that indicates the extent of the nonlinearity.  As more 

microcracks develop and affect the wave over the travel path, the nonlinear behavior 

increases, and the slope of the best fit line becomes steeper.  This slope is proportional to 

the hysteretic nonlinear parameter,  , in Equation 3-7. 
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Figure 3-25: Phase and Amplitude Variation after Impact-Generated Frequency Modulation 

(Kodjo et al. 2009) 

3.8 SUMMARY 

Each of these nine methods demonstrates the potential to qualitatively assess the 

level of deterioration from ASR and DEF in field structures.  In general, results from the 

literature have indicated a change in elastic properties of the deteriorated material as the 

level of damage increases.  However, for the case of ASR and DEF deterioration in a 

reinforced concrete element, the presence of reinforcement also influences the behavior.  

For this reason, nondestructive evaluation of field structures is difficult at the present 

time.  The current research focuses on several of the NDT methods discussed in this 

chapter in attempt to develop a “toolbox” for the evaluation of in-service concrete 

structures suffering from ASR and DEF deterioration.  

Before impact
(a)

(b)

(c)

After impact
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CHAPTER 4 

Test Specimens 

 

4.1 OVERVIEW 

To assess the use of nondestructive testing (NDT) methods to evaluate in-service 

concrete structures, three near-full scale bent cap specimens were fabricated at the 

University of Texas at Austin.  Of the three specimens, two were designed and fabricated 

to induce accelerated deterioration from alkali-silica reaction (ASR) and delayed 

ettringite formation (DEF).  These two will be referred to as the reactive specimens.  The 

third was a nonreactive control specimen designed not to deteriorate.  It was constructed 

from similar materials and stored under the same conditions as the reactive specimens.  

This chapter describes the design and fabrication of the test specimens in Sections 4.2 

and 4.3, respectively. 

4.2 DESIGN 

Various bridge elements have been observed to suffer from severe ASR and DEF 

deterioration in Texas and around the world.  The reaction is driven by the combination 

of the use of high early-strength cement, which introduces a large amount of alkalis and 

causes elevated curing temperatures, with abundant exposure to moisture from roadway 

runoff and drainage.  Previous research at the University of Texas investigated the shear 

capacity of bent cap specimens subjected to moderate levels of ASR and DEF 

deterioration (Deschenes 2009).  This research is discussed in Section 2.3.2, and served 

as a baseline for the current project.  After nondestructive testing and monitoring of the 

deterioration, the specimens described in this chapter will be used to investigate the 

effects of deterioration on the flexural behavior.  Design and fabrication of the specimens 

for the current project were very similar to those in the previous research in order to 

facilitate continuity and direct comparison between the two projects.   
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4.2.1 Geometry and Reinforcement Layout 

The specimens were sized to behave similarly to typical bent caps in Texas.  A 

cross section 21″ wide and 42″ deep was chosen.  This depth corresponds well to bent 

caps found in the state, while the 21″ width was chosen to limit the specimen weight and 

allow for transportation in the laboratory (Deschenes 2009).  Each specimen is nearly 28′ 

long.  Figure 4-1 and Figure 4-2 show cross section and elevation views of the 

specimens, respectively. 

 

Figure 4-1: Cross Section View of Test Specimens 

 

Longitudinal reinforcement:
Five #11 bars top and bottom

Shear reinforcement:
#5 stirrups

Crack control reinforcement:
Six #5 bars on either side

Grade 60 
reinforcement

21″

42″ 7 at 5.2″

1.5″ clear1.5″ clear

= 0.0088
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Figure 4-2: Elevation View of Test Specimens 

 

27′-8″

#5 stirrups at 9.5″
= 0.0031

#5 stirrups at 9.5″
= 0.0031

#5 stirrups at 20″
= 0.0015

#5 stirrups 
at 4″

#5 stirrups 
at 4″

2.25″ clear

8 ½" 8 ½"
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Longitudinal reinforcement was comprised of five #11 bars in both tension and 

compression.  Note that the tension steel is on the top side, as the specimens were 

fabricated, conditioned and will be tested upside down.  The specimens will be tested in 

two-point flexure, inducing a constant maximum moment in the middle span and constant 

shear in the outer spans.  This is discussed further in Chapter 5 (see Section 5.2.2).  

Adequate shear reinforcement was provided by #5 stirrups at various spacings along the 

specimen to ensure a flexural failure.  Stirrups were spaced at 20″ in the middle test 

region and at 9 ½″ in the outer test region.  These spacings were chosen to represent 

typical minimum amounts of transverse reinforcement, and to maintain compatibility 

with the previous research project (Deschenes 2009).  To eliminate any local failure or 

effects outside the test regions, stirrups were spaced at 4″ at the ends of the specimens. 

4.2.2 Concrete Mixtures 

Design of the reactive and nonreactive concrete mixtures was also based on work 

done in previous research.  Deschenes (2009) consulted with the Concrete Durability 

Center at the University of Texas at Austin to conduct several trial mixes.  The concrete 

mixture was designed to be conducive to rapid deterioration, while maintaining 

representative qualities of current practices in Texas.  Both the reactive and nonreactive 

mixes have the same proportions of cement, coarse and fine aggregate, and water.  

However, the type of coarse aggregate was the only constant between the mixtures.  

Table 4-1 gives a summary of the nonreactive and the reactive concrete mixture designs.  

The estimated 28-day compressive strength of both mixtures was 5000 psi, which lies 

within the range of typical Texas bent caps.  In order to achieve this lower strength with 

the cement and aggregate content desired, the water-to-cement ratio was increased to 

0.57.  This is higher than typically used in construction, but is not expected to 

significantly affect the behavior. 
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Table 4-1: Concrete Mixture Details 

Material 
Mixture 

Proportions 
Reactive Mixture     

Materials 
Nonreactive Mixture 

Materials 

Cement 700 lb/yd3 
Type III High-Alkali Cement 
from Lehigh Cement 
Company, Fleetwood, PA 

Type III Low-Alkali Cement 
from Alamo Cement 
Company, San Antonio, TX 

Water 400 lb/yd3 Hot Tap Water (about 130°F) Cold Tap Water 

Fine 
Aggregate 

1165 lb/yd3 
Jobe-Newman Sand from 
Cemex, El Paso, TX 

Colorado River Sand from 
Texas Concrete Materials, 
Del Valle, TX 

Coarse 
Aggregate 

1500 lb/yd3 
¾″ Crushed Limestone from 
Texas Crushed Stone 
Company, Georgetown, TX 

¾″ Crushed Limestone from 
Texas Crushed Stone 
Company, Georgetown, TX 

Sodium 
Hydroxide 

67.5 lb/yd3 
(reactive 
mixture only) 

50% NaOH Solution from 
Fisher Scientific Company, 
Pittsburgh, PA 

--- 

 

Water-Cement 
Ratio 

0.57   

Est. 28-Day 
Strength 

5000 psi   

 

To induce rapid ASR deterioration, Type III high-alkali cement and Jobe-

Newman sand, one of the most siliceous and deleterious aggregates in the state, were 

used in the reactive mixture.  The alkali level was boosted to a final value of 8.7 lb/yd
3
 by 

the addition of sodium hydroxide to the fresh concrete.  To accelerate DEF deterioration, 

the water in the reactive mixture was heated to around 130°F.  A water-reducing retarder 

was also added to the second reactive specimen for enhanced workability.  The 

nonreactive mixture contained low-alkali Type III cement and a local river sand to reduce 

the likelihood of ASR.  Cold water was used during the mixing of the nonreactive 

specimen, and no sodium hydroxide was added.  The total alkali content was only 3.4 
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lb/yd
3
.  This falls below the maximum of 4 lb/yd

3
 of alkalis from cement allowed by 

TxDOT Special Provision 421 (TxDOT 1995). 

4.3 FABRICATION 

The three bent cap specimens were fabricated at the Ferguson Structural 

Engineering Laboratory at the University of Texas at Austin between January and May 

2010.  The nonreactive specimen was fabricated in January because the weather was 

cooler, making conditions less conducive to high curing temperatures and DEF.  The 

reactive specimens were cast in March and in May, with more favorable ambient 

temperatures.  The fabrication process consisted of constructing the reinforcement cage, 

installing instrumentation, erecting the formwork, and mixing and casting concrete.  

Finally, the reactive specimens were heat cured.  This process is illustrated in Figure 4-3 

and described in the following sections. 

4.3.1 Reinforcement Cage and Instrumentation 

The reinforcement cages were constructed of steel bars and stirrups of 60 ksi 

nominal yield strength.  Testing of tensile coupons from the manufacturer confirmed this 

strength.  A photo of a completed rebar cage is shown in Figure 4-3a.  Each 

reinforcement cage was instrumented to measure ASR- and DEF-induced expansions, as 

well as with thermocouples to track curing temperatures.  Strain gauges were not used for 

measuring expansions, because previous research indicated that the instruments were not 

reliable over time in the harsh, high-pH environment brought on by the deterioration 

(Deschenes 2009).  Instead, expansions were measured mechanically with an 

extensometer.  This required the fabrication of “targets” out of ½" stainless steel rods, 

PVC pipe and foam.  During the specimen monitoring phase, core concrete expansions 

and rebar strains were measured with the extensometer from one target face to another.  

Curing temperatures were measured throughout the specimens with a data collection 

system set up outside the curing area.  Figure 4-4 shows the layout of instrumentation in 

the specimens.  The two test regions, the middle and end spans, differ only in stirrup 

spacing. 
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Figure 4-3: Specimen Fabrication Process 

(a) Construct reinforcement cage

(b) Erect formwork, place cage inside

(c) Mix concrete

(d) Place concrete

(e) Heat cure (reactive specimens only)
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Figure 4-4: Layout of Specimen Instrumentation 

The target fabrication process is depicted in Figure 4-5.  After cutting the stainless 

steel rods to the appropriate lengths, a hole was drilled in the end of each rod to precisely 

match the extensometer points.  Short rods were then welded to the longitudinal and 

transverse reinforcement for the measurement of steel strains (Figure 4-5a).  To isolate 

the targets from the cover concrete, the rods were centered inside 1 ½" PVC pipe, and the 

empty space was filled by foam.  This allowed the rods to move with the reinforcement 

without being affected by the cover concrete (Figure 4-5b).  To measure core concrete 

expansions, long rods were fabricated to pass through the width of the specimen.  These 

rods had holes drilled on both ends.  The outer portions of these rods were isolated from 

the cover concrete in a similar fashion to those welded to the rebar (Figure 4-5c).  The 

PVC pipe attached to the rods was then tied securely into the rebar cage (Figure 4-5d).  A 

typical fully instrumented test region is depicted in Figure 4-5e.  Locating the targets in 

this fashion allowed for the measurement of steel strains and core concrete expansions in 

both the longitudinal and vertical directions.  No strains or expansions were measured in 

the width direction (21" dimension) because the gauge length of the extensometer (24") 

was longer than the width of the specimens.  Refer to the elevation view in Figure 4-4 for 

the full layout of the targets in the specimens. 

Target on longitudinal reinforcement
Target on transverse reinforcement
Target through the core concrete
Thermocouple

Middle Span 
Test Region

End Span 
Test Region

A

A A

A

Section A-A

Typical thermocouple location at approximate mid-
depth of the expected compression block at failure
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Figure 4-5: Fabrication of Targets for Mechanical Expansion Measurement 

The specimens were instrumented with Type T thermocouples at several locations 

within the test region to measure curing temperatures, as shown in Figure 4-4.  

Thermocouples were placed at the quarter points along each of the two test regions, 

located at a depth corresponding to the approximate center of the expected compression 

block at flexural failure (approximately 2" from the bottom face of the specimen).  

Additionally, a cross section in each test region was instrumented with nine 

thermocouples to measure curing temperature distribution throughout the depth and width 

of the specimen.  More details about the temperature measurements are discussed in 

Section 4.3.3. 

The fully fabricated and instrumented reinforcement cage was then placed inside 

steel formwork.  This is depicted in Figure 4-3b. 

4.3.2 Concrete Placement 

On the day of a cast, a ready-mix concrete truck arrived containing the coarse 

aggregate.  The other materials were then added, and the concrete was mixed on-site.  

This was necessary for the fabrication of the reactive specimens, as workability was 

significantly hindered by concrete temperatures exceeding 100°F in the truck.  A 

(a) (b)

(c) (d) (e)
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retarding plasticizer was used in the mixture for the second reactive specimen to improve 

workability and increase time available for casting. 

The first step in the concrete mixing process was to transfer the fine aggregate 

from storage barrels into the concrete truck using the overhead crane.  The sodium 

hydroxide was then diluted in water and added to the reactive mixtures.  During casting 

of the second reactive specimen, plasticizer diluted in water was also added at this stage.  

Next, water and cement were simultaneously placed in the truck.  The cement was 

dumped in using the concrete bucket and the overhead crane (Figure 4-3c).  The mixer 

was kept slowing rotating while adding materials, and was rotated rapidly for more than 

200 cycles after all components had been placed in the truck.  After ensuring good quality 

of the mixture, concrete was placed in the forms using the bucket and the overhead crane.  

Adequate consolidation was achieved using sideform and handheld vibrators (Figure 4-

3d).  After finishing the top surface with trowels, the specimens were left to cure.  As-

placed concrete composition was very similar to the proportions given in Table 4-1. 

In addition to the large specimens, small samples were also cast according to 

ASTM C192 (2007).  4x8" cylinders were fabricated for determination of 28-day 

compressive strength, and 3x3x11¼" prisms were cast for the ASR-reactivity test defined 

by ASTM C1293 (2008).  The actual measured 28-day compressive strengths for the 

three specimens are summarized in Table 4-2.  More details about the ASR-reactivity test 

can be found in Chapter 5. 

Table 4-2: 28-day Compressive Strength of Cylinders Cast with the Bent Cap Specimens 

Specimen 
28-day Compressive 

Strength (psi) 

Nonreactive 6180  

First Reactive 5200 

Second Reactive 4700 
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4.3.3 High-Temperature Curing 

As described in Chapter 2, curing temperatures must exceed 158°F to induce DEF 

deterioration.  This prevents the natural formation of ettringite during the curing process.  

Instead it forms over a long period of time, causing expansive forces and cracking.  An 

external heating system, shown in Figure 4-3e, was used to achieve such high curing 

temperatures.  After placing a fireproof tarp over the formwork for insulation, kerosene 

and propane heaters applied external heat for the first 12-16 hours of curing.  Figure 4-6 

shows the temperature variation during curing for the three specimens.  These 

temperatures were measured by the thermocouples near the bottom of the specimen, at 

the middle of the expected compression block at failure (see Figure 4-4).  Though the 

maximum values are shown here, temperatures varied only a few degrees along the 

length of the specimens. 

 

Figure 4-6: Temperature Variation through Curing Process 

Distributions of the maximum temperature through the cross section are shown in 

Figure 4-7 for the nonreactive and second reactive specimens.  Note the difference in 

scale between the two plots.  Although the maximum curing temperature in both 
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specimens varied approximately 20°F throughout the cross section, the second reactive 

specimen experienced maximum temperatures approximately 35°F higher than did the 

nonreactive specimen.  Unfortunately, these data were not available for the first reactive 

specimen, although the temperature distribution is assumed to be similar to the other 

specimens. 

 

Figure 4-7: Distribution of Maximum Curing Temperatures (°F) through the Cross Section 

As shown in Figure 4-6, the nonreactive specimen reached a maximum 

temperature of nearly 125°F near the bottom of the cross section.  Because it was not 

subjected to external heat, temperatures through the entire cross section remained 

significantly lower than the DEF threshold of 158°F throughout the curing process 

(Figure 4-7).  The first reactive specimen experienced a maximum curing temperature at 

the bottom of the cross section of 150°F, or slightly below the DEF threshold.  However, 

portions of this specimen likely experienced curing temperatures at or above 158°F, as 

temperatures 10 to 20°F higher than those reported in Figure 4-6 occurred closer to the 
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middle of the cross section in the other specimens (see Figure 4-7).  The second reactive 

specimen sustained temperatures in excess of the DEF threshold through the majority of 

the cross section for a minimum of 12 hours. 

The small reactive concrete samples were also heat cured.  A match-curing 

system in the laboratory (Sure Cure) ensured that the curing temperature profile of the 

cylinders matched that of the large specimens.  The system received the temperatures 

measured in the large specimens via a wireless transmitter, and heated the insulated metal 

cylinder molds (see Figure 4-8) to match those temperatures.  Thus, the cylinders were 

cured following the temperature profiles in Figure 4-6.  For more details on the match-

curing system, see Deschenes (2009).  Because no insulated prism molds were available 

for use with the match-curing system, the prisms were manually and approximately 

match-cured in a small oven.  The temperature of the oven was adjusted hourly to 

simulate the curing temperature profiles in Figure 4-6. 

 

Figure 4-8: Match-Curing Cylinder Molds 
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4.4 SUMMARY 

Three specimens were fabricated to investigate the effectiveness of several NDT 

methods in characterizing ASR and DEF deterioration.  The specimens were designed as 

near-full scale representations of typical bent caps found in the state of Texas.  

Accelerated ASR and DEF deterioration was induced in two of the specimens through the 

use of ASR-reactive materials and high temperature curing.  The third specimen was 

fabricated using similar non-reactive materials and was not heat-cured.  Thermocouples 

were placed in several locations along the specimens and through the cross section to 

measure curing temperature, and “targets” fabricated out of stainless steel rods and studs 

were placed within the reinforcement cage to measure the steel strains and core concrete 

expansions as deterioration progresses. 
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CHAPTER 5 

Experimental Program 

5.1 OVERVIEW 

After fabrication, the bent cap specimens were moved outside of the laboratory, 

and the conditioning and monitoring phase began.  The conditioning process consisted of 

nightly watering cycles to accelerate the deterioration, and loading to simulate typical 

field stresses in the specimens.  The specimens were monitored for core concrete 

expansions and steel strains over a period of nearly one year.  Additionally, several 

nondestructive testing (NDT) methods were used to evaluate the specimens as 

deterioration progressed. 

The prism samples that were cast alongside the bent cap specimens were 

subjected to the conditioning and expansion monitoring regime defined by ASTM C1293 

(2008) .  Along with this program, the prism samples were monitored over time using the 

resonant frequency NDT method (ASTM C215 2008). 

This chapter first describes the conditioning phase of the bent cap specimens in 

Section 5.2.  The monitoring of expansions is explained in Section 5.3, followed by a 

detailed description of the NDT methods used in Section 5.4.  Finally, the conditioning 

and monitoring of the prism samples is discussed in Section 5.5.  Note that the 

conditioning and expansion monitoring of the specimens were largely based on previous 

research.  See Deschenes (2009) for a more detailed explanation of several of the topics 

covered in this chapter. 

5.2 CONDITIONING OF BENT CAP SPECIMENS 

ASR and DEF deterioration was accelerated in the bent cap specimens by means 

of a conditioning regime designed to simulate an extreme but realistic environment for a 

field structure.  The specimens underwent both climate and load conditioning, as 

described in detail in the following two sections. 
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5.2.1 Climate Conditioning 

After casting, the bent cap specimens were placed outdoors using a 15-ton 

forklift.  Resting on concrete blocks just outside of the laboratory, the specimens were 

exposed to the warm climate of Austin, Texas for nearly one year.  It is common for 

temperatures in Austin to exceed 100°F in the summer months, while winters are mild.  

This environment provided the warm temperatures to facilitate accelerated deterioration. 

A watering system was implemented to supply adequate amounts of moisture for 

rapid deterioration to occur.  Soaker hoses were run along the length of the specimens to 

evenly provide moisture to all portions of the test regions during 12-minute nightly 

watering cycles.  Each specimen was wrapped in a curing tarp to trap in the moisture 

during the day (see Figure 5-1).  Tarps were only removed for monitoring purposes. 

 

Figure 5-1: Specimens Conditioning Outside of the Laboratory 
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5.2.2 Load Conditioning 

Dead load stresses that a bent cap is likely to be subjected to in the field were 

induced in the specimens.  External loads were applied at the third points, inducing a 

constant moment in the middle test region and a constant shear in the outer test regions 

(see Figure 5-2).  As discussed previously, note that the specimens were stored and 

loaded upside-down (i.e. load applied from the bottom).  This was done to facilitate easy 

application of the conditioning load.  The same configuration will be used for future 

structural testing. 

 

Figure 5-2: Load Conditioning of the Bent Cap Specimens 

The TxDOT LRFD Bridge Design Manual limits the unfactored dead load stresses 

in the tensile steel to 22 ksi to minimize flexural cracking (TxDOT 2010).  A stress value 

nearing this limit was targeted, resulting in an applied shear of nearly 80 kips.  This force 

was large enough to induce some flexural cracking in the nonreactive specimen.  

However, no flexural cracks were observed after loading the reactive specimens, even 

though deterioration was minimal at the time of loading.  As discussed in Chapter 2, the 

Applied loads

Support reactions

Shear

Moment
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reinforcement restrains the ASR and DEF induced expansion, effectively prestressing the 

element and increasing the cracking moment.  

A steel reaction beam was placed under each specimen and was used to apply the 

external conditioning load.  The setup is depicted in Figure 5-3.  The reaction beam was 

separated from the specimen by two steel plates and a bearing pad at the loading points.  

The specimen and reaction beam were clamped together at the support points to induce 

stresses.  Each clamping apparatus consisted of three HSS steel tubes, two above the 

specimen and one below the reaction beam, connected by threaded steel rods.  A large 

spring assembly was placed between the HSS tubes and the top of the specimen.  30 ton 

hydraulic rams stressed the threaded rods against the springs, applying a clamping force.  

After tightening the nuts against the HSS tubes, the hydraulic rams and the top HSS tube 

were removed. 
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Figure 5-3: Application of the Conditioning Load 
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5.3 EXPANSION MONITORING OF BENT CAP SPECIMENS 

The level of deterioration was quantified by measuring ASR- and DEF-induced 

expansions at several locations. Mechanical measurements of the steel strains and core 

concrete expansions were taken using the stainless steel “targets” placed in the cage 

during fabrication (see Section 4.3.1).  An extensometer with a 24″ gauge length and 

0.0025% accuracy was connected to a laptop through a National Instruments data 

acquisition system.  Data was collected using a LabVIEW program.  Photos of the 

equipment used and of measuring expansions are shown in Figure 5-4. 

 

Figure 5-4: Expansion Measurements 

The locations of expansion measurements are shown in Figure 5-5.  Expansions 

were measured on both sides of the specimen, as well as on the top and bottom faces.  

Both longitudinal and vertical expansions were monitored.  Readings were taken at 

temperatures as close as possible to 70°F and at times when prolonged sun exposure 

would not affect the results.  Though insignificant compared to the ASR and DEF 

expansions, temperature corrections were applied using an approximate coefficient of 

thermal expansion of 5.5x10
-6

 °F
-1

 to normalize measurements to 70°F.  Additionally, 

corrections were made after loading of the specimens to eliminate any effects of the 

applied stresses from the results.  Expansions were monitored weekly in the summer 

months, when the warmer weather induced rapid deterioration.  During the winter, 

measurements were taken monthly.  Expansion results are given in Chapter 6. 
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Figure 5-5: Expansion Measurement Locations 
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5.4 NDT MONITORING OF BENT CAP SPECIMENS 

The second portion of the monitoring process consisted of performing several 

nondestructive tests on the deteriorating bent cap specimens, including ultrasonic pulse 

velocity (UPV), impact echo, and two surface wave techniques.  A nonlinear acoustic 

technique developed by researchers at Sherbrooke University in Quebec, Canada was 

also used, but only at higher levels of deterioration.  Chapter 3 gives an overview of each 

testing method, discussing previous research and applications to ASR and DEF.  This 

section describes the details and parameters of each test method as used in the current 

research.  All results can be found in Chapter 6. 

5.4.1 Ultrasonic Pulse Velocity (UPV) 

UPV travel times were measured with a Germann Instruments PUNDIT 7 test 

system.  Procedures of ASTM C597 (2009) were followed.  The velocities were 

computed in a Microsoft Excel spreadsheet.  A photo of the system and a summary of the 

testing parameters are given in Figure 5-6.  The test was performed using the through-

transmission technique with a water-based couplant.  Measurements were taken at several 

points both horizontally and vertically through the cross section (see Figure 5-7). 

 

Figure 5-6: UPV Testing Equipment and Parameters
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Figure 5-7: UPV and Impact Echo Testing Points 
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5.4.2 Impact Echo 

Impact echo monitoring was performed with a Germann Instruments DOCter 

receiver following the procedures of ASTM C1383 (2004).  The impact source was a 

0.39" diameter ball-peen hammer.  Data was collected through an 8-bit National 

Instruments digitizer using LabVIEW and later analyzed in a MATLAB program.  Figure 

5-8 gives an overview of the testing parameters and shows a photo of the system.  The 

test was performed at the same points as was UPV in the middle and outer test regions 

(see Figure 5-7).  Measurements were taken on both sides of the specimens as well as on 

the top face.  No impact echo testing was done on the bottom face of the specimens 

because the loading setup did not leave enough clear space. 

 

Figure 5-8: Impact Echo Testing Equipment and Parameters 

5.4.3 Surface Wave Techniques 

The surface wave testing was performed with two small and precise PCB 

microphones, which measure the air pressure caused by the surface motion of the 

concrete.  The microphones are sensitive to frequencies from 4 Hz to 80 kHz.  As 

discussed in Section 3.6, the use of non-contact sensors eliminates coupling issues and 
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speeds up the testing process.  To isolate the microphones from ambient noise, a sound 

insulation device was fabricated (Kee & Zhu 2010). 

After impacting the surface with a 0.51" steel ball, the data were collected through 

a 3-channel PCB signal conditioner and an 8-bit National Instruments digitizer.  A 

LabVIEW program was used to view and save the data, which were later analyzed using 

MATLAB.  A photo of the test setup is shown in Figure 5-9 along with a summary of the 

testing parameters.  Figure 5-10 depicts a schematic of the surface wave testing points 

within each test region.  The testing grid was centered within the UPV and impact echo 

points, and data were taken at five locations within each test region.  Ten measurements 

were recorded at each location, five on either side of the sensors, to minimize error by 

averaging.  Testing was limited to the side faces of the specimens.  No surface wave 

testing was performed on the top or bottom faces. 

 

Figure 5-9: Surface Wave Testing Equipment and Parameters 
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Figure 5-10: Surface Wave Testing Points in Each Test Region 

5.4.4 Time Shift Nonlinear Acoustic Method 
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The test setup and parameters are depicted in Figure 5-11.  High frequency 

ultrasonic transducers were coupled to the surface with petroleum jelly and securely 

attached to the specimen with a strap.  A small sledgehammer was used as the impact 

source.  Ultrasonic pulses were generated using an Olympus square wave pulser-receiver.  

Data was collected through an 8-bit Agilent oscilloscope with high sampling rate 

capabilities.  Agilent software was used to record the data, while a MATLAB program 

performed the analysis.  Nonlinear acoustic testing was performed near the middle of 

each test region.  Several different sensor and impact configurations were investigated.  

These are shown in Figure 5-12.  

 

Figure 5-11: Time Shift Nonlinear Acoustic Testing Equipment and Parameters 
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5.5 PRISM SAMPLES 

Conditioning and expansion monitoring for the concrete prism samples cast 

alongside the large bent cap specimens were done according to ASTM C1293 (2008).  

This standard is used to evaluate the ASR expansive potential of a particular aggregate.  

In the current research, the procedures of ASTM C1293 were followed to induce rapid 

deterioration in the small prism samples and to monitor the expansions, even though the 

concrete mixture properties did not exactly adhere to those prescribed in the standard.  

Additionally, the prisms were monitored nondestructively using the resonant frequency 

method, as defined in ASTM C215 (2008).   

A total of eight prism samples were fabricated for each bent cap specimen.  Four 

samples were used for expansion monitoring, while the remaining four underwent 

resonant frequency testing.  All prisms were conditioned according to ASTM C1293.  An 

overview of the conditioning and expansion monitoring process is given in Section 5.5.1, 

and the resonant frequency monitoring is described Section 5.5.2.  All monitoring results 

are presented in Section 6.4. 

5.5.1 Conditioning and Expansion Monitoring of Prism Samples (ASTM C1293) 

ASTM C1293 describes the standard procedure for measuring length change, or 

expansion, of prism samples with 3" square cross sections.  These samples were cast with 

small pins in the ends for accurate length measurements.  Initial length measurements 

were taken one day after casting.  The prisms were then stored above water in sealed 

plastic pails in a 100°F oven (see Figure 5-13a).  At an age of 7 days, the length of each 

sample was measured again to determine the prism expansions.  The pails were removed 

from the oven and placed in a moist environment 12-20 hours before length 

measurements to allow for cooling of the samples.  Immediately following the 

measurements, the pails were placed back into the oven.  This process was repeated at 

ages of 14 days, 1, 2, 3, 6, 9 and 12 months.  Further measurements will be taken at 6 

month intervals. 
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Figure 5-13: (a) Conditioning and (b) Expansion Monitoring of Prism Samples 

5.5.2 Resonant Frequency Monitoring of Prism Samples (ASTM C215) 

The prism samples were monitored using the resonant frequency NDT method 

defined by ASTM C215.  Tests measuring both the transverse and longitudinal resonant 

frequencies were done on the same days as expansion measurements were taken.  The 

test setup and parameters are shown in Figure 5-14.  The samples rested on foam to limit 

vibrational constraints.  To measure vibrations, a highly sensitive PCB accelerometer 

with a bandwidth (±10%) of 0.3 Hz to 12 kHz was attached to the surface using wax.  

The impact source was a 0.43" steel ball.  Data were collected through a 3-channel PCB 

signal conditioner and an 8-bit National Instruments digitizer.  The results were analyzed 

in a LabVIEW program.  For background information and more details about the 

resonant frequency test, refer to Section 3.5. 

(a) (b)



 

81 

 

Figure 5-14: Resonant Frequency Testing Equipment and Parameters 

5.6 SUMMARY 

The bent cap specimens were stored outdoors for nearly one year during the 

conditioning and monitoring phase.  Nightly watering cycles and the warm environment 

induced accelerated ASR and DEF deterioration.  Dead load stresses were induced in the 

specimens to simulate field conditions.  Deterioration was quantified by measuring steel 

strains and core concrete expansions in several locations along the specimens.  

Additionally, NDT methods including UPV, impact echo, and surface wave techniques 

were used throughout the deterioration process.  A nonlinear acoustic NDT method was 

also performed on the specimens at high levels of deterioration. 

The prism samples were conditioned and monitored according to ASTM C1293, a 

standard to assess the potential of an aggregate for ASR deterioration.  In addition to the 

expansion measurements defined in the standard, these samples were monitored using the 

resonant frequency NDT method. 
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CHAPTER 6 

Experimental Results 

6.1 OVERVIEW 

The goal of this research was to observe trends in results from nondestructive 

testing as ASR and DEF deterioration progressed in concrete specimens.  Ultimately, the 

results were used to determine the potential for using several NDT methods for 

evaluating field structures exhibiting symptoms of ASR and DEF.  This chapter presents 

the results from monitoring the deterioration of and from nondestructive testing of the 

bent cap specimens and the prism samples.  Section 6.2 discusses the deterioration of the 

bent cap specimens over time, and is followed by a summary of the NDT results in 

Section 6.3.  The expansion and NDT results from testing on the prism samples are 

covered in Section 6.4. 

6.2 BENT CAP DETERIORATION 

Throughout the monitoring period, the bent cap specimens were visually observed 

and expansions were measured in order to quantify the damage as the deterioration 

progressed.  Section 6.2.1 will briefly discuss the visual observations of the deterioration, 

and is followed by a more detailed presentation of expansions results in Section 6.2.2.  

Note that because this research was largely focused on NDT methods, a detailed study of 

crack patterns and crack widths was not performed.  Deschenes (2009) provides in-depth 

discussions of the influence of reinforcement and external loading on the observed 

cracking patterns, and of the accuracy of using the crack width summation method to 

estimate expansion. 

6.2.1 Visual Observations of Deterioration 

Visual signs of deterioration were observed as early as 6 weeks after casting and 3 

weeks after moving the specimens outdoors.  The first visible surface cracks appeared 

near mid-depth of the specimens and were primarily oriented in the longitudinal 

direction.  Over time, extensive cracking was observed on all faces of the specimens, 
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usually following the direction of the primary reinforcement, which provides the most 

restraint to the expansion. 

Figure 6-1 shows photos of the second reactive specimen at an age of nearly one 

year.  On the side face of the middle test region (Figure 6-1a), the maximum crack width 

is 0.025″.  The cracks are oriented almost exclusively in the horizontal direction.  Crack 

patterns on the top and bottom faces were very similar to those on the side faces.  Note 

that in the figure, several larger cracks are highlighted in bold on the side face of the 

specimen.  The end face of the specimen (Figure 6-1b) exhibited very wide cracks, up to 

0.25″, or ten times larger than the cracks on the side faces.  This is a direct result of the 

lack of reinforcement at the end face to control the cracking.  Stirrups were stopped 8 ½″ 

from the end face because of the hook at the end of the tensile reinforcement (see Figure 

4-2).  The large horizontal crack on the end face lies just below the end of the tension 

steel hook.  Recall that the specimens were fabricated and will later be structurally tested 

upside down for ease of loading, so the tension steel is on the top side (see Figure 5-2).  

Overall, the observed crack patterns were expected and were similar to findings in 

previous research. 

 

Figure 6-1: Typical Crack Patterns (Second Reactive Specimen) (a) Side Face and (b) End 

Face 

(a) (b)
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6.2.2 Expansion Results 

The timeline in Figure 6-2 illustrates the relative timeframe for casting, 

conditioning and expansion monitoring for the three bent cap specimens.  Note that 

although the specimens were cast over a span of 5 months, conditioning and expansion 

monitoring were started at approximately the same time, just after casting of the second 

reactive specimen. 

 
Figure 6-2: Timeline for Bent Cap Specimens 

The level of ASR and DEF deterioration was quantified by measuring both the 

steel strains and the core concrete expansions at several different locations along the bent 

cap specimens.  These steel strains and core concrete expansions will be collectively 

referred to as “expansions” throughout the rest of this chapter, as the two yielded very 

similar results.  Measurements were taken within two test regions in each specimen: the 

middle test region with stirrups spaced at 20″ and the outer test region with stirrups 

spaced at 9 ½″.  Additionally, expansions were measured in both the longitudinal and 

vertical directions.  However, no measurements were taken over the width of the cross 
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section, as the gauge length used for the measurements (24″) was longer than the width of 

the specimens (21″).  For a discussion of the instrumentation placed in the specimens to 

measure expansions, see Section 4.3.1.  Additionally, refer to Section 5.3 for details 

about the location of the measurement points. 

The expansion results for all three specimens during the monitoring period are 

presented in Figure 6-3.  Six to eight measurements were taken in each direction in both 

test regions (longitudinal and vertical directions in the middle and outer test regions).  

The range of measured expansions is depicted in the figure as a shaded area for each 

direction.  When correlating these measurements to the NDT results, the average 

expansion for each direction within a test region was used.  The average expansion is 

shown by the bold black lines in the figure.  These averages include both the measured 

steel strains and core concrete expansions.  Additionally, the time at which the specimens 

were loaded and at which the moisture conditioning began are shown on the graphs.  

Recall that even though the specimens were fabricated over a period of four months, 

monitoring began for all shortly after casting of the second reactive specimen (see Figure 

6-2).  Controlled storage conditions and visual inspections ensured that no significant 

deterioration occurred between the time of casting and the time monitoring began. 
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Figure 6-3: Range of Measured Bent Cap Specimen Expansions 
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From the plots, it is evident that the nonreactive specimen has not significantly 

expanded.  The fluctuations seen in the graph are likely due to environmental factors 

including moisture content and temperature, concrete shrinkage, and measurement errors.  

A petrographic analysis of the concrete has yet to be completed, but it is believed that this 

specimen is not affected by ASR or DEF.  This assumption is upheld by the NDT results, 

which are presented later in this chapter. 

On the other hand, the reactive specimens show a significant amount of 

expansion, especially in the vertical direction.  The second reactive specimen has 

expanded more rapidly than the first.  This is assumed to be a direct result of curing 

temperature.  A similar observation was made by Deschenes (2009).  The second reactive 

specimen sustained curing temperatures above the DEF threshold throughout the majority 

of the cross section for at least 12 hours (see Section 4.3.3).  However, only a small 

middle portion of the cross section of the first reactive specimen experienced such high 

temperatures during curing.  Thus, it is likely that the first reactive specimen has been 

deteriorated predominantly by ASR while the second reactive specimen has been 

deteriorated by both ASR and DEF.  Though trends in the NDT results tend to support 

this claim (see Sections 6.3.1 and 6.3.2.2), it cannot be confirmed until a petrographic 

analysis is completed. 

Finally, it is important to note the effects of the reinforcement in the expansion 

results.  As expected, the most rapid expansion took place in the middle test region of 

each specimen, where the reinforcement was lightest (   = 0.15%).  The outer test region, 

which had more closely spaced stirrups (   = 0.31%), experienced slower expansions.  

Expansions in the longitudinal direction were kept under the yield strain of the 

reinforcement by the large amount of steel in that direction (  = 2.3%).  Note that all 

longitudinal steel can resist the ASR and DEF expansions.  Thus, tension, compression, 

and crack control bars were all included in calculating the longitudinal reinforcement 

ratio.  Despite the general trend of more rapid expansion in less heavily reinforced 

regions, the relationship between reinforcement ratio and expansion is complicated and 
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nonlinear.  Therefore, it is difficult to predict the expansion rate based on the amount of 

steel. 

6.3 RESULTS FROM NDT ON THE BENT CAP SPECIMENS 

Several NDT methods were investigated to evaluate their effectiveness in the 

assessment of structures affected by ASR and DEF.  NDT methods used include 

ultrasonic pulse velocity (UPV), impact echo, spectral analysis of surface waves 

(SASW), surface wave transmission (SWT), and the time shift nonlinear acoustic 

method.  The results from each of these tests are presented in Sections 6.3.1 through 

6.3.4.  Background information on each of these methods can be found in Chapter 3.  A 

description of the test systems and parameters used is given in Chapter 5. 

There are many ways to define the level of deterioration in a structure.  For the 

purposes of this research, the deterioration was quantified by measuring expansions 

throughout the specimens (see Section 6.2).  The results are generally presented in this 

section as plots of an NDT parameter against the vertical expansion in the corresponding 

test region.  The vertical expansion was the largest expansion measured and was thus 

deemed to be the most representative of the level of deterioration.  It may be more 

appropriate to relate the NDT results to the volumetric expansion, which likely provides a 

better representation of the overall deterioration.  However, expansions were measured in 

only two directions, and as discussed in the Section 6.2.2, it is difficult to estimate 

expansions where they are not directly measured.  By using the vertical expansion to 

document the deterioration, the general trends of the NDT results can be observed, and 

the usefulness of each test can be evaluated. 

6.3.1 Ultrasonic Pulse Velocity (UPV) 

The ultrasonic pulse velocity (UPV) is determined by measuring the compression 

wave travel time of an ultrasonic pulse traversing through a material.  Lower velocities 

indicate more damage, as it takes time for the wave to pass through or around defects. 

Figure 6-4 shows the UPV results for the two reactive specimens.  The data 

includes measurements oriented horizontally and vertically through the cross section, 
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taken in both the middle and outer test regions.  Each data point represents an average of 

all measurements recorded in one direction in a test region on a given day of testing.  

Observations from the results are given in Section 6.3.1.1, and a discussion of the use of 

UPV in assessing ASR and DEF deterioration is given in Section 6.3.1.2. 

 

Figure 6-4: UPV Results – Variation of Compression Wave Velocity 
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higher levels of expansion, while the UPV in the second reactive specimen continued to 

decrease as deterioration worsened.  Over the monitoring period, the UPV measured in 

the nonreactive specimen varied between 4225 and 4370 m/s.  Variations in this velocity 

are believed to be a result of environmental factors, and indicate the typical fluctuations 

of the compression wave velocity in good quality concrete.  These measurements uphold 

the assumption that no ASR or DEF deterioration was present in the nonreactive 

specimen, as no loss in UPV was observed. 

The compression wave velocity as measured by the UPV method was found to be 

very similar in the horizontal and vertical directions of measurement.  Unfortunately, 

expansions were not measured in the horizontal direction.  Though the horizontal 

expansion through the cross section is expected to be different than the vertical measured 

expansion, the actual relationship is unknown.  However, concurrent research on ASR 

and DEF specimens at the University of Texas indicates that UPV is similar in all three 

directions, regardless of restraint from the reinforcement (Webb 2011).  Though it may 

appear that the UPV measured in the vertical direction is slightly lower than that in the 

horizontal direction, this is likely a result of systematic error in the testing setup and 

should not be considered significant.  One factor that may cause this difference is the use 

of the nominal dimensions of 21″ and 42″ rather than the exact initial dimensions, which 

were not possible to measure.  In particular, the as-built vertical dimension is likely to be 

slightly larger than 42″ due to overfilling of the formwork during casting.  A ¼″ 

difference in the height of the specimen would change the velocity by nearly 25 m/s, 

which would make up for a significant portion of the difference in UPV between the 

measurements in the two directions. 

The decreasing negative slope of the curves as deterioration progresses indicates a 

slower rate of UPV loss with deterioration.  This phenomenon has been observed by 

several researchers in tests of specimens with ASR damage (see Section 3.3.1).  Most 

postulate that this is a result of the cracks filling with ASR gel, which has a higher 

compression wave velocity than air.  As deterioration progresses, the gel expands to fill 

the already formed cracks before net volume expansion of the concrete forms new, empty 
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cracks.  The results here are generally supportive of this theory, and the presumed 

presence of DEF can help to explain the slightly different trends observed for the two 

reactive specimens.  If it is assumed that deterioration in the first reactive specimen is 

mostly due to ASR, the leveling off of the UPV at higher levels of deterioration is likely a 

result of new cracks rapidly filling with expanding ASR gel.  In this case, the worsening 

deterioration is not well reflected in the UPV measurements at high levels of expansion.  

The presence of DEF and more rapid expansion seen in the second reactive specimen can 

explain the continued decreasing trend of UPV with deterioration.  While some of the 

cracks are filling with the constantly expanding ASR gel, others are generated by DEF 

and are likely not gel-filled.  Ettringite crystals formed after curing may fill or partially 

fill the cracks, but may not have the same stabilizing effect on UPV as does ASR gel. 

An additional indication of the presence of DEF is the variation of the UPV over 

the height of the specimens.  The data in Figure 6-4 from the horizontal direction of 

measurement represents the average value of UPV over all locations in the test region.  

This value is representative of the overall quality of the concrete in a particular area.  

However, the UPV measured in a test region varied up to 210 m/s in the nonreactive 

specimen, 300 m/s in the first reactive specimen, and 360 m/s in the second reactive 

specimen.  Generally, the calculated velocities in the reactive specimens were lowest at 

mid-height, higher near the bottom, and highest near the top of the specimens.  This is 

directly correlated to the cross-sectional distribution of curing temperature (see Figure 4-

7).  In locations that experienced higher curing temperatures, deterioration from DEF was 

more severe, yielding a lower UPV than that in the regions of the cross section that had 

lower curing temperatures. 

6.3.1.2 Implications for Assessing ASR and DEF Deterioration with UPV 

The results indicate that UPV is best suited for assessing early stages of 

deterioration, because it is most sensitive to low levels of expansion.  An 8 to 10% loss in 

velocity was observed by the time the vertical expansion had reached half of the stirrup 

yield strain (   = 0.246%).  At expansions equivalent to the yield strain of the stirrups, 
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the velocity dropped only an additional 2%.  Beyond the point of stirrup yield, the 

velocity either leveled out or continued to decrease slowly, depending on the specimen. 

There are several things to keep in mind when extrapolating these results to the 

assessment of field structures.  Firstly, the compression wave velocity can vary greatly in 

concrete depending on the composition and mixture proportions, the presence of rebar, 

and the moisture content (see Section 3.3.1.1).  Thus, the actual measured UPV values 

sometimes have little meaning, and the loss in velocity is a more valuable parameter.  For 

this reason, knowing the initial UPV before deterioration began is very helpful.  This 

initial value is often called the “baseline.”  If the baseline is known, it can be compared to 

the measured UPV at any point in time to determine the loss in velocity, from which the 

extent of deterioration can be estimated.  However, baseline UPV measurements are not 

typically available for field structures.  If the concrete mixture properties and 28-day 

strength are known, the baseline velocity can be estimated (ACI Committee 228 2003).  

Alternatively, measurements from a visibly undamaged location of the structure may be 

used as an approximate baseline.  Note that both of these estimation techniques may 

result in large errors.  In situations where a baseline is neither known, nor can be 

estimated, it is difficult to assess the deterioration in a structure by taking UPV 

measurements at one point in time.  Monitoring must be carried out over a longer period 

of time to effectively observe the trends.  If it is not possible to maintain similar 

environmental conditions at each monitoring point, the various conditions should also be 

recorded. 

The second important factor that must be considered when assessing deterioration 

using UPV is that the method cannot distinguish ASR and DEF deterioration from other 

types of defects.  If the concrete was poorly consolidated, has delaminations, or is 

affected by other types of deterioration, the velocity and the change in velocity over time 

will depend on all of the defects present.  Thus, the loss in UPV in a field structure with 

damage from several different sources likely will not adequately reflect the level of ASR 

and DEF deterioration. 
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Finally, it is important to note that the deterioration was accelerated in this study.  

Field structures typically deteriorate at rates that are orders of magnitude smaller than 

those experienced in this research.  The expansions observed in these specimens in nearly 

one year are representative of what a field structure may see over a 20-50 year period.  

While all attempts were made to simulate field conditions and large discrepancies are not 

expected, results may differ slightly because of much slower deterioration rates in the 

field. 

6.3.2 Impact Echo 

Impact echo is a stress wave-based NDT method that was originally developed for 

locating defects in concrete slabs.  The test consists of a receiver that measures the 

surface displacement of an element after a mechanical impact.  Analysis of the wave 

reflections provides information about the wave propagation through the element.  As 

discussed in Section 3.4, observing key features in both the time and frequency domains 

of the received signal can help to assess ASR and DEF deterioration.  A discussion of the 

time domain analysis is provided in Section 6.3.2.1, while results from frequency domain 

analysis are presented in Section 6.3.2.2. 

6.3.2.1 Time Domain Analysis 

The technique proposed for assessing the level of ASR and DEF deterioration in 

the time domain is based on attenuation of the reflected compression waves (Kesner et al. 

2004).  Internal microcracking caused by ASR and DEF scatters the waves that are 

traveling through the concrete.  As deterioration progresses and more cracks form, more 

scattering will occur.  In theory, this phenomenon can be quantified by observing the rate 

at which the energy of the reflected compression waves is attenuated.  More rapid 

attenuation indicates more scattering and thus more deterioration. 

Typical time domain signals from each specimen are shown in Figure 6-5 for 

comparison between the initial measurements and those taken after significant 

deterioration had occurred in the reactive specimens.  Each signal has been filtered using 

a 5
th

 order high-pass Butterworth filter with a cutoff frequency of 5 kHz.  This eliminates 
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the effects of low frequency vibrations while maintaining the integrity of the signal.  

Each signal has been normalized by the maximum amplitude of the initial surface wave 

to facilitate comparison. 

 

Figure 6-5: Typical Impact Echo Time Domain Signals 
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By visual inspection, it appears that the presence of deterioration causes more 

rapid attenuation.  As discussed in Chapter 3, Kesner et al. (2004) proposed fitting 

exponential decay curves to the peaks in the signal: 

      
    Equation 3-3 

where   is the stress wave intensity at time  ,    is the initial stress wave intensity and   is 

the decay constant.  Generally, this method yields higher decay constants at higher levels 

of deterioration.  However, two important factors influence the results: the properties of 

the signal filter used, and the number of signal cycles included in the analysis. 

Firstly, the filter order and cutoff frequency can have a significant effect on the 

computed decay constant.  The most representative results will likely be obtained when 

appropriate filter properties are chosen to eliminate excessive high and low frequencies, 

and when these properties are maintained throughout the monitoring period. 

The second and more important factor that influences the decay constant is the 

number of signal cycles included in the curve-fitting.  Figure 6-6 shows the variation in 

the decay constant ( ) as a result of including different numbers of cycles in the analysis.  

This signal is from the first reactive specimen under significantly deteriorated conditions, 

but the trends are typical for each of the three specimens at all levels of deterioration.  As 

shown in the figure, the decay constant can decrease more than 15% when the number of 

cycles included in the analysis is increased from four to six, and over 30% when 

increased to eight.  If all discernible signal cycles are included in the analysis, the decay 

constant drops by over 80% compared to including only four cycles.  This variation is 

more significant than any consistent differences between tests on deteriorated and 

undamaged concrete.  These results and observations are similar to those found by 

Tinkey et al. (2000). 
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Figure 6-6: Influence of Number of Signal Cycles on Decay Constant 

Using finite element modeling of infinite plates, Kesner et al. (2004) found that 

the signal cycles “are discernible” until 90 to 95% of the initial amplitude has been lost, 

and implied that all of these peaks should be used when computing the decay constant.  

As seen in Figure 6-6, this was found to be unrepresentative of the actual attenuation 

trends in the signals recorded in the current research.  One reason for this is that as the 

energy attenuates, the signal-to-noise ratio decreases, resulting in a reduced signal 

quality, unless a very high vertical resolution is used.  For conventional impact echo 

analysis, which involves observing the resonant frequency shift (see Section 6.3.2.2), 

such a high vertical resolution is not necessary.  Another reason is that reflections from 

the side boundaries have a greater influence on the later portions of the signal for 

elements where the geometry is less similar to a plate.  In an ideally infinite plate 

structure, as analyzed by Kesner, each peak after the initial Rayleigh wave represents 
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However, in realistic elements, compression and shear waves are also reflected off of all 

surfaces.  These reflections can alter the cycles at later times in the signal, changing the 

perceived arrival times and amplitudes of the compression waves, and significantly 

influencing the decay constant. 

In general, observing the rate of attenuation in the time domain signal of an 

impact echo test may be able to indicate the level of ASR and DEF deterioration in an 

element.  However, more research is needed to determine the testing parameters, most 

importantly the number of signal cycles to include in the analysis.  Additionally, a higher 

vertical resolution may be needed to obtain a better quality signal for more consistent 

results using the time domain signals. 

6.3.2.2 Frequency Domain Analysis 

There are two techniques that can be used to assess ASR and DEF deterioration 

after transforming the signals collected during impact echo testing into the frequency 

domain.  First, several smaller, high frequency peaks in the spectrum may be present in 

testing of deteriorated elements, as the incident compression wave is reflected off of the 

internal microcracks as well as the back surface.  The second method focuses on the 

downward shift in the peak resonant frequency in the spectra, indicating a decreasing 

stiffness and a slower compression wave velocity.  Figure 6-7 displays typical frequency 

spectra for all three beams at the time of initial measurements and after significant 

deterioration had occurred in the reactive specimens.  These frequency spectra 

correspond to the time domain signals in Figure 6-5.   
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Figure 6-7: Frequency Spectra Corresponding to Time Domain Signals in Figure 6-5 

There does not appear to be a significant difference in the presence of small, 

higher frequency peaks in the signals taken from deteriorated specimens compared to 

those from the nonreactive specimen or to the initial state of the reactive specimens.  One 

reason for this may be the reflections off the side boundaries that occur as a result of the 
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would be less prominent in the frequency spectra, allowing for the smaller peaks 

indicating microcracks to be more dominant.  Additionally, collecting the signal using a 

higher vertical resolution may eliminate some of the noise in the frequency spectrum, as 

well as in the time domain signal.  This could also allow the smaller peaks to be more 

easily observed.  Using a smaller impactor to induce more amplitude in the higher 

frequency range may also make the smaller peaks more noticeable.  However, it is 

important to recognize that this technique is only qualitative and is more useful for 

determining whether or not internal microcracking may be present. 

The most obvious difference between the signals from the undamaged and 

deteriorated specimens is the shift in the peak frequency.  This corresponds to a stiffness 

decrease, which can be quantified by computing the compression wave velocity (see 

Section 3.4.1).  The relationship between the vertical expansion and the velocity 

calculated from the impact echo measurements are given in Figure 6-8 for each of the 

reactive specimens.  Though impact echo testing was performed at several points on both 

the side and top faces of the specimens, the data shown includes only the tests performed 

near mid-depth on the side faces in both test regions.  These results were the most reliable 

and repeatable because the geometry most resembled a plate-like element, for which the 

impact echo method was developed.  Also, note that the data collection parameters 

yielded a frequency resolution of 100 Hz (see Section 5.4.2).  Even though four 

measurements were averaged for each data point, the trends resemble more of a stair-step 

than a smooth curve because of the high value of the frequency resolution.  The 

calculated velocity in the nonreactive specimen ranged between 4220 to 4390 m/s over 

the monitoring period. 
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Figure 6-8: Impact Echo Results – Variation of Compression Wave Velocity 

The graphs are analogous to and can be directly compared to those presenting the 

UPV results (Figure 6-4), as both tests measure the compression wave velocity.  The 

trends are very similar between the UPV measurements and the velocity calculated from 

impact echo testing.  A rapid initial decrease in velocity is observed, and the rate of 

velocity loss decreases as deterioration progresses.  Also, note the similarity in velocity 

values between UPV and impact echo testing. 

Like the UPV results, the impact echo velocity data are most effective in 

characterizing early stages of ASR and DEF deterioration (see Section 6.3.1.2).  Knowing 
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deterioration at discrete points in time.  Additionally, the general trends observed over a 

longer period of time can help in estimating the approximate location on the curve and 

the level of deterioration.  Finally, recall that the compression wave velocity is a 

reflection of the overall quality of the concrete material, and thus cannot distinguish 

between various types of deterioration and defects. 

6.3.3 Surface Wave Methods 

Spectral analysis of surface waves (SASW) and surface wave transmission (SWT) 

are nondestructive techniques that measure properties of surface waves traveling through 

a material.  Both methods use the same test setup, which consists of measuring the 

surface motion at two points just outside of the test region, in line with an impact point on 

either side.  However, the signal processing and analysis differs for the two methods.  

After a brief overview of the typical signals collected, the SASW and SWT results are 

presented and discussed in Sections 6.3.3.1 and 6.3.3.2, respectively. 

Figure 6-9 shows typical signals recorded during surface wave testing.  Note that 

the same signals are used for the SASW and SWT analyses.  The only portion of the 

signal that is analyzed is the initial arrival of the surface wave, shown as a black line in 

the figure.  These signals illustrate the two phenomena that are observed in surface wave 

testing: the time delay between the arrival of the wave to the two receivers (SASW), and 

the difference in amplitude between the two received signals (SWT). 
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Figure 6-9: Typical Surface Wave Testing Signals 

6.3.3.1 Spectral Analysis of Surface Waves (SASW) 

The SASW method calculates the velocity of the different frequency components 

in a surface wave traveling through a material.  Though the method was originally 

developed to distinguish between layers in pavements and soil, it may also be used for 

generally homogenous solids like concrete.  By calculating the phase shift between the 

two received signals, the velocity can be obtained.  As with UPV and impact echo, lower 

velocities indicate damage, as the wave must travel around or through the defects. 

Results from an SASW analysis are often presented in the form of a dispersion 

curve, depicting the phase velocity as a function of frequency.  A typical dispersion curve 

for concrete is shown in Figure 6-10.  The curve on this plot represents the average of ten 

signals collected at one test location.  Five signals are recorded from impacts on each side 

of the receivers, and the results from all ten signals are averaged together to minimize 

error caused by asymmetry in the test setup. 
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Figure 6-10: Typical Surface Wave Dispersion Curve 

As can be seen in the plot, the velocity remains essentially constant through a 

large frequency range.  The variation in phase velocity in this case is no more than 50 m/s 

over a range of 20 kHz.  Note that the vertical axis of the plot represents a very small 

range.  For the purposes of this research, the surface wave velocity was taken at the 

approximate central frequency of the received signals (16 kHz).  Results from dispersion 

curves from five locations within a test region were averaged together to monitor the 

quality of the concrete in that region. 

Figure 6-11 shows the results from SASW testing on the two reactive bent cap 

specimens.  The graphs include measurements taken in both the vertical and longitudinal 

directions on the side faces of the specimens in the middle and outer test regions.   
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Figure 6-11: SASW Results – Variation of Surface Wave Velocity 

As can be seen in the plots, the data points are widely scattered.  It appears that 

for the first reactive specimen, a sharp drop from the initial velocity occurred at very low 

levels of expansions.  These initial data are not available for the second reactive 

specimen, as deterioration began very soon after casting.  However, a similar trend is 

predicted to have occurred.  For both specimens, the trends are unclear as the 

deterioration progresses to higher levels. 

One interesting feature of the data is that the velocities from measurements in the 
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similar.  However, this is to be expected for surface wave measurements, as most of the 

surface cracking is oriented in the longitudinal direction (see Figure 6-1a), crossing the 

path of the vertical surface wave measurements.  Very few cracks cross the path of the 

longitudinal measurements, leading to higher velocities in that direction. 

Additionally, a discussion about the variation in the surface wave velocity 

measured in the nonreactive specimen over the monitoring period will illustrate the 

sensitivity of this method to other sources of cracking and damage.  After loading the 

specimens, flexural cracking in the middle test region was observed in the nonreactive 

specimen (see Section 5.2.2).  This flexural cracking penetrated into the surface wave 

testing area, resulting in a 5% loss in surface wave velocity in the longitudinal direction.  

However, this loss was recovered over time, and the surface wave velocity in both 

directions was similar for the remaining data points in each test region.  This trend is 

depicted in Figure 6-12, a plot of the variation of the surface wave velocity in the 

nonreactive specimen against time.  Though measurements were taken only four times 

over the monitoring period, the effects of the flexural cracking are evident. 

 

Figure 6-12: Surface Wave Velocity Variation in the Nonreactive Specimen 
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these cracks became filled with water or other environmental debris over time, aiding the 

passage of the surface wave.  No matter the reason, it is clear that the surface wave 

velocity is very sensitive to cracking from any source.  Additionally, a recovery of the 

surface wave velocity after damage can occur over time, potentially skewing the 

interpretation of SASW results. 

In general, these results indicate that the SASW method is not very helpful for 

characterizing the deterioration from ASR and DEF deterioration.  Though the method 

appears to be effective at very early stages of deterioration, the data are widely scattered 

and the trends are unclear.  Recovery of any loss in surface wave velocity may also occur 

over time.  The SASW method does not seem to provide any more information than 

either UPV or impact echo, and is a much more time consuming method to perform 

because it requires data collection at several points for averaging.  Additionally, the 

signal processing is much more complicated and requires a good deal of training to 

properly interpret the results. 

6.3.3.2 Surface Wave Transmission (SWT) 

The SWT method measures the energy transmission of the different frequency 

components of a surface wave between the two receivers.  Lower values of transmission 

indicate damage, as more of the energy is scattered and attenuated by the defects.  This 

method has been developed primarily to measure the depth of a surface breaking crack, 

and there were no reports found in the literature of the use of SWT for characterizing 

distributed cracking. 

A typical variation of the surface wave energy transmission with frequency is 

shown in Figure 6-13.  This curve represents an average of ten signals taken from one 

testing location.  The transmission coefficient on the vertical axis is the ratio of energy 

present in the second receiver to that in the first.  This coefficient does not take into 

account the geometric attenuation caused by radial spreading of the surface wave from 

the point impact source.  It is expected that the energy present in the second received 

signal would be significantly lower than in the first due to the geometric attenuation.  The 

ideal transmission coefficient, representing only the geometric attenuation, is depicted on 
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the graph by a horizontal dashed line.  Any additional energy loss is attributed to some 

form of deterioration or damage in the material. 

 

Figure 6-13: Typical Surface Wave Energy Transmission Variation 

Like the surface wave velocity, the energy transmission remains fairly constant 

over a wide range of frequencies.  For monitoring purposes, the value of the transmission 

coefficient was taken at 16 kHz, or the approximate central frequency of the signal.  The 

transmission coefficients from five locations within each test region were averaged 

together to minimize error. 

The results from the SWT testing on the two reactive specimens are depicted in 

Figure 6-14.  The plot shows data taken in both the longitudinal and vertical directions in 

the middle and outer test regions. 
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Figure 6-14: SWT Results – Variation of Surface Wave Energy Transmission 

As can be seen in the plots, no discernable trends are present at any level of 

deterioration.  The energy transmission remains relatively constant as deterioration 

progressed, although the data points are widely scattered.  Like with the SASW results, 

the measurements taken in the longitudinal direction have generally higher transmission 

coefficients than those taken in the vertical direction, because the surface cracks in both 

specimens run largely in the longitudinal direction (see Figure 6-1a).   

The energy transmission in the nonreactive beam followed similar trends to those 
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simulated service load.  This loss was recovered over time, just as the loss in surface 

wave velocity was. 

 

Figure 6-15: Surface Wave Energy Transmission Variation in the Nonreactive Specimen 

From observing these results, it is clear that the SWT method does not provide 

valuable information for characterizing the level of ASR and DEF deterioration in an 

element.  Although a decrease in energy transmission is expected as the deterioration 
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receivers outside of the “near-field” area. 
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chapter, are better at detecting large cracks and voids.  Though several nonlinear NDT 

methods are in development (see Section 3.7), only one was chosen for investigation in 

this research.  This “time shift nonlinear acoustic method” was developed at Sherbrooke 

University in Quebec, Canada and seemed to be the most feasible method for testing field 

structures (Kodjo et al. 2009).  The method is based on observing the time delay and 

amplitude loss of ultrasonic pulses following a mechanical impact which imparts enough 

force to open the microcracks.  Opening of the cracks reduces the amplitude of the 

received wave as a result of attenuation through and scattering around the cracks.  A 

phase shift is caused by the delayed arrival of the wave.  As the impact effects wear off, 

the cracks close and both properties return logarithmically to the original values. 

A typical set of results from tests on the nonreactive and first reactive specimens 

near the end of the monitoring period are summarized in Figure 6-16 and Table 6-1.  The 

plots in the figure depict the variation of the phase shift and amplitude of the received 

ultrasonic pulses over time.  The amplitude is normalized by that of the first received 

pulse.  The level of nonlinearity is quantified by the slope of the linear portion of the 

phase shift vs. amplitude plot.  This portion of the plot is depicted as dark grey data 

points in the figure.  For comparison between different elements, this slope is normalized 

by the linear compression wave velocity, the central frequency of the signal before 

impact, and the travel path length.  Thus, the nonlinear parameter,  , is defined as: 

 
  

   
   

 Equation 6-1 

where   is the slope of the phase shift vs. amplitude plot,    is the linear compression 

wave velocity,   is the central frequency of the pulse before impact, and   is the travel 

path length.  Higher values of the nonlinear parameter indicate more microcracking and 

deterioration.  Note that this nonlinear parameter is many orders of magnitude smaller 

than those calculated by Kodjo et al. (2009) because of a slight difference in the data 

manipulation.  Kodjo et al. introduces a factor to relate the amplitude of the ultrasonic 

input signal to the strain amplitude imparted into the specimen, rather than normalizing 

the amplitude.  Although the values cannot be directly compared, the trends can be. 
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Figure 6-16: Time Shift Nonlinear Acoustic Method Results 
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Table 6-1: Time Shift Nonlinear Acoustic Method Results 

Property 
Nonreactive 

Specimen 
First Reactive 

Specimen 

Linear Velocity,    (m/s) 4290 3670 

Travel Path Length,   (in) 21 21 

Central Frequency,   (kHz) 89.5 57.0 

Slope,   (radians) -0.540 -0.516 

Nonlinear parameter,   0.0154 0.0198 

 

As can be seen in the table, the linear velocity, as measured by UPV, is lower in 

the reactive specimen than in the nonreactive specimen.  Additionally, the central 

frequency of the received ultrasonic signal before impact is significantly lower in the 

reactive specimen.  Both of these observations indicate deterioration based on linear 

wave propagation before the mechanical impact, and are congruent with the results 

presented in previous sections.  Additionally, the nonlinear parameter is higher for the 

first reactive specimen than for the nonreactive specimen.  This indicates a larger amount 

of nonlinear behavior and microcracking in the specimen deteriorated by ASR and DEF. 

Though these are results from only two tests, they indicate that this method may 

be useful in characterizing ASR and DEF deterioration in field structures.  Unfortunately, 

no data were collected at low levels of expansion, as this method is not commercially 

available and had to be developed in-house over the course of this project.  To adequately 

evaluate this method for assessing field structures, more research is needed to refine the 

most effective parameters to use during data collection and analysis, and to track the 

results through various levels of deterioration. 

Important parameters to consider in the data collection include the sampling 

frequency, the vertical range and resolution, and the testing configuration.  A high 

sampling frequency is necessary to accurately observe the very small time delays in the 

signal arrival.  To collect a signal for a long period of time, higher sampling frequencies 
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require more memory to store the collected data.  Similarly, a large vertical range and 

small vertical resolution will more accurately depict the amplitude changes.  Without the 

proper data acquisition equipment, it is not possible to obtain high-quality data to 

analyze.  Additionally, three testing configurations were used, as described in Section 

5.4.4.  To determine the most effective locations of the transducers and impact, these 

different configurations need to be investigated. 

Several parameters must also be considered in the data analysis.  Firstly, 

determining the amount of data points to be included in the curve fitting to determine the 

nonlinear parameter can widely affect the results.  It is clear from the phase vs. amplitude 

plots in Figure 6-16 that it is unreasonable to include all of the data points in computing 

the slope of the best fit line.  However, the exact cut-off point is unclear, and small 

variations can have a significant effect on the nonlinear parameter.  Secondly, it is often 

necessary to filter the received signal to facilitate data analysis.  A bandpass Butterworth 

filter was used to remove both high and low frequencies from the signals in the data 

presented here.  However, changing the filter properties can also affect the results.  

Finally, the initial arrival of the ultrasonic compression wave has a different shape in a 

variety of concrete mixes.  Typical received signals from the nonreactive and first 

reactive specimens are shown in Figure 6-17.  The longer time delay and lower frequency 

of the signal in the first reactive specimen are evident in the figure.  Additionally, while 

the initial arrival of the pulse is well defined in the nonreactive specimen, it is not for the 

first reactive specimen.  Based on these differences, it is unclear how much of the signal 

should be included in the analysis as the first arrival of the ultrasonic wave. 
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 Figure 6-17: Typical Time Shift Nonlinear Acoustic Method Received Signals  

Although this method may have potential for field assessment of elements 

affected by ASR and DEF, there are a few foreseeable problems that may arise and need 

to be addressed.  Firstly, significantly lower received signal amplitude was observed in 

the reactive specimens.  This indicates that the extensive microcracking damage is 

leading to large amounts of attenuation, which may be a problem in testing very thick 

elements.  Additionally, it may be difficult to impart enough force into a large field 

structure to open the microcracks and cause a discernable nonlinear response.  A small 

sledgehammer was used for the testing in this near-full scale study, but a larger impactor 

may be necessary in certain cases.  Also, the effects of environmental conditions, such as 

moisture content and temperature, have not yet been investigated.  Finally, as with all 

NDT methods, this technique is sensitive to many different sources of deterioration, and 

the results may reflect multiple types of damage. 

Despite the small amount of results obtained and the potential problems 

associated with applying the technique on field structures, a significant benefit of 

nonlinear methods in general is that they are orders of magnitude more sensitive than 

linear methods.  Thus, the importance of accurate baseline measurements is greatly 

diminished. 
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6.4 RESULTS FROM PRISM SAMPLES 

Expansion and NDT monitoring of the small prism samples cast with the bent cap 

specimens was performed over a period of one year.  The results from the expansion 

monitoring are presented in Section 6.4.1, followed by the NDT results from the resonant 

frequency testing in Section 6.4.2. 

6.4.1 Expansion Results 

The deterioration in the small prism samples cast alongside the bent cap 

specimens was quantified by measuring the length change, or expansion, of the prisms 

according to the provisions of ASTM C1293 (2008) (see Section 5.5.1).  The results are 

presented in Figure 6-18, which shows the range of expansions of the four prisms cast 

with each bent cap specimen, as well as the average expansion over the monitoring 

period.  The NDT results were compared with the average expansions. 

 

Figure 6-18: Range of Measured Prism Sample Expansions 

As can be seen in the figure, the trends are very similar to the bent cap 

expansions.  The nonreactive prisms have not shown any signs of expansion, confirming 

that no ASR or DEF is present in the control prisms.  The reactive prisms, on the other 

hand, have expanded significantly over the monitoring period.  The prism expansions are 

comparable, but slightly higher than the largest measured expansions in the bent cap 

specimens.  This is to be expected, as the prisms are not reinforced and experience 
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unrestrained expansion.  Additionally, the prisms corresponding to the second reactive 

concrete mixture have expanded more rapidly than those fabricated from the first reactive 

mixture.  This is attributed to the difference in curing temperatures of the prisms, which 

were approximately match-cured to the bent cap specimens in an oven (see Section 

4.3.3).  Like the bent cap specimens, the second reactive prisms sustained temperatures 

above the DEF threshold for at least 12 hours, while the maximum temperatures in the 

first reactive prisms hovered around the DEF threshold, but were not sustained for a 

significant amount of time.  Thus, it is expected that the higher rate of expansion in the 

second reactive prisms is a result of a combination of ASR and DEF deterioration, while 

the expansion in the first reactive prisms is attributed mostly to ASR deterioration. 

6.4.2 Resonant Frequency NDT Results 

The resonant frequency NDT method, as defined by ASTM C215 (2008), was 

performed on the prism samples as deterioration progressed.  The concept of the test is to 

record the motion of an element after a mechanical impact to determine the resonant 

frequencies of vibration.  As discussed in Chapter 3, the dynamic elastic modulus,   , 

can be computed by: 

         Equation 3-4 

where   is the measured fundamental frequency of a particular mode of free vibration,   

is the mass of the element, and   is a constant based on the geometry.  A lower resonant 

frequency results in a lower modulus, indicating a reduced stiffness and increased 

deterioration.  Results from the resonant frequency testing on the reactive prisms are 

shown in Figure 6-19, which depicts the variation in the dynamic elastic modulus with 

deterioration.  The data include results from testing in both the transverse and 

longitudinal directions.  The average dynamic moduli calculated for the nonreactive 

prisms ranged from 5200 to 5400 ksi, although resonant frequency testing was not 

performed for the first three months of monitoring of these prisms. 
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Figure 6-19: Resonant Frequency Results – Variation of Dynamic Elastic Modulus 

The trends from the resonant frequency results are very similar to the variation in 

compression velocity measured using UPV and impact echo.  An initial drop in the 

modulus was observed with low levels of expansion.  As the deterioration progressed, the 

modulus tended to level off and the data points became more widely scattered.  One 

possible explanation for the flattening of the curve at higher expansions is that the cracks 

were filled with ASR gel, effectively stiffening the element.  This is the same reasoning 

that is often given for the leveling off of the compression wave velocity at high levels of 

expansion.  Additionally, the dynamic elastic modulus was similar for testing in the 

transverse and longitudinal directions.  The data indicate that the modulus may tend to be 

slightly higher when computed from the longitudinal resonant frequency (shown as light 

grey data points), but this is likely due to small errors in the calculations, as approximate 

nominal dimensions of the prisms were used. 

These results indicate that the resonant frequency method, like UPV and impact 

echo, is most effective at low levels of deterioration.  However, this method cannot be 

easily and directly performed on field structures, as can UPV and impact echo.  Instead, 

cores must be taken for resonant frequency testing, making it actually a semi-destructive 

method.  Additionally, when the core is removed from the element, the effects of 
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confinement by the reinforcement and load-induced stresses are also removed, and the 

core becomes less representative of the field structure.  Note that it is possible to perform 

a modified version of resonant frequency testing on a field structure, but computer 

modeling is required to relate the measured resonant frequencies to the dynamic elastic 

modulus when the geometry and boundary conditions are more complex. 

6.5 SUMMARY 

Over a period of approximately one year, the bent cap specimens and small prism 

samples were monitored as ASR and DEF deterioration progressed.  Along with visual 

observation, expansions were measured to quantify the level of deterioration, and several 

NDT methods were performed to determine which methods may be useful for 

characterizing deterioration in field structures.   

All reactive specimens exhibited significant amounts of visible surface cracking 

and expansion as a result of the ASR and DEF deterioration, while the nonreactive 

controls showed no signs of deterioration.  Note that the deterioration was accelerated in 

this study and is analogous to what a field structure would see over a much longer period 

of time.  In general, more rapid expansion was observed in the second reactive specimen 

and prisms, which sustained curing temperatures above the DEF threshold for at least 12 

hours, while the first reactive specimen and prisms did not.  Also, more rapid expansion 

was measured in locations and directions of less restraining reinforcement. 

The compression wave velocity, measured by either UPV or impact echo, seems 

to be the most effective NDT parameter for the assessment of deterioration in field 

structures, at least at low levels of expansion.  As the deterioration progresses, however, 

the velocity is less sensitive to increasing expansions and becomes a less useful 

assessment tool.  The surface wave velocity, measured using the SASW method, showed 

similar trends to the compression wave velocity, but the results were more scattered and 

the test is more time-consuming to perform and analyze.  Computing the dynamic elastic 

modulus from the measured resonant frequencies also exhibited similar trends to the 

compression and surface wave velocities.  However, this method requires drilling cores 

from the structure, which makes it a semi-destructive method and removes the test 
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specimen from the field conditions.  Additionally, having baseline measurements, or 

knowing what the value of the velocity or modulus would have been if there was no 

deterioration, is important for all of these methods. 

The alternate methods of analyzing the impact echo data were less useful than 

computing the compression wave velocity.  The time domain method based on 

attenuation of reflected compression waves needs more refinement to clarify the proper 

parameters to be used in the analysis.  Observing the amount of smaller peaks in the 

frequency spectrum may be a helpful diagnostic tool if high quality data are obtained, but 

cannot be used as a quantitative measure of deterioration.  Similarly, measuring the 

energy transmission of a surface wave using the SWT method gave poor results, as the 

extensive network of cracks reflected various waves that interfered with the analyzed 

surface wave. 

Finally, the time shift nonlinear acoustic method showed some promise for 

assessing the deterioration, although more research is needed to determine the most 

effective data collection and analysis parameters.  The benefits to using nonlinear 

methods are that they are more sensitive to microcracking than are linear methods, 

meaning that baseline measurements and small errors in the testing are less important.  

However, the method requires complex data processing and very precise equipment, and 

the results may be affected by environmental factors. 
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CHAPTER 7 

Summary, Conclusions, and Recommendations 

 

7.1 SUMMARY 

Alkali-silica reaction (ASR) and delayed ettringite formation (DEF) are 

responsible for the deterioration of many highway structures throughout the state of 

Texas and around the world in recent decades.  Several researchers have indicated that 

the expansions and cracking caused by ASR and DEF may not adversely affect the 

structural performance of a reinforced concrete element.  Even though the strength and 

stiffness of plain concrete are significantly reduced by the deterioration, the restraint and 

confinement provided by the reinforcement helps to maintain the integrity of the 

structure.  The current greatest concern for structural performance is the potential for 

rebar fracture, which may eliminate the beneficial effects of the reinforcement.  

Additionally, the extensive surface cracking presents a serviceability problem, as water 

and other contaminants can penetrate the element through the cracks. 

A considerable amount of research has been performed regarding ASR and DEF 

in the state of Texas and around the world.  For the most part, the prevention of ASR and 

DEF in new structures has been achieved.  A significant concern remains with the 

evaluation of in-service structures suffering from various levels of deterioration.  This 

evaluation process consists of diagnosing the source of deterioration, assessing the 

current level of deterioration, predicting the future deterioration, and determining plans 

for mitigation or repair.  The goal of this research was to determine how nondestructive 

testing (NDT) can supplement the methods already used in this process.  The NDT 

methods discussed here largely fall into the category of assessment of the level of 

deterioration in a structure at discrete points in time, as well as tracking and predicting 

the future deterioration. 

To evaluate the capability of various NDT methods to characterize ASR and DEF 

deterioration, three near full-scale reinforced concrete specimens were fabricated, 
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representing bent caps typically found in the state of Texas.  Accelerated ASR and DEF 

deterioration was induced in the two reactive specimens by carefully selecting materials, 

ensuring high curing temperatures, and providing a warm, high humidity conditioning 

environment.  The third specimen was a nonreactive control which exhibited no signs of 

ASR or DEF deterioration.  All specimens were subjected to the same conditioning 

regime, which included providing a constant supply of moisture and applying a service 

load to simulate stress conditions seen in the field.  Over the monitoring period of 

approximately one year, deterioration was quantified by measuring expansions in several 

locations on each specimen.  Several NDT methods were performed as deterioration 

progressed, namely ultrasonic pulse velocity (UPV), impact echo, spectral analysis of 

surface waves (SASW), surface wave transmission (SWT) and a nonlinear acoustic 

method.  Additionally, small prism samples were fabricated alongside the bent cap 

specimens.  Monitoring included measuring prism expansions and performing the 

resonant frequency NDT method. 

7.2 CONCLUSIONS AND RECOMMENDATIONS 

Based on the results from this research, the following conclusions and 

recommendations are made in regards to using NDT methods to evaluate in-service 

concrete structures affected by ASR and DEF: 

1. A loss in compression wave velocity, measured by either UPV or impact echo, 

was found to be the best and most consistent indicator at low levels of 

deterioration.  Both UPV and impact echo are easy and quick methods to 

perform.  However, UPV is recommended over impact echo because of the 

simpler and more consistent analysis that does not require performing a Fourier 

Transform.  Impact echo can be used in cases when access to only one side of the 

element is available.  One disadvantage to measuring the compression wave 

velocity is that it is less sensitive to higher levels of deterioration.  Results from 

this research indicated that the velocity remains fairly constant as expansions 

increase beyond approximately the yield strain of the transverse reinforcement.  

Additionally, the velocity is dependent on many factors, most importantly the 
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concrete composition and moisture content.  Thus, it is important to know or 

estimate a “baseline” velocity, or what the velocity was before deterioration 

occurred, for comparison.  Finally, as with most NDT methods, the compression 

wave velocity is sensitive to all types of damage and cannot distinguish ASR and 

DEF deterioration from other damage. 

2. Reductions in the surface wave velocity, measured using the SASW method, 

and in the dynamic elastic modulus, measured using the resonant frequency 

method, indicated similar trends to the compression wave velocity, but are not 

as highly recommended.  The surface wave velocity data were more scattered, 

and different results were obtained for measurements in two directions, depending 

on the surface crack pattern.  Also, a recovery of any loss in surface wave velocity 

may occur over time, as observed in the research presented here.  The resonant 

frequency method can only be performed on small samples and requires cores to 

be taken from the structure, making it a semi-destructive method.  Removing a 

core for testing also eliminates the effects of internal stresses and restrained 

expansion, limiting the comparability of the core to the field structure 

3. The impact echo techniques of time domain attenuation analysis and 

observation of smaller peaks in the frequency spectrum did not yield reliable 

results.  Though the time domain analysis generally indicated more attenuation 

when deterioration was present, the results are greatly affected by the number of 

compression wave arrivals to include in the analysis.  Reflections off side 

boundaries and noise in the received signal can also affect the results.  Additional 

small frequency peaks were not observed in the spectra of signals from 

deteriorated specimens.  The presence of small peaks may have been 

overshadowed by boundary reflections or by noise in the collected signal. 

4. The energy transmission of surface waves using the SWT method was not 

sensitive to ASR and DEF deterioration.  This is likely due to the near-field 

effect, in which reflections of body waves off cracks interfere with the analyzed 
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surface wave.  Because of the vast network of surface cracking caused by ASR 

and DEF, it is difficult to locate the receivers to avoid this effect. 

5. The time shift nonlinear acoustic method may have the potential to evaluate 

ASR and DEF deterioration, but more research is needed to refine the 

parameters of the test and to track the results as deterioration progresses.  

Nonlinear propagation of waves is more sensitive to microcracking than 

traditional linear methods, including all other methods discussed here, which are 

more effective at detecting larger defects.  This also means that having a baseline 

value is less important than with linear methods.  However, the method requires 

high-powered, precision equipment, as very large data files must be collected, 

stored and analyzed.  Another potential problem is safely impacting the structure 

with enough force to induce measureable nonlinear behavior.  Effects of 

environmental conditions, such as moisture content, have not yet been studied.  

Finally, more data need to be collected to understand the trends as deterioration 

progresses. 

6. None of the NDT methods investigated in this study are expected to be effective 

evaluation tools at high levels of expansion or for predicting structural 

performance.  Many of the NDT methods (UPV, impact echo, SASW and 

resonant frequency) are sensitive to early ASR and DEF deterioration, but the 

subsequent loss in velocity or modulus becomes less significant as expansion 

increases.  Additionally, NDT results will likely not be able to adequately predict 

structure performance.  This is because the parameters measured with the 

nondestructive tests, like wave velocity, are associated primarily with properties 

of only the concrete.  The interaction between the expanding concrete and the 

restraining reinforcement is not adequately represented in the NDT results. 

7.3 FUTURE WORK 

The NDT results obtained in this research may be helpful in the assessment of 

current and future ASR and DEF deterioration in the field if applied appropriately.  

However, predicting structural performance is not possible using the NDT methods 
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investigated in this research, because the NDT parameters reflect only the concrete 

properties and do not take into account the interaction between the expanding concrete 

and the restraining reinforcement.  It is also important to consider the differences between 

field and laboratory testing when relating these findings to field testing.  Additional 

research to connect laboratory and field testing will be helpful in making this transition.  

Also, methods of diagnosing and mitigating ASR and DEF deterioration are key 

components in the evaluation process.  In particular, effective mitigation methods need to 

be developed to reduce any potential threats to public safety that may be caused by ASR 

and DEF.  Finally, more structural testing of full scale deteriorated elements should be 

performed to fully understand the implications of ASR and DEF expansions and cracking 

on the structural behavior.  This includes investigating the potential for rebar fracture and 

its implications on behavior. 
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