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Abstract 

 

An Explanation of the Behavior of Bottle-Shaped Struts 
Using Stress Fields 

 

 

Cameron L. Sankovich, B.S. 

The University of Texas at Austin, 2003 

 

Supervisors:  Oguzhan Bayrak, James O. Jirsa 

 

The behavior of bottle-shaped struts was investigated using 

isolated concrete specimens with various amount and configurations of 

transverse reinforcement in which compressive stresses resulting from 

applied load through rigid plates was able to disperse creating transverse 

tensile stress within the specimens.  The behavior of the specimens was 

observed and recorded to evaluate current provisions regarding 

compressive stress limitations, reinforcing requirements, and to unify the 

treatment of bottle-shaped struts by ACI 318-02 and AASHTO LRFD.  The 

results from the experimental investigation indicated that both ACI-318-02 

and AASHTO LRFD provisions for bottle-shaped struts are conservative in 

their specifications for compressive stress limits and reinforcing 

 vi



requirements.  Finally, a transition stress field developed by M. Schlaich 

was modified to model the observed behavior and failure mechanisms of 

the specimens, which was dependent on the amount of transverse 

reinforcement provided. The transition stress field exploits the tensile 

strength of concrete by incorporating a bi-axial failure criterion, with a 

statically admissible stress field with finite dimensions.  The transitions 

stress field is presented as an alternate method of modeling the behavior 

of bottle-shaped struts.   
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1.0 INTRODUCTION 

1.1 HISTORICAL OVERVIEW 

In the 1920’s Richart [42] divided the total shear resistance of 

reinforced concrete beams into the contribution of shear resistance from 

the concrete Vc and the contribution from the stirrups Vs so that the 

nominal shear capacity can be expressed as Vn=Vc+Vs.   The shear 

resistance of concrete was obtained through empirical observation while 

the contribution from the stirrups was obtained through truss models 

adapted from Ritter [43] and Mörsch [31, 32] who was the first to visualize 

truss mechanisms resisting applied force within reinforced concrete 

beams.  The addition of the empirical Vc term dimmed the significance of 

truss models to many North American engineers, and as a result, no 

significant advancement was made in the area for 50 years.  

Truss modeling in North America, saw a rebirth in the 1970’s and 

1980’s with Mitchell and Collins [30] and Ramirez and Breen [37] using 

truss models and plasticity theory to predict combine shear, bending, and 

torsional behavior expanding on work done by Swiss contemporaries, 

Lampert and Thürlimann [24], and Marti [24].   The resurgence and 

extrapolation of truss models to wider ranges of structural elements and 

loading situations spawned the need for a unified approach to modeling of 

this type. 

Schlaich et al.[45], in his 1987 journal paper Toward a Consistent 

Design of Structural Concrete, argued for the implementation of a single 

design concept applicable for all parts of concrete structures. This concept 

consisted of a generalized truss analogy in the form of strut-and-tie 



 

 

2

modeling (STM).  With strong theoretical explanation, finite element 

analyses, and results from limited testing, Schlaich logically showed that 

STM was accurate in predicting any behavior (within the accuracy of 

design) of cracked structural concrete in regions where Bernoulli’s 

hypothesis remains a rational assumption (B-regions), regions of static or 

geometric discontinuity (D-regions), and even the anchorage of 

reinforcing.   

STM is only an efficient design tool within D-regions.  The design of 

B-regions with STM requires complex compatibility analysis to merge the 

gap between a lower bound STM equilibrium solution with an upper bound 

kinematic solution to achieve the same levels of efficiency for the design 

of B-regions by standard practice.    

Schlaich [45], with his presentation of STM as an efficient design 

tool for D-regions, provided dimensioning guidelines, stress limitations for 

ductile behavior, and extensive design examples and fathered the current 

basis for STM. Subsequent work follows two primary paths-the work of 

Mitchell and Collins [30] on B-regions ultimately led to the Modified 

Compression Field Theory, while others (mostly at the University of Texas 

at Austin) began researching D-regions such as post-tensioned anchorage 

zones, dapped beam ends, and corbels, as well as, testing isolated 

components of strut-and-tie models such as nodes, struts, and most 

recently the anchorage of headed bars within C-C-T nodes.   

With the foundation laid for the codification of STM by Schlaich, 

The Canadian CSA Standard [6], Ontario Bridge Code [7], and AASHTO 

[1] all adopted the provisions of STM for the general analysis of any D-

region.  The inclusion of Appendix A, Strut-and-Tie Models, in the ACI 



318-02 raises the height of awareness of STM as a tool for analyzing and 

detailing D-regions by practicing engineers.   The increasing use of STM 

by practicing engineers, variety of detailing problems, and range of 

solutions possible using this design tool raise many questions that will 

need to be answered through research and experimental study. 

1.2 IMPETUS FOR STUDY 

The decision by the Texas Department of Transportation (TxDOT) 

to conduct Research Project 0-4371, Examination of the ASSHTO LRFD 

Strut-and-Tie Specifications, was the result of questions and concerns 

raised by bridge engineers regarding the application of the AASHTO strut-

and-tie model provisions to elements within their scope of design.  The 

limitations of the AASHTO STM provisions as well as the discomfort felt by 

engineers initially using the these provisions when he displayed drawings 

for various strut-and-tie models considered to verify the capacity of an as-

built bent cap section which had been misplaced in the field resulting in a 

2 foot extension of the moment arm of the applied load.  The strut-and-tie 

models considered by TxDOT engineers and the as-built reinforcing of the 

bent cap are shown in Figure 1.1.   

Figure 1.1 A displays the initial truss model considered by TxDOT 

engineers that was immediately dismissed because the angles of 

inclination between the upper tie and struts I and II were too small for an 

acceptable compressive stress limit fcu given by AASHTO equations 

5.6.3.3.3-1 and 5.6.3.3.3-2 shown here by equations 1-1 and 1-2. 

 '
c

1

'
c

cu f85.0
1708.0

ff ≤
ε+

=     (1-1) 
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     (1-2) s
2

ss1 cot)002.0( θ+ε+ε=ε

fcu = ultimate stress of the strut (ksi) 

fc' = concrete compression strength (ksi) 

ε1 = principal tension strain perpendicular to the axis of the strut (in/in) 
 
εs = tension strain in tie steel crossing the axis of the strut usually taken as  

  the yield strain of the reinforcing bars (in/in) 

θs = angle between the axis of the strut and the axis of the tie that it anchors 
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Figure 1.1 Strut-and-Tie Models and As-Built Reinforcing for TxDOT  

Misplaced Bent  
TxDOT engineers were not satisfied with the model only having one 

vertical tie.  They understood that the forces would flow according to the 
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stiffness of the in-situ placement of the reinforcement, and a more 

accurate model would therefore have a greater number of modeled 

vertical ties.   Figure 1.1 B shows the model after some refinement was 

made and illustrates new uncertainties.  The uncertainties about the model 

include the assumed geometry of the nodes and stress field under the 

applied loads, the geometry of the smeared nodes anchoring compressive 

struts at vertical ties, the allocation of actual vertical stirrups to a single 

modeled vertical tie, the geometry of struts anchoring vertical tension ties 

(closed stirrups) if modeled according to AASHTO provisions 5.6.3.3.2, 

and overall model optimization.   The number of questions regarding the 

refined model led the TxDOT engineers to abandon the STM solution 

entirely. 

It should be noted that bent cap STM is one prime for the 

combination of finite element analyses (FEA) and STM, as recommended 

by Schlaich [45].  The incorporation of a FEA would provide insight about 

basic strut orientation and possible node geometries.; however, a FEA can 

not answer all of the questions posed, especially those dealing with stress 

limitations (which vary subjectively in different codes).   

The example provided by TxDOT displayed the difficulty in 

producing acceptable physical dimensions of a truss model that could be 

used to check limiting compressive stresses in the concrete.  Furthermore, 

the stress limit for struts proposed by AASHTO given by equations 1-1 

and 1-2 tend to cripple the overall model. The adoption of Appendix A, 

Strut-and-Tie Models, into the ACI 318-02 building code, which is 

congruent with the provisions for STM in the European FIB code [9], 
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provides another set of guidelines that can be evaluated using new 

experimental data.   

1.2.1 EVALUATION OF ACI 318-02 AND AASHTO LRFD STM PROVISIONS    

In order to define inconsistencies with current ACI  / AASHTO STM 

provisions, and to highlight areas where research could be used to 

improve STM guidelines, typical TxDOT designed structural elements 

such as inverted T girders, pier caps, and pile caps, were alternately 

designed using strut-and-tie models.  The iterative truss models were 

developed and dimensioned using the provisions provided by each code. 

The acceptability of these models was based on current AASHTO and ACI 

stress limitations coupled with serviceability requirements.  The ratio of the 

reinforcing steel cage weight resulting from each model to the reinforcing 

steel cage weight produced by the original TxDOT design was computed 

as a measure of model efficiency assuming that traditional TxDOT designs 

provide safe, serviceable structures based on experience with and 

performance of the traditional designs.   

As a result of this exhaustive exercise, specific areas where 

guidance is lacking in application of the provisions of each code, as well 

as, specific discrepancies between the provisions in different codes 

emerged and were noted.  The following bulleted list summarizes these 

difficulties and discrepancies: 

 

 

 
 



 

 

7

 discrepancies in the provisions for producing the physical geometry for singular 

 nodes 

 discrepancies in the provisions for  producing the physical  geometry of struts 

 anchored by closed ties  

 discrepancies in the provisions for the stress limits of struts  

 discrepancies in the provisions for the reinforcement of bottle shaped struts  

1.2.2 BOTTLE-SHAPED STRUTS 

The last two items in the preceding list are inter-related, and were 

persistent problems in all the STM redesigns and represent prime topics 

for experimental study.  Schlaich [45] first suggested the need for 

experimental study of the reinforcement of dispersed compression fields. 

Sanders [44], Burdet [17] and Thompson [47] called for further 

investigation into the capacity of struts in general after they observed that 

of bottle-shaped struts constantly failed at higher levels of stress than 

suggested by either AASHTO or CEB-FIP now FIB codes.   

The AASHTO 5.6.3.3 STM provisions for strut capacity involve 

checking the stress of the strut on the smallest area governed by adjacent 

node geometry against a maximum stress produced by substituting 

Equation 1-2 into 1-1.  Equations 1-1 and 1-2 were developed by Collins 

[30] based on data from deep beams and shell elements.  The original 

derivations were developed for ties composed of stirrups crossing the 

paths of shear struts within deep beams at well-distributed intervals.  The 

adaptation of these equations to the general STM case has not been 

verified by tests, nor has it been proven that these equations are adequate 

for such situations as compact elements like corbels or three-dimensional 

strut-and-tie models such as those which model pile caps [47]. 



The ACI specifications use basic design assumptions based on the 

condition of the concrete through which the strut passes, and the 

reinforcement available to resist transverse tension within the 

compression field. The strut to adjacent tie angle is limited to 25o and the 

ultimate stress at the smallest cross section is given by equation 1-3: 

             (1-3) '
cScu f85.0f β=

 

where βs is chosen from the following conditions: 

 struts passing through uncracked concrete in a uniaxial fashion  (such as in the 

 compression zone of a beam):    βS = 1.00 

 struts passing through concrete in tension:  βS = 0.40 

 bottle shaped struts with appropriate reinforcement: βs = 0.75 

 bottle shaped struts with no reinforcement:  βS = 0.60 

 all other cases:      βs = 0.60 

 Reinforcement for bottle shaped struts must satisfy the following: 

 

    ∑ ≥γ 003.0sin
bs
A

i
i

si           (1-4) 

 Asi = area of steel in spacing, si, that crosses the path of the strut (in2) 

 si = spacing of reinforcement crossing the path of the strut (in) 

 b = the width of the strut perpendicular to the axis of the crossing   

   reinforcement (in) 
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 γi = the angle between the axis of the strut and the axis of the crossing 

reinforcement; γ must be greater than 40o if only one layer of 

reinforcement crosses the strut 
 

Furthermore, equation 1-4 may be replaced by proportioning 

reinforcement based on 2:1 dispersion of compressive stresses.  Three-

dimensional strut capacities are considered by ACI, not to be influenced 

by reinforcing indicated in ACI RA.3.3: 

Often, the confining reinforcement given in A.3.3 (1-3) is difficult to place 

 in three-dimensional structures such as pile caps. If the reinforcement is 

 not provided, the value of fcu given in A.3.3.3 (b) (βS = 0.60) is used.  
 

Figures 1.2 and 1.3 clearly depict the extreme differences between 

the acceptance criteria as provided by ACI 318-02 Appendix A and 

AASHTO LRFD strut-and-tie modeling provision for struts in which 

compressive stresses have sufficient room to expand within the confines 

of the structural element (bottle-shaped struts) creating associated 

transverse tension-a frequently occurring condition in most reinforced 

concrete structures.   Figure 1.2 illustrates the capacities for bottle-shaped 

struts anchoring tension ties.  Figure 1.3 illustrates the capacity specified 

for bottle-shaped struts not anchoring tension ties such as bottle shaped 

struts adjoining two C-C-C Nodes.  The differences illustrated by these 

figures help to understand the a designer’s dilemma with a design based 

on a strut-and-tie model acceptable for bridge structures (AASHTO) but 

unacceptable for building structures (ACI).   
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Figure 1.2 Bottle-Shaped Strut Capacity as a Function of the Angle   
with an Adjacent Tension Tie  

The margin of discrepancies presented in Figure 1.2 and Figure 1.3 

must be narrowed if STM is to achieve a status as a consistent, reliable, 

economical design tool. 
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Figure 1.3 Bottle-Shaped Strut Capacity as a Function of the 
Confining Reinforcement Ratio 

1.3 RESEARCH OBJECTIVES AND SCOPE OF THESIS  

The investigation into the application of ACI and AASHTO STM 

provisions to TXDOT typical structural elements demonstrates the lack of 

guidance within both provisions and the discrepancies between 

provisions.  Existing literature was reviewed to make sure that all 

applicable data was included in resolving the problems noted. Those 

areas where the experimental data was limited that questions and 
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discrepancies between the codes could not be addressed, were denoted 

as areas for possible research.   

The work presented herein constitutes Phase I of Research Project 

0-4371, Examination of the ASSHTO LRFD Strut-and-Tie Specifications 

sponsored by the Texas Department of Transportation. The objective of 

Phase I was to study the compressive stress limitations for bottle-shaped 

struts based on the effective amount of reinforcement available to confine 

the strut and to unify the treatment of bottle-shaped struts by ACI and 

AASHTO. 
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2.0 CURRENT STATE OF PRACTICE 

2.1 INTRODUCTION 

STM is a method that can both provide a conservative, lower bound 

estimate of the ultimate capacity of a structural concrete section and 

provide insight to proper detailing of structural concrete elements.  The 

method is most efficiently employed in regions where point loads, 

reactions, and geometric discontinuities create states of stress that violate 

simple beam theory.  The method may be used for any region of structural 

concrete elements regardless of the state of stress due to the method’s 

strong basis in structural mechanics as argued by Schlaich et al [45].  

Pragmatic North American designers, however, would find the method 

tedious in application where simplified equations may be used that have 

been substantiated by exhaustive experimental testing and result in ductile 

structural behavior.   In light of this attitude by the professional society, 

STM has been delineated for use within disturbed regions (D-regions) 

exclusively.   

The STM method is a lower bound plasticity solution that will result 

in a conservative estimate of the actual ultimate capacity of a section if: 
 equilibrium is satisfied 

 at no point does the material exceed its failure criteria 

 detailing is such that sufficient ductility is provided to ensure plastic strains and    

 rotations 

Since structural concrete is heterogeneous material consisting of a non-

ductile material (concrete) and ductile material (reinforcing steel) the last 

two items of the bulleted list are dependent upon each other, and the 
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proper interaction of the two ensures plastic behavior by forcing ductile 

failures of reinforcing steel prior to the non-ductile failures of concrete 

crushing or anchorage failure.   

STM is a relatively new concept to North American engineers; 

although the basic concepts driving the method have been known and 

employed by European engineers for over a hundred years, North 

American research has not yet provided a consistent treatment of the 

yielding criteria of concrete to ensure plastic behavior; instead, most 

research has been concentrated on substantiating the method as a basic 

design tool for specific structural elements.  When applying the method in 

practice, the production of the physical geometry of the truss models 

employed in the STM method may be argued as the most frustrating 

aspect of the overall STM process to engineers.  STM allows complete 

autonomy in the selection of a specific truss model.   With more 

experience engineers will find that while the absolute geometric definition 

of struts, tie, and nodes and finding the exact location of these members 

within the confines of the structural element under consideration are 

important; they are not as critical as satisfying the three items in the 

preceding bulleted list exclusively.   

As an example, consider the bolt group connecting a gusset plate 

to a structural steel section of a braced frame.  The designer is only 

concerned with equilibrium of forces in the analysis of the load path from 

the brace to the column.  The designer ensures that the yield criterion of 

structural steel is met by specifying weld sizes, gusset plate thickness, 

and the number of bolts and their spacing based on the simple equilibrium 
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calculation.  The actual path the forces take from the brace through the 

bolt group to the gusset plate through the welds and finally to the column 

web or flange is inconsequential since equilibrium is satisfied.  The 

designer is able to achieve a safe design because the forces will 

redistribute themselves as appropriate through a completely plastic media.   

2.2 PROCEDURE FOR PRODUCING A STRUT-AND-TIE MODEL 

After overall structural analysis has been performed to determine 

exterior reactions, the designer must delineate the B and D-regions of the 

structural element under consideration by using Saint Venant’s principle.   

The adjacent B-region forces are determined through cracked section 

analysis and placed on the adjacent D-region at the centroid on which 

they act.  The D-region can then be isolated and loaded with any exterior 

reactions or loads and forces calculated from the B-region.  The internal 

flow of forces is then visualized through intuition, experience, or with the 

help of a finite element analysis for complex situations.  The designer then 

chooses uni-axial struts and ties placed in the basic orientation of the 

visualized forces.  These struts and ties concentrate their curvature in 

nodes to form a truss.  The “stick-model” truss is then analyzed using 

classical structural analysis to determine member forces.  Reinforcement 

is portioned for the corresponding tension force and the reinforcement is 

placed such that the centroid of the reinforcement is concentric with the 

centroid of the modeled tension tie.  Singular node dimensions are then 

estimated using code provisions.  Singular nodes are defined as nodes 

whose geometry can reasonably be ascertained due to the deviation of a 
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highly concentrated stress field such as applied load through rigid plates 

with finite dimensions.  On the other end of the spectrum, smeared nodes 

are those in which stress fields are deviated over a smeared area.  An 

example of a smeared node is the deviation of a compressive stress field 

crossed by evenly distributed reinforcement in which the actual deviation 

of the stress field might spread over some length.  An example of each 

type of node is shown in Figure 2.1.   Simultaneously with the estimation 

of node dimensions, end critical strut dimensions are also defined.  The 

member forces calculated from the “stick-model” are then checked against 

member capacities calculated by using the ultimate stress limits 

(dependent on code) multiplying by the estimated area at critical locations.  

Critical locations for singular nodes include the face under direct bearing 

and the strut/node face. After assuring that stress levels are less than 

ultimate, development lengths may be checked using code provisions.  

This process is iterative and is repeated if stress levels at nodes and struts 

exceed the maximum and/or anchorage is inadequate. 

Detailed descriptions of the process are available in earlier 

publications on STM, but none is as complete as Schlaich et al.’s [45] 

1987 work, Toward a Consistent Design of Structural Concrete.  However, 

a comprehensive example regarding the physical production of a strut-

and-tie model including the findings of all current research from 1987 to 

date is presented in 2.4.1. 
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2.3 EXPERIMENTAL INVESTIGATIONS 

2.3.1 GENERAL 

The scope of this research project encompassed the treatment of 

stress limitations for bottle-shaped struts based on the amount of effective 

reinforcement available within a concrete section to resist passive tensile 

stresses transverse to the direction of applied load.  Earlier publications do 

not address this issue in depth; however, several publications described in 

the proceeding sections form the foundation of experimental research that 

produced guidelines for producing the physical geometry of strut-and-tie 

models and provided guidelines for application of the method in order to 

achieve safe and efficient designs.   

2.3.2 NCHRP PROJECT 10-29 

The National Cooperative Highway Research Program (NCHRP) 

initiated Project 10-29 at UT in 1986 with the objective to develop design 

procedures for end and intermediate anchorage zones for post-tensioned 

girders, slabs, blisters, and diaphragms.    In general, the investigation 

proved STM to be a conservative approach for the design of anchorage 

zones. The conclusions were supported by the results of more than 50 

laboratory tests.  As well as showing that STM is a valid overall design 

approach, the project also provided the most comprehensive insight into 

critical regions of strut-and-tie models, provided guidelines on model 

dimensioning, and presented areas within STM that need further research. 



2.3.2.1 Roberts 

Roberts’ [39] studied the local zone of post-tensioned anchorage 

zones.  The local zone as defined by the NCHRP project, is the area of 

concrete directly ahead of the anchorage device usually consisting of 

concrete confined by spiral or ties.  Twenty-eight isolated end anchorage 

specimens were tested to ultimate capacities of the end anchorage 

devices.  In relation to STM, Roberts’ tests [39] investigated the capacity 

available within confined C-C-C nodes.  She concluded Equation 2-1, 

adapted from one proposed by Schlaich, best fit the data recorded.   
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                    (2-1)           

 
 Pbearing, strut   = bearing capacity of the node or strut 
 A              = the effective area, which is the maximum area of the supporting  
    surface that is geometrically similar to the loaded area and  
    concentric with it  
 Ab             = bearing or strut area 

 Ag             = gross area of the bearing plate 
Acore            =   area bounded by the confining reinforcement 
dc               =   diameter of spirals or width of ties 
k                 =     4 for spirals and 2 for ties 
s                 =     the pitch of the spiral or spacing of ties 

2.3.2.2 Sanders 

Sanders [44] concentrated on the general zones for end-surface 

anchorages.  Sanders focused on the verification of the adequacy of strut-
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and-tie models for predicting anchorage zone capacity.   This was 

achieved by developing specific strut-and-tie models for each specimen 

which entailed the specific dimensioning of nodes and struts where 

applicable, as well as, proportioning reinforcement to the modeled tie 

force.  The ultimate load of each model was taken as the minimum load 

that caused either a compressive or tensile failure within the truss model.  

Maximum compressive stresses were taken as a baseline of 0.7f`c plus 

additional capacity if confinement was present as derived by Roberts [39].  

Maximum strut member capacities were established by multiplying the 

uniform stress limit to designated critical node and strut areas The 

maximum compressive load was taken as the sum of the strut capacities 

framing into the node ahead of the anchorage device.  The maxim tensile 

capacity of the specimen was established through the equilibrium of 

specimens cracked down the specimen centerline with a known 

distribution of reinforcement as shown in Figure 2.4.  The minimum of the 

maximum tensile capacity and the maximum compressive capacity was 

taken as the specimen ultimate capacity and agreed well with 

experimental results.    

Sanders constructed 36 specimens in four categories as described 

in the following: 
 17 concentric anchorage specimens with straight tendons 

 6 eccentric specimens with straight tendons 

 8 multiple anchorage specimens with straight tendons 

 4 inclined anchorage specimens with curved tendons. 

The concentric anchorage specimens provided the most insight to STM as 

it related to the scope of the research reported in this thesis.  The models 



used to predict the ultimate loads of these specimens are similar to those 

used for bottle-shaped struts.  Sanders used two basic strut-and-tie 

models as shown in Figure 2.1.   

 

singular node smeared nodesingular node smeared node

 
Figure 2.1 Strut-and-Tie models used in Sanders Specimens from   

[44] 

 
Figure 2.2 Modified Strut-and-Tie Model to Include the Full Plastic      

Capacity from [44]  
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As well as analyzing his specimens with this model, Sanders also 

produced a model that took into account the full plastic behavior of the 

specimen.  Sanders achieved this capacity by moving the struts inward 

until the tensile capacity of the reinforcement equaled the compression 

strut capacity.  The model used to estimate the full plastic behavior is seen 

in Figure 2.2.   

The ultimate capacity of each specimen based on the elastic strut-

and-tie model as well as the plastic strut-and-tie model was estimated by 

taking the minimum of the calculated tensile load as shown in Figure 2.5 

with the estimated maximum compressive load carried by the singular 

node and adjoining struts.  To estimate the compressive capcity, Roberts’ 

[39] equation (2-1) was employed at the bearing surface, the node-strut 

interface, and the local zone-general zone interface of the singular node 

and adjacent struts.  To employ equation 2-1, critical areas must be 

determined and depended on the bearing plate dimension and the angle 

of the strut as shown in Figure2.4.  Figure 2.5, Figure 2.6, and Figure 2.7 

illustrates how Sanders[44] defined these areas and on which planes the 

capacites were predicted.   
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Figure 2.3 Determining the Angle of Struts from [44] 
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Figure 2.4 Determination of the Tensile Ultimate Load from [44] 
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Figure 2.5 Singular Node and Strut Dimensions from [44] 
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Figure 2.6 Pertinent Planes and Equations for Singular Node and     
Strut  Capacities from [44] 
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Figure 2.7 Example of Area Defined for Local Zone-General Zone 
from [44] 

From the results of the concentric anchorage specimens, it was 

concluded that ultimate capacities based on an elastic model are 

conservative with an average test to predicted ratio of 1.32 and a 

coefficient of variance of 0.19. The analysis of the specimens with the 

plastic strut-and-tie model yielded more accurate results; a test to 

predicted ratio of 1.12 and a coefficient of variance of 0.17.   

2.3.2.3 Burdet 

Burdet’s [17] studied the blending of Sander’s [44] experimental 

work with finite element analysis.  Burdet concluded that the tensile 

contribution from the concrete is far more significant than that of bending 

or shear.  The tensile contribution of the concrete, neglected in strut-and-
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tie models, manifested itself by forcing concrete crushing leading to brittle 

failure and overall low ductility of the specimens.  Significant redistribution 

of stresses was apparent which was substantiated by the behavior of 

specimens with tensile reinforcement placed in areas away from the 

elastic centroid of tensile stress whose performance was not substantially 

different from the behavior of those specimens with tensile reinforcement 

placed at the elastic centroid of tensile stresses.    Furthermore, Burdet 

stated that the most important aspect for achieving good behavior in 

service and ultimate states is proportioning reinforcement based on 

equation 2-2, and placing this reinforcement at the elastic centroid of 

tensile stress given by equation 2-3.   Burdet also concluded that concrete 

can resist compressive stresses in the about 0.75f`c if it is not confined by 

reinforcement or surrounding concrete, such conditions exist at the local-

general zone interface and, in some cases, at the node-strut interface. He 

recommended that a check of concrete compressive stresses at a 

distance equal to lateral dimension of the anchorage device be made 

using equation 2-4.  Finally, Burdet concluded that the accuracy of the 

strut-and-tie model for predicting compressive capacity decreases with the 

complexity of the model and, for these cases numerical analyses are 

desirable. 
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 Tburst         = tensile bursting reinforcement 
 dcentroid       = centroid of tensile stresses 
 Fca              =     compressive at distance a ahead of anchorage device 
 P             = Total load applied 

 a             = lateral dimension of anchorage device 
h                =   transverse dimension of the cross section in direction considered 
α                =   angle of inclination of the tendon with respect to the centerline of  

   the member 
b                =      side length of anchorage device in the thin direction of the                   

   specimen 
t                 =     thickness of the cross section 

2.3.2.4 Wollman 

As the final phase of Project 10-29, Wollman [51] investigated the 

influence of end reactions on anchorage zones, as well as, investigated 

the applicability of strut-and-tie models to ribs, blisters, and diaphragms.  

Wollman’s conclusions were based on all previous work done by Roberts 

[39], Sanders [44], and Burdet [17].  To facilitate the implementation of 
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STM, Wollman [51] proposed rules for developing strut-and-tie models 

shown in Figure 2.8 

Wollman further substantiated the work done by Sanders [44] in 

producing the physical geometry of the strut-and-tie models used to 

analyze anchorage zones.  The physical geometry of the models created 

by Sanders, Burdet and finally Wollman reflect bottle-shaped struts with a 

confined singular node at the anchorage device and were the foundation 

for the physical geometry of the strut-and-tie models used to describe the 

behavior of specimens for this research project.     

To substantiate the work done by Sanders [44] in regard to the 

physical geometry of nodes and struts, he made a simple comparison of 

models used in the analysis of specimens that had slight but significant 

differences.  The main differences were concentrated in the geometry of 

the singular nodes, but manifested themselves in the bearing capacity of 

the struts.  The impetus of the second analysis by Wollman was that a 

node with a smaller dimension in the plane of loading (a/4 dimension in 

Figure 2.4) would ultimately reduce the amount of bursting reinforcement 

necessary by increasing the moment arm of the tensile reinforcement.  

Sanders [44] used non-hydrostatic node geometries in his analysis with 

the height of the node always equal to half the dimension of the 

anchorage device.  Wollman [51] compared Sanders [44] models to ones 

that included non-hydrostatic nodes and fan shaped struts that have non- 

uniform stress distributions.  The details and structural mechanics behind 

Wollman’s [51] analysis are complicated and not necessarily relevant to 

the scope of this thesis, and therefore, are not shown here.  The 
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importance of Wollman’s [51] second analysis can be seen in Figure 2.10 

which shows that the ultimate loads predicted by each assumed geometry 

of the singular node are very similar, and that assuming the struts to have 

uniform stress distribution not exceeding 0.7f`c is a reasonable 

assumption compared to the alternative.    

Other important conclusions from this comparison include, the fact  

 



 
Figure 2.8 Rules for STM from [51] 
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Method A  Sanders non-hydrostatic node geometry

Method B  hydrostatic node and and fan-shaped struts

f/fcmax level of stress in the struts relative to 0.7f’c

ao height of node in the direction of loading assumed
to be a/4 for method A 

Method A  Sanders non-hydrostatic node geometry

Method B  hydrostatic node and and fan-shaped struts

f/fcmax level of stress in the struts relative to 0.7f’c

ao height of node in the direction of loading assumed
to be a/4 for method A 

 
Figure 2.9 Comparison of Strut-and-Tie Models Varying Node 

Geometry from [51] 
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that only live end model for beam 3 predicted a failure of concrete 

crushing and all others predicted a failure of the tensile reinforcement, yet 

the laboratory experiments all failed by concrete crushing at the local 

zone-general zone interface.  In another important comparison conducted 

by Wollman [51], he predicted the failure of the same specimens using 

only a simple compressive stress check provided by Burdet [17] using 

equation 2-4.  The four laboratory specimens yielded results with mean 

test to predicted ration of 1.09 with a standard deviation of 0.13 using 

equation 2-4.    

 Further adding insight relative to the scope of this investigation, 

Wollman [51] made a concise statement about the role of bursting 

reinforcement within the end-anchorage specimens.  He concluded that 

role of bursting reinforcement was to resist direct tensile stress, not to 

increase effective concrete strength in compression. The bursting 

reinforcement plays no role until the concrete has cracked at which point 

the reinforcement is utilized through the redistribution of stresses resulting 

from the loss of stiffness available from the concrete acting in tension.  

After cracking has occurred, the main role of the reinforcement is to 

reduce the dispersion of compression radiating from the point of load 

application.  If no reinforcement is present then the failure mode is purely 

related to the loss of shear friction at the strut-node interface as illustrated 

in Figure 2.10. 

 



 

φ

tanφ<μ After collapse of 
shear transfer

φ

tanφ<μ After collapse of 
shear transfer

 
Figure 2.10 Collapse of Shear Transfer from [51] 

2.3.3 THOMPSON 

Thompson [47] investigated CCT nodes with the anchorage of the 

tension tie provided by headed reinforcement.   There are some important 

aspects of Thompson’s work that relate to the scope of thesis and will 

briefly be presented here. 

In two of Thompson’s [47] specimens, he investigated the in-plane 

and transverse-plane splitting behavior of bottle-shaped struts to 

investigate where splitting of the strut initiates.  The two specimens are 

shown in Figure 2.11.  The results of these two specimens revealed that 

the transverse strain distribution was similar to that of a concrete cylinder 

under the loading of a double punch test in which tensile strains are 

highest at the application of load and lowest at the center.  

 

 

 

 

 

33



11
 S

tra
in

 G
ag

es
10

 @
 2

”

11
 S

tra
in

 G
ag

es
10

 @
 2

”

1.5” plinth

10 Strain Gages

9 @
 2”

1.5” plinth

10 Strain Gages

9 @
 2”

A) Strain Gauges measuring Transverse Splitting Strains

B) Strain Gauges measuring In-Plane Splitting Strains

11
 S

tra
in

 G
ag

es
10

 @
 2

”

11
 S

tra
in

 G
ag

es
10

 @
 2

”

1.5” plinth

10 Strain Gages

9 @
 2”

1.5” plinth

10 Strain Gages

9 @
 2”

A) Strain Gauges measuring Transverse Splitting Strains

B) Strain Gauges measuring In-Plane Splitting Strains  
Figure 2.11 Two of Thompson’s CCT Node Specimens Measuring In-   

Plane and Transverse Splitting of Bottle-shaped Struts 
from [47] 
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This is opposite to the behavior typically modeled using bottle-shaped 

struts.  The in-plane strain results indicated that splitting occurred at the 

CCT node, and strains increased at the center once a crack parallel to the 

strut formed.  The capacity of the section reached ultimate just before this 

crack formed and lost capacity slowly as further load was applied and the 

crack widened.  This might indicate that, if the strut was reinforced across 

the crack, the final capacity could have been higher.   

Thompson also investigated the efficiency factor for the bottle-

shaped struts produced through the geometry and loading of his 

specimens.  The efficiency factor is defined as the ultimate stress on the 

strut face normalized to f`c.  The area of the strut face was determined by 

the bearing plate and the head size of the headed bar and assumed to be 

trapezoidal.  The efficiency factors calculated by Thompson [47] were far 

greater than those provided by ACI 318-02.  The results also refute the 

AASHTO LRFD provisions that if accurate, would have shown at least a 

trend of higher efficiency as the strut angle increased using a simple yield 

strain of .002 in equations 1-1 and 1-2.   

Finally, Thompson’s series of confined specimen tests which are 

the most likely configuration of reinforced bottle-shaped struts within 

structural concrete having reinforcement provided as closed stirrups 

showed no trend in of increased strut capacity as the confinement ratio of 

As/(bs) increased.  Comparing the five confined specimens with 

specimens that had the same overall configuration with out the stirrup 

reinforcement (control specimens) showed that the strut capacity was 

more sensitive to the tension reinforcement end detail; hence the strut 



capacity was more sensitive to the node formed by the anchorage of 

reinforcement.  A plot comparing the like specimens with and with out 

confinement is shown in Figure 2.12 which displays the maximum strut 

force normalized with respect to the concrete strength.   
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Figure 2.12 Reinforced Bottle-Shaped Strut Comparison from        
Thompson’s [47] CCT Node Specimens 
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The bearing face of the strut is not represented in the plot because 

it remains constant with respect to the main tension reinforcement end 

detail.   

2.4 DESIGN EXAMPLE 

To best illustrate the current state of practice a design example is 

shown is the following section with additional step-by-step commentary.  

The design example is intended to display all of current modeling 

techniques acquired throughout the literature with emphasis on the 

findings presented in section 2.4.  The design example is only bounded by 

the limitations set forth by the current ACI 318-02 Appendix A and the 

AASHTO LRFD 5.6.3 STM provisions in regard to stress limitations and 

guidelines set forth for the physical geometry of struts, ties, and nodes.  

Calculations are presented in parallel to display similarities and 

differences of the provisions of each major North American code authority.    

The drilled shaft cap is presented here whose physical geometry 

creates an ideal situation for the designer to exercise his own judgment in 

the creation of the truss model, autonomous from any other condition 

other than satisfying internal and external equilibrium.   

This element was chosen for illustration before other commonly 

illustrated models such as the strut-and-tie model for an inverted T-girder 

shown in Figure 2.13.  Models such as the one shown in Figure 2.13 have 

been reproduced in many publications and are “boiler plate” reproductions 

that do not display the wide variability with the STM process.   The goal of 

the design example presented in 2.4.1 is to display the range of modeling 



procedures inherent in the STM method; all of which will result in lower-

bound estimates of the actual ultimate capacity of the section if equilibrium 

is satisfied and at no point does the material exceed its failure criterion.  

 

Figure 2.13 Inverted T Girder, Widely Accepted Strut-and-Tie         
Model 

2.4.1 TXDOT DRILLED SHAFT CAP. 

The design example presented here represents one strut-and-tie 

model for a drilled shaft cap under a single loading condition.  The load 

case chosen was the factored vertical load that produced the largest 

reaction in the drilled shaft.  This load case may not represent the most 

severe conditions within the drilled shaft cap; however, the limited 

structural calculations provided by TxDOT did not show any other factored 

loads because the cap was designed using allowable stress.  Factored 

loads were desired to compare the LRFD specifications for STM within 

ACI 318-02 and the AASHTO LRFD.   
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The drilled shaft cap provides the base for a 45 ft. tall precast 

segmental column supporting an elevated highway.  The TxDOT drawing 

showing an details of this structural element is shown in Figure 2.15. 

To begin the process of designing an element using the strut-and-

tie method, the designer must first establish the B and D regions of the 

structural element under consideration as shown in Figure 2.16.  Once the 

D-region is established, a truss model may be chosen such that the 

tension and compression members are aligned with direction of principal 

tensile and compressive stresses.  A finite element analysis may be 

performed at this point to determine the elastic flow of stresses from which 

the orientation of members within the truss model can be more easily 

visualized.  For this example, a finite element analysis proves to be 

superfluous because the flow of forces from the column to the drilled 

shafts through the cap can easily be visualized.  

Once the flow of forces can be visualized through, experience, 

intuition, or the help of a finite element analysis, a truss model can be 

established with members orientated in the general direction of these 

forces.  Some candidate truss models are shown in Figure 2.17 

Since strut-and-tie modeling is a lower bound solution, any model 

chosen which is in equilibrium with applied load, has sufficient ductility to 

ensure plastic rotations, and meets all specified failure criteria is 

acceptable and will provide a conservative or lower bound estimate of the 

actual ultimate load. 

This selection of the strut-and-tie model often proves to be most 

difficult for designers who would like to immediately find the optimum 
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solution for each problem.  To help designers meet this objective some 

rules of thumb regarding the optimization of a model for the most 

favorable structural behavior have been defined by Schlaich [45], 



 

Figure 2.14 TxDOT Elevation of the Drilled-Shaft Cap 
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Figure 2.15 Separation of the Structural Element into B and D 
Regions 
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Figure 2.16 Candidate Truss Models for Drilled-Shaft Cap 
Burdet [17], and Wollman [51]. 

For this example several iterations of truss models were considered 

relying on intuition, experience, and guidance provided by Schlaich et.al, 

[45] as well as any information applicable in the resources listed and 

discussed in this chapter.  The process in which the final model was 

achieved is explained in the following paragraphs and figures. 
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One crucially important aspect of strut-and-tie modeling easily 

overlooked by inexperienced designers is the accurate placement of 



applied loads on the boundaries of the D-region under consideration.  In 

most cases this step is fairly simple as shown in Figure 2.17 in which the 

D-region of a dapped end beam is isolated and the forces applied to the 

D-region from external loads and adjacent B-regions are shown.  In this 

example the forces acting on the D-region can be ascertained by simple 

statics and bending theory.  The bearing plate and the Whitney 

compression block provide easily derived stresses from which singular 

nodal dimensions can be estimated.  These nodal dimensions drive the 

angles and dimensions for the entire truss model. 

 

Figure 2.17 Forces acting on the D Region of a Dapped Beam 
In the case of the drilled-shaft cap, there are no bearing plates and 

the stresses from the adjacent B-regions can not be as easily ascertained 

leaving ambiguity in the dimensioning of singular nodes which, as 

mentioned above, drive the overall geometry of the truss model.   An 

analysis may be carried out to derive the depth of the neutral axis of the 

pre-cast column; however, the compressive stresses from the column 

must first pass through the cast-in-place pedestal before reaching the cap.  

The manner in which these stresses disperse through the pedestal may 
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be complicated and requires further analysis which in turn decreases the 

efficiency of strut-and-tie modeling for designers.  In order to alleviate this 

problem, it was decided to treat all nodes at the pedestal-cap interface as 

smeared nodes with ambiguous dimensions instead of having one 

singular node with dimensions in proportion to the compression zone of 

the precast column as shown in Figure 2.18. This decision drove the 

formation of the final model.  The stresses acting on the D-region from the 

adjacent B-region were obtained through combined elastic bending and 

compression in the form of σ = P/A + Mc/I and is shown in Figure 2.19 

broken up into four areas of stress for which resultant forces can be 

computed. 

 

dispersion of compression
through pedestal

segmented precast column

top of drilled shaft cap

pedestal

singular node

dispersion of compression
through pedestal

segmented precast column

top of drilled shaft cap

pedestal

singular node

  

Figure 2.18 Dispersion of Compressive Stresses through the    
Pedestal 
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Plan view of stresses
acting on the pedestal from 
the precast column above,
simplified for analysis
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Figure 2.19 Analysis of Stresses acting on the D Region from 

Adjacent B Regions 
The sub-division of the stresses into resultant forces is another 

matter that must be taken into consideration.  A large number of sub-

divisions will yield a more accurate depiction of the flow of forces; 

however, the designer must balance the number of sub-divisions with 

simplicity of analysis in order to achieve the efficiency of this design tool.  

After some iteration a decision to divide the pedestal into 4 distinct areas 

was arrived that balanced an accurate depiction of the flow of forces and 

simplicity of analysis.  The four resultant forces locate the nodes of the 

upper chord of the truss model. The resultant forces acting on A1 through 

A4 in Figure 2.19 is shown in Figure 2.20. 
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Figure 2.20 Resultant Forces from the Analysis Shown in Figure 2.19  
Figure 2.20 clearly shows the three-dimensional nature of this 

problem; however, for ease of analysis the forces on both sides of the axis 

of symmetry were added and placed at the centerline of the cap.  Once 

the location of the resultant forces are known the node locations of the 

upper chord of the truss model at the pedestal-cap interface are defined 

and the truss model can be finalized.  The final truss model chosen was 

shown in Figure 2.21. 
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Figure 2.21 Final Truss Model  
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The final truss model chosen was strictly based on the judgment of 

the designer, and the following items were considered in the selection of 

this model: 

 Based on the recommendation of Schlaich et al [45], an optimal 

model is one that exhibits minimal strain energy that is        

assumed to be concentrated in the ties.  This model exhibits this 

property although it has an internal vertical tension tie.   The simple 

triangular and trapezoidal models shown in Figure 2.17 only have one 

main tension tie; however, the tension ties within these models exhibit 

tension forces ranging from 1.5-2.25 times the tension force in member 

viii shown in Figure 2.21. 

 The model subdivides the forces flowing to each node at the drilled 

shaft / cap interface into separate forces in reasonable proportion to 

separate sub-nodes.  This deviation of forces to a single node acting 

over a large area provides insight into the actual flow of forces.  

 The model subdivides the stresses acting on the D-region from the 

adjacent B-region into 4 resultant forces, which provides a favorable 

balance between the actual flow of forces and easily analyzed model. 

 The model chosen illustrates a truss that is statically determinate 

with no compression members crossing each other.  There is no need 

to complicate the analysis with indeterminate trusses.  Equilibrium was 

achieved by sub-dividing the reactions in proportion to the vertical 

component of struts at each location. 

In describing the model further, the depth of the upper compression chord 

was taken at the cap's quarter point with the assumption that compressive 
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stresses acted over half of the depth of the entire cap.  A finite element 

analysis could be carried out to validate this assumption; however, the 

analysis was not provided here to illustrate the point that a FEM is not 

necessarily needed in cases where the designer has a good 

understanding of the natural flow of forces.  In addition, the transverse 

tension associated with spread of compressive forces flowing from the 

pedestal / cap interface to the drilled shafts is not directly shown in the 

model, but is most certainly present and will be discussed in subsequent 

paragraphs. 

Once the member forces are calculated through classic methods of 

structural analysis, tension reinforcement can be proportioned and 

compressive stresses may be checked against limiting stresses.  

It should be noted again that resistance factors used in this design 

example are ones listed in AASHTO LRFD due to the fact the limited 

structural calculations provided by TxDOT engineers provided only an 

ultimate load case leaving the exact nature of the loading ambiguous.  

AASHTO LRFD resistance factors are used exclusively because the 

ultimate loads were obtained with AASHTO LRFD load factors, and a 

comparison between codes was desired within this example. 

The main tension tie reinforcement is proportioned based on the 

largest tensile force in the tension chord 



Tmax viii:=

φ_tens_AASHTO 0.9:=

As
Tmax

φ_tens_AASHTO 60⋅ ksi⋅
:= As 28.15in2

=

use # 11 bars

num_bars
As

1.56 in2
⋅

:= num_bars 18.04= Use 18 # 11 bars

Tmax viii:=

φ_tens_AASHTO 0.9:=

As
Tmax

φ_tens_AASHTO 60⋅ ksi⋅
:= As 28.15in2

=

use # 11 bars

num_bars
As

1.56 in2
⋅

:= num_bars 18.04= Use 18 # 11 bars
 

The vertical tie reinforcement is proportioned in the same manner; 

however the ambiguity of the physical dimensions of the smeared node 

leaves the placement of this reinforcement up to the judgment of the 

designer. p p j g
T xii:=

Av
T

φ_tens_AASHTO 60⋅ ksi⋅
:= Av 6.81 in2

=

use # 6 bars

num_bars
Av

.44 in2
⋅ 2⋅

:= num_bars 7.74=

 
Node B lies almost directly at the midpoint between nodes A and C as 

shown Figure 2.21, and the placement of these bars should such that their 

centroid lies at or as close as possible to node B.   

Use # 6 bars at 6" O.C entire length

_

Use # 6 bars at 6" O.C entire length

_
 

The next step in the process is to check the compressive stresses at the 

nodal faces and the node-strut interface.  In this example there are only 

two nodes and struts to check since only the geometry of singular nodes 

can reasonably ascertained.  Nodes A, B, C, D, and G in Figure 2.21 are 
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smeared nodes and are irrelevant in the stress-limit check for two 

reasons: the geometry of these nodes are not known, and the stresses at 

these nodes are not critical because they act over a smeared area and are 

not "bottle-necked" to a concentration of stresses which represent the 

worst case. Figure 2.22 depicts a singular node at the drilled shaft with the 

largest reaction.  
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Figure 2.22 Singular Node at Drilled-Shaft 
The singular node shown in Figure 2.22 is comprised of three sub-

nodes which are the anchoring points of struts xiv, xv, and v as shown in 

Figure 2.21.  The anchoring points were chosen at quarter points of the 

length of a square inscribed in a circle with radius equal to that of the 

drilled shaft (60 in.) and placed in the same plane as the longitudnal 

reinforcement.  The resultant force of struts xiv, xv, and v is the force used 
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to calculate the stress acting on the node-strut interface while the reaction 

R2 is the force used to calculate the force on the node/drilled-shaft 

interface. The geometry of the element and main tension reinforcement is 

such that, the hook takes no part in the formation of the geometry of the 

node.  The radius of the hook lies outside the reaction area so that the 

struts frame directly into the drilled shaft and not into the bend radius of 

the hook; therefore, the nodal face dimension perpendicular to main 

tension reinforcement is given by each code similar to C-C-T nodes 

anchoring straight reinforcement.  The stress on this face need not be 

calculated.  This condition may not always be true and should be analyzed 

on a case by case basis.  The development length of the main tension 

reinforcement is taken as the distance behind the point at which the 

centroid of tension reinforcement meets the compression strut at node H 

in Figure 2.21 and is deemed satisfactory by inspection. 

Until this point, the ACI 318-02 and AASHTO LRFD differ only in 

load and resistance factors.  The treatment of limiting stresses of nodes 

and struts by either code authority marks the divergence of provisions by 

each. 

Applied Stresses                                                                                 

plane A

σ2_A
R2

lb2
:= σ2_A 1.69ksi=

 
 

 

 

 

 

52



σ2_limit_node_AASHTO 1.89ksi=

σ2_limit_node_AASHTO φ_comp_AASHTO .75⋅ f'c⋅:=

σ2_limit_node_ACI 1.71ksi=
σ2_limit_node_ACI φ_comp_AASHTO .85⋅ .8⋅ f'c⋅:=

for C-C-T nodes
f'c 3.6 ksi⋅:=φ_comp_AASHTO 0.7:=

ACI 318-02 and AASHTO LRFD Node and Strut Limiting Stresses       

σ2_B_AASHTO 1.83ksi=σ2_B_AASHTO
resultant_xiv_xv_v
ws_AASHTO lb⋅

:=

ws_AASHTO lb sin resultant_θ( )⋅ ha cos resultant_θ( )⋅+:=

ha 13.8 in⋅:=

AASHTO LRFD

σ2_B_ACI 1.91ksi=σ2_B_ACI
resultant_xiv_xv_v

ws_ACI lb⋅
:=

ws_ACI lb sin resultant_θ( )⋅ wt cos resultant_θ( )⋅+:=

wt 9.4 in⋅:=

ACI 318-02

resultant_θ 63 deg⋅:=

resultant_xiv_xv_v 3417 k⋅:=

plane B

NODE
w s ACI 318-02 and AASHTO

lb ACI 318-02 and AASHTO

h a
 
A

A
S

H
TO

w
t 

A
A

S
H

TO

σ2_limit_node_AASHTO 1.89ksi=

σ2_limit_node_AASHTO φ_comp_AASHTO .75⋅ f'c⋅:=

σ2_limit_node_ACI 1.71ksi=
σ2_limit_node_ACI φ_comp_AASHTO .85⋅ .8⋅ f'c⋅:=

for C-C-T nodes
f'c 3.6 ksi⋅:=φ_comp_AASHTO 0.7:=

ACI 318-02 and AASHTO LRFD Node and Strut Limiting Stresses       

σ2_B_AASHTO 1.83ksi=σ2_B_AASHTO
resultant_xiv_xv_v
ws_AASHTO lb⋅

:=

ws_AASHTO lb sin resultant_θ( )⋅ ha cos resultant_θ( )⋅+:=

ha 13.8 in⋅:=

AASHTO LRFD

σ2_B_ACI 1.91ksi=σ2_B_ACI
resultant_xiv_xv_v

ws_ACI lb⋅
:=

ws_ACI lb sin resultant_θ( )⋅ wt cos resultant_θ( )⋅+:=

wt 9.4 in⋅:=

ACI 318-02

resultant_θ 63 deg⋅:=

resultant_xiv_xv_v 3417 k⋅:=

plane B

NODE
w s ACI 318-02 and AASHTO

lb ACI 318-02 and AASHTO

h a
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σ1_A 0.78ksi=σ1_A
R1

lb2
:=

plane A

APPLIED STRESSES                                                                                       
 

resultant_θ 48 deg⋅:=

resultant_i_xi 1902 k⋅:=

In a similar manner the stresses at the singular node above reaction 1 are 
calculated as well as the limiting stresses provide by each code authority.  

σ2_limit_strut_AASHTO 1.91ksi=

σ2_limit_strut_AASHTO φ_comp_AASHTO fcu⋅:=

fcu
f'c

0.8 170 ε1⋅+
:=

ε1 .002 .002 .002+( )
1

tan resultant_θ( )2
+:=

assuming εs = .002
AASHTO LRFD 

σ2_limit_strut_ACI_with_reinf 1.61ksi=

σ2_limit_strut_ACI_no_reinf 1.29ksi=

σ2_limit_strut_ACI_with_reinf φ_comp_AASHTO .85⋅ .75⋅ f'c⋅:=

σ2_limit_strut_ACI_no_reinf φ_comp_AASHTO .85⋅ .6⋅ f'c⋅:=

ACI 381-02 

Compression Struts
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σ1_limit_node_AASHTO 1.89ksi=

σ1_limit_node_ACI 1.71ksi=

σ1_limit_node_AASHTO σ2_limit_node_AASHTO:=

σ1_limit_node_ACI σ2_limit_node_ACI:=

for C-C-T nodes the limiting stress remains unchanged

ACI 318-02 and AASHTO LRFD Node and Strut Limiting Stresses    
 

σ1_B_AASHTO 1.1 ksi=σ1_B_AASHTO
resultant_i_xi

ws_AASHTO lb⋅
:=

ws_AASHTO lb sin resultant_θ( )⋅ ha cos resultant_θ( )⋅+:=

ha 13.8 in⋅:=

 AASHTO LRFD  
       

σ1_B_ACI 1.19ksi=σ1_B_ACI
resultant_i_xi

ws_ACI lb⋅
:=

ws_ACI lb sin resultant_θ( )⋅ wt cos resultant_θ( )⋅+:=

wt 9.4 in⋅:=

ACI 318-02

plane B          
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for compression struts the ACI 318-02
provisions are indepent of the angle with respect to the tension tie and 
remains unchanged 

σ1_limit_strut_ACI_no_reinf σ2_limit_strut_ACI_no_reinf:=

σ1_limit_strut_ACI_with_reinf σ2_limit_strut_ACI_with_reinf:=

σ1_limit_strut_ACI_no_reinf 1.29ksi=

σ1_limit_strut_ACI_with_reinf 1.61ksi=

AASHTO LRFD 

assuming εs = .002

ε1 .002 .002 .002+( )
1

tan resultant_θ( )2
+:=

fcu
f'c

0.8 170 ε1⋅+
:=

σ1_limit_strut_AASHTO φ_comp_AASHTO fcu⋅:= σ1_limit_strut_AASHTO 1.49ksi=  
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R1= 1406 k

48 deg 63 deg

3417 k

1902 k

R2= 3038 k

singular node 1 singular node 2

plane B

plane A

R1= 1406 k

48 deg 63 deg

3417 k

1902 k

R2= 3038 k

singular node 1 singular node 2

plane B

plane A

 

Figure 2.23 Singular Nodes and Resultant Strut Forces 

σ2_limit_strut_AASHTO 1.91ksi=σ2_B_AASHTO 1.83ksi=

NO GOODσ2_limit_strut_ACI_with_reinf 1.61ksi=σ2_limit_strut_ACI_no_reinf 1.29ksi=σ2_B_ACI 1.91ksi=

σ1_limit_strut_AASHTO 1.49ksi=
σ1_B_AASHTO 1.1 ksi=

σ1_limit_strut_ACI_no_reinf 1.29ksi=σ1_B_ACI 1.19ksi=

Strut Stress Checks                                                                                        
σ2_limit_node_AASHTO 1.89ksi=σ2_B_AASHTO 1.83ksi=

NO GOODσ2_limit_node_ACI 1.71ksi=σ2_B_ACI 1.91ksi=

σ2_limit_node_AASHTO 1.89ksi=σ2_limit_node_ACI 1.71ksi=σ2_A 1.69ksi=

σ1_limit_node_AASHTO 1.89ksi=σ1_B_AASHTO 1.1 ksi=

σ1_limit_node_ACI 1.71ksi=σ1_B_ACI 1.19ksi=

σ1_limit_node_AASHTO 1.89ksi=σ1_limit_node_ACI 1.71ksi=σ1_A 0.78ksi=

Node Stress Checks                                                                               
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In summary the stresses acting on the node and adjacent strut face 

at node 2 in Figure 2.23 exceed the limiting stresses provided by the ACI 

318-02  but fall within the limitation of the AASHTO LRFD provisions. To 

examine the differences of each code in regard to the acceptance level of 

stresses applied to struts, a closer look into the reinforcement of struts is 

required. 

The level of stress applied to the strut-node face of singular node 2 

would still exceed the limiting compressive stress provided by ACI 318-02 

even with appropriate reinforcement that is sufficient to confine the 

inherent spreading of compressive stresses at the mid-height of the bottle-

shaped strut.  This reinforce quantity is given by ACI A.3.3.1. 

1

n

i

Asi

bsi
sin γi( )⋅∑

=

.003≥

Equation A-4  

with the additional commentary of RA.3.3: 

Often, the confinement reinforcement given in A.3.3 is difficult to 

place in three-dimensional structures such as pile caps.  If this 

reinforcement is not provided, the value of fcu given in A.3.2.2 (b) (βs 

= 0.6 instead of βs = 0.75) is used. 

The commentary means that reinforcement placed in typical US 

construction practices, about the side faces as stirrups and skin 

reinforcement, may not be effective in confining the strut, and therefore 

the strut should be considered unconfined.  To understand the 
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reinforcement needed to confine struts in two or three-dimensional 

structures refer to Figure 2.24 and following discussion. 
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Figure 2.24 Modeling Dispersed Compression Field with 2:1 Bottle-
Shaped Strut 

To supply the reinforcement required to confine this strut according 

to ACI 318-02 the designer may employ equation A-4 or proportion steel 

directly based on the 2:1 model which always results in tension = 0.447x 

compression.  The following sample calculation displays how the quantity 

of confining steel may be computed using equation A-4 or the 2:1 model 

for spread of compressive stresses. 
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w_strut
height_cap
tan 63 deg⋅( )

:=

height_cap 60 in⋅:=

As .44 in2
⋅:=use # 6 bars

θ 27 deg⋅:=

determine θ with respect to horizontal of tension force

T 1527.4k=T 0.447 3417⋅ k⋅:=

using 2:1 model

use # 6 bars @ 3" OC each
way placed down the centerline
of the cap

1

2

i

Asi

b si⋅
sin γi( )⋅∑

=

0.0033=

s1 3 in⋅:=s2 3 in⋅:=

As2 .44 in2
⋅:=As1 .44 in2

⋅:=

γ2 90deg 63 deg⋅−:=γ1 63 deg⋅:=

b 60 in⋅:=θ 63deg:=

try # 6 bars at 3" OC each way and take b = width of the drilled shaft

using equation A-4

 

 

 

 

60



num_bars_y
T sin θ( )⋅

φ_tens_AASHTO 60⋅ ksi⋅ As⋅
:= num_bars_y 29.18=

num_bars_x
T cos θ( )⋅

φ_tens_AASHTO 60⋅ ksi⋅ As⋅
:= num_bars_x 57.28=

sy
w_strut

num_bars_y
:= sy 1.05 in=

sx
height_cap

num_bars_x
:= sx 1.05 in=

use # 6 bars at 1" OC each way 
placed at the centerline of the cap  

The calculations above show the large discrepancy in the current 

state of practice in the treatment of acceptance criteria with the two major 

codes governing the design of concrete structures within North America.  

AASHTO LRFD provisions permit the stress level for this strut, which is 

unacceptable by ACI 318-02 standards with the added confining 

reinforcement consisting of # 6 bars at 3 in. on center each way placed 

down the centerline of the cap using equation A-4 or # 6 bars at 1”on 

center using the 2:1 model.  Adhering to commentary RA3.3 would mean 

that the confining steel calculated above must be placed at the centerline 

of the strut in order for it to be effective. 

While not in the scope of this experimental work, it should be noted 

that the acceptance criteria for C-C-T nodes provided by each code are 

conservative as proven by Thompson [47].  The C-C-T singular node 2 
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exceeded the stress limit provided by ACI; however, this node as well as 

node 1 is bi-axially confined as with any node whose bearing dimension is 

smaller than that of the surrounding concrete.   

Although every stress level was acceptable by AASHTO LRFD 

standards, the same stress level exceeded ACI 318-02 standards leaving 

the designer unsure and uncomfortable about a final design acceptable by 

only one standard.  It would be desirable to have agreement on the same 

method and achieve a consistent design standard regardless of the 

method being used in bridge or building structures.  Finally the strut-and-

tie method produced an equivalent amount of main tension reinforcement 

as that originally calculated by TxDOT engineers using an allowable stress 

criterion with pure bending theory.  The vertical tension reinforcement 

calculated by the strut-and tie method is twice that provided by TxDOT 

engineers who discerned that shear is not a factor; however the tie 

reinforcement was placed as good practice.  The strut-and-tie model 

shows shear forced at the lightly loaded drilled-shaft and the 

reinforcement proportioned for shear at that location is placed the entire 

length as good practice.   

Figure 2.25 shows the comparison of amounts of reinforcement 

required by the strut-and-tie model shown in Figure 2.21 in the two 

orthogonal dimensions of the drilled-shaft cap omitting skin reinforcement, 

temperature and shrinkage reinforcement, and "feel good reinforcement" 

as called for by original TxDOT calculations.   
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Figure 2.25 Comparison of Drilled-Shaft Cap Reinforcement 
Resulting from TxDOT and STM Analyses 
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3.0 EXPERIMENTAL PROGRAM 

3.1 GENERAL 

The experimental program consisted of a series of laboratory 

experiments designed to investigate the behavior of bottle-shaped struts.  

Twenty-eight tests were conducted in three basic series.  The design of 

each series was a progressive process in which data from the first series 

was analyzed to determine appropriate parameters and to improve the 

next series in order to isolate the parameters influencing strut behavior.   

3.2 TEST SET-UP 

The test set-up is analogous to split-cylinder testing in which 

monotonic load is applied at an increasing rate to a specimen whose 

geometry and orientation allow for the dispersion of compression and 

associated transverse tension to develop within the boundary of the 

specimen.  In this case, load was applied by a universal testing machine 

(UTM) to square or rectangular, unreinforced, and reinforced concrete 

panels through steel bearing plates.  The dimensions of the bearing plates 

were significantly less than the surface area of concrete at the loaded 

ends.  The basic test set-up is shown in Figure 3.1. To ensure that the 

force from the loading head of the UTM was applied to the concrete 

surface uniformly; hydrostone was placed at the concrete-steel plate 

interface, as well as, a spherical head placed at the plate-loading head 

interface. The specimens were plumbed before testing to ensure 

alignment.  Strain measurements were collected through series of electric 

strain gauges applied to the reinforcement within the specimens and the 



concrete surface of the specimens.  (Instrumentation will be discussed in 

detail in subsequent sections)  The strain measurements were recorded 

through data-acquisition hardware and software available at the Ferguson 

Structural Engineering Laboratory at the University of Texas at Austin.  

Load was recorded through the same data-acquisition systems in parallel 

with internal load cells within the universal testing machine.  Displacement 

recordings were not taken in light of Sanders’ [44] and Wollman’s [51] 

experimentation in which they concluded that isolated specimens such as 

these failed in a non-ductile manner providing little or no useful load-

displacement data.   

 
Figure 3.1 Typical Test Set-Up 
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3.3.2.1 

3.3 SERIES 1 SPECIMENS 

3.3.1 General 

The first series of specimens consisted of 6 specimens from two 

batches of concrete.  This series consisted of 3 ft. by 3 ft. by 4 in. thick 

reinforced and unreinforced concrete panels, and the main foci of this 

series was to achieve an optimal system of instrumentation, and to 

substantiate the choice of the overall specimen geometry. Therefore, 

different arrangements of instrumentation were used.  The patterns of 

reinforcement varied as well.  All specimens were tested using 4 in by 12 

in. by 2 in. bearing plates defining the nodal area, and reinforced with 

orthogonal mats of reinforcement consisting of #3 bars.  From this point 

forward specimens will be designated thus: S#-# with S# referring to 

series 1, 2 or 3, and the last number represents the order tested within the 

series. 

3.3.2 Specimen S1-1 

Instrumentation 

At the outset of the experimental program, it was the original goal of 

the research team to obtain the principle stresses at points evenly dividing 

one quadrant of a specimen.  For this reason a specimen S1-1 was 

fabricated to include embedded strain rosettes.  These rosettes were 

fabricated from thin gauge sheet metal having three axes at 0 deg., 45 

deg., and 90 deg.  The anchoring points were established at the end of 

each axis by brazing a sheet-metal screw to the rosette through a pre-

fabricated hole.  The rosettes were then gauged with electronic strain 



gauges placed at the center of each leg forming the three axes and 

debonded from the concrete by placing HVAC foil-tape around each axis 

leaving only the anchorage points exposed.   6 in. and 2 in. axis lengths 

were investigated.  The rosettes tied to the reinforcing cage are shown in 

Figure 3.2. 

 
Figure 3.2 Embedded Strain Rosettes.   

The reinforcing cage was also instrumented with electronic strain 

gauges at one quadrant of the specimen on every reinforcing bar at 3 in. 

from the form face and 6 in. on center until the specimen’s centerline was 

reached.   
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3.3.2.2 S1-1 Behavior 

The specimen behavior is briefly described here and in the 

following sections, because as stated previously, the experimental 

program was an evolving process in which each series of specimen were 

designed based on knowledge compounding from earlier testing.   

At first appearance, S1-1 seemed to have failed within the nodal 

region, such a failure was undesirable since the behavior of bottle-shaped 

struts was anticipated and thought to have failures typified by large cracks 

at the specimen centerline.   Figure 3.3 shows the failure mode of 

specimen S1-1 which can be visually described by slight spalling of the 

nodal region and one hairline crack down the centerline of the specimen.   

 
Figure 3.3 Failure Mode of Specimen S1-1 

When the data gathered from the embedded rosettes was 

analyzed, the accuracy of the results to capture the specimen’s behavior 

was questionable and inconsistent.  The research team subsequently 

abandoned further use of the embedded rosette.  
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3.3.3.1 

 

3.3.3 Specimens S1-2, S1-3, S1-4, S1-5, S1-6  

Specimen S1-2 Instrumentation 

Adhering to the idea of obtaining the principle stress at points 

evenly dividing one quadrant of a specimen; embedded rosettes were 

replaced with surface rosettes for this specimen.  Two styles of surface 

rosettes were investigated with specimen S1-2: The first style was a 

prefabricated surface rosette that had no lead wires requiring that wire be 

soldered to the gauge before testing could take place which proved to be 

a lengthy and unreliable process.  The second style of rosette consisted of 

3 – 60mm. long surface gauges (referred hereafter as 2 in. surface 

gauges) applied directly over each other at three axes of 0 deg., 45 deg., 

and 90 deg.  The two styles of rosettes were oriented on specimens S1-2 

as shown in Figure 3.4 with the hope of capturing the 2:1 spread of 

compression stresses as reported by Burdet [17] and to assess what type 

of rosette best captured this behavior.  Single surface gauges were also 

placed on the centerline transverse axis in order to integrate the strains 

over the area of the specimen and compare that calculation with the load 

applied.  If these values agreed reasonably well, an evaluation of the 

adequacy surface gauges in capturing the behavior of the specimen in 

compression could be made.  Figure 3.4 also demonstrates how surface 

gauges were applied to each specimen.   
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3.3.3.2 Specimen S1-2 Behavior 

Specimen S1-2 was unreinforced to ensure that reinforcement did 

not restrain the elastic 2:1 spread of compression and therefore no 

comparisons could be made from strain readings taken from  

TRANSVERSE AXIS

2 in singular surface gaugespre-fabricated rosettes

LO
A

D
 A

XIS

exterior surface ground smooth        
removing surface paste

2-part epoxy ground to seal      
surface only

typical 2 in. surface strain gauge
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2 in singular surface gaugespre-fabricated rosettes
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D
 A
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removing surface paste
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typical 2 in. surface strain gauge

2 in singular surface gaugespre-fabricated rosettes

LO
A

D
 A

XIS

exterior surface ground smooth        
removing surface paste

2-part epoxy ground to seal      
surface only

typical 2 in. surface strain gauge

 
Figure 3.4 Specimen S1-2 Surface Gauge Instrumentation  
reinforcement gauges in specimen S1-1.  The pre-fabricated and built-up 

rosettes compared well with each other and did capture the principle 

strains at angles ranging from 22 deg. to 27 deg.   In light of these finding 

built-up rosettes were chosen for placement on the surface of specimens 

S2-2, S2-3, S2-4, and S2-5 due to ease of application.   Furthermore, the 

strain gauges placed at the transverse axis captured the load when 



stresses were integrated over the area using the constitutive relationship 

developed by Hognestad.  The specimen failed at a lower load than 

specimen S1-1 as expected with a specimen containing no reinforcement. 
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Figure 3.5 Surface Gauge Instrumentation for S1-3 through S1-6 

3.3.3.3 Specimens S1-3, S1-4, S1-5, S1-6 Instrumentation 

These specimens were cast with the same concrete as specimen 

S1-2; however, instrumentation of the specimens was restrained until 

results from testing specimen S1-2 became available.  Once data from 

specimen S1-2 was analyzed, surface instrumentation was chosen and 

shown in Figure 3.5.   Rosettes were not used at the centerline of the 

specimens, because it was assumed that principle stresses acted in the 
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orthogonal directions of the specimen at theses locations.  All surface 

gauges were applied as shown in Figure 3.4, and only built-up rosettes 

consisting of 2 in surface gauges were used.   

 Specimens S1-3 and S1-4 contained only the instrumentation 

shown in Figure 3.5.  Specimens S1-5 and S1-6 contained orthogonal 

mats of reinforcement and were instrumented with reinforcement gauges 

at the locations were the vertical and horizontal bars met in one quadrant 

of the specimen.   
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3.3.3.4 Specimens S1-3, S1-4 and S1-5 Special Reinforcing 

In order to investigate the role of the node at the point where load 

was applied in these specimens and to force failure away from the node; 

special confining reinforcement was placed in specimens S1-3, S1-4, and 

S1-5.  The confining reinforcement consisted of either 2 or 3 closed ties 

encompassing 6 vertical bars welded to a bearing plate as seen in Figure 

3.6 shown in the form before casting.  

A) Confining Reinforcement at Nodes
for Specimens S1-3, S1-6

B) Confining Reinforcement at Nodes
for Specimen S1-4

A) Confining Reinforcement at Nodes
for Specimens S1-3, S1-6

B) Confining Reinforcement at Nodes
for Specimen S1-4  

Figure 3.6 Confining Reinforcement for Nodes 
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3.3.3.5  Specimens S1-3 through S1-6 Behavior 

Specimens S1-3 and S1-4 were identical to specimen S-1 having 

no orthogonal reinforcement; however as stated above S1-3 and S1-4 had 

different levels of confining reinforcement at the node location.  Specimen 

S1-5 was identical to specimen S1-1 in regard to orthogonal 

reinforcement, but also had the confining reinforcement at the node 

locations shown in Figure 3.6 A).  The specimens whose nodes were 

confined displayed no particular behavior in respect to cracking patterns or 

modes of failure different from specimens whose nodes were unconfined 

other than the ultimate loads when normalized with respect to the differing 

concrete strengths were around two times that of the unconfined 

specimens.  Furthermore, when removing crushed concrete around the 

node of specimens S1-6 a clearly defined area of the node could be seen 

in which the mode of failure was strut crushing at the node-strut interface.  

These two observations determined that further confinement of the node 

was not necessary to achieve the desired behavior of bottle-shaped struts.  
tensile crack

crushing of the strut
at the node-strut interface
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Figure 3.7 Crushing of the Strut at the Node-Strut Interface, S1-6  
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A detailed description of the specimen dimensions, bearing plate 

dimensions, amount of reinforcement, atypical loading conditions (if any), 

and material properties for this series of specimens as well as every other 

specimen tested within the experimental program can be seen in Figures 

3.12 through 3.15 and Tables 3.1 through 3.3 at the end of this chapter. 

3.4 SERIES 2 SPECIMENS 

3.4.1 General 

Confident that the overall specimen geometry was sufficient to 

study the behavior of bottle-shaped struts based on the observations seen 

in the first series of specimens; Series 2 specimens were designed as 3 ft. 

by 3 ft by 6 in thick concrete panels with no nodal confinement with a 

particular regime of reinforcement and instrumentation.  All specimens 

were cast together, yet 3 cylinders were tested each day testing occurred 

in order to have specific values of concrete strength for each specimen.  

All specimens were tested using 6 in. by 12 in. by 2 in. bearing plates 

defining the nodal area and reinforced with #2 or # 3 reinforcing bars. 

3.4.2 Series 2 Instrumentation 

The surface rosettes were abandoned in the Series 2 specimens 

because the data provided from the Series 1 tests was not valuable 

enough to warrant the time and effort spent in the application of these 

gauges.  Rather, five surface gauges were applied to each specimen at 

the transverse axis to one side of the specimen shown in Figure 3.8 A.  

The exception to this pattern occurred wherever a reinforcing bar parallel 

to the load axis was present, in which case, a surface gauge was located 
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at the transverse axis at the point of the reinforcing bar beneath as 

illustrated in Figure 3.8 B.   This measure was taken to compare the strain 

measurements recorded on the concrete surface with the strain 

measurements taken internally.   

Strain gauges were also placed on reinforcement within the 

specimens at the point in which the reinforcement crossed the load axis or 

transverse axis.  This instrumentation was usually restricted to 

reinforcement placed to one side of the load axis dividing the specimen in 

half; however, as with the surface gauges, reinforcement gauges were 

occasionally placed symmetrically about the load axis to verify the 

distribution of stress across the specimen.   
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Figure 3.8 Series 2 Surface Gauge Instrumentation 
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3.4.3 Series 2 Reinforcement 

The only provisions available for the reinforcement of bottle-shaped 

struts is given in ACI 318-02 A.3.3.1 (presented in 1.2.3 of this thesis) or 

reinforcement proportioned using the 2:1 model (also presented in that 

section).  In order to investigate the adequacy of the relevant ACI 

provisions, specimens included reinforcement ratios on the order of 0.5, 

1.0, and 1.5 times the amount reinforcement given in ACI equation A-4 

which is presented as a reinforcement ratio.  To satisfy these ratios U.S. 

#3 bars were used as well as #2 (6mm) bars.  These bars were typically 

placed in orthogonal mats symmetric about the load axis and transverse 

axis and at mid-depth of the thickness dimension.  Other variables 

regarding the reinforcement of the specimens included the orientation of 

the orthogonal mats with respect to the load axis of the specimen to 

simulate struts crossing reinforcement at an angle, as well as, the 

distribution of reinforcement (lumped versus evenly distributed).   The 

variables involved in the reinforcement of the specimens in Series 2 are 

shown graphically in Figure 3.9.  
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Figure 3.9 Variables Involved in the Reinforcement of Series 2      
        Specimens 
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3.4.4 Behavior of Series 2 Specimens 

Unfortunately, the data gathered in testing specimens S2-1 and S2-

5 were lost and therefore the specimens were repeated in series 3.  

Adding specimen S1-2 and normalizing the ultimate load carried by that 

specimen with respect to the concrete strength and bearing plate 

dimension provided a comparison of the different reinforcing schemes 

displayed in Figure 3.9.  Every specimen tested exhibited relatively similar 

behaviors with a vertical crack forming at the centerline of the specimen 

and failing in a brittle manner with concrete crushing at the node-strut 

interface.  A comparison of the ultimate normalized loads carried by the 

specimens in series 2 along with specimen S1-2, shown in Figure 3.10, 

proved that the various reinforcing schemes did little to affect the ultimate 

capacity.   
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Figure 3.10 Effect of Reinforcing Schemes in Series 2 
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3.5  SERIES 3 SPECIMENS 

3.5.1 General 

The effects of various reinforcement distributions shown in Figure 

3.10 proved that amount, distribution, and reinforcement angle with 

respect to the load axis of the specimen had little effect on the overall 

behavior.  For this reason series 3 specimens were designed to vary the 

boundary conditions of the basic specimen in order to produce more 

dramatic changes to the overall behavior.  Two specimens, S3-1 and S3-

5, were replicates of specimens S2-1 and S2-5 because the data gathered 

in testing these two specimens were lost as mentioned previously.  

3.5.2 Series 3 Instrumentation 

The instrumentation regime presented in 3.4.2 was used in the 

Series 3 specimens because it provided the data needed to understand 

the behavior of specimens and allowed direct comparisons between 

Series 1 and 2. 

3.5.3 Reinforcement Patterns Used in Series 3 Specimens 

Generally, the specimens within series 3 were reinforced with an 

amount of reinforcement stipulated by ACI equation A-4; however 

specimens S3-2 and S3-6 were reinforced differently with specimen S3-2 

testing the practical minimum amount reinforcement for these specimens 

containing only one #3 bar located at the transverse axis, and specimen 

S3-6 reinforced with 4 # 3’s oriented parallel to the load axis under the 

bearing surface, and 3 # 3 bars at third points oriented parallel to the 

transverse axis.  Specimen S3-7 contained lumped reinforcement in the 
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same quantity as S2-4 but spaced farther apart from the specimen’s 

transverse axis.  S3-8 reinforcement was placed in an orthogonal mat at 

angles of 30 deg and 60 deg relative to the load axis of the specimen. The 

reinforcement of specimens S3-9 and S3-10 was placed near the form 

face and finished face in two mats (previous specimens all had 

reinforcement placed at mid-depth of the 4 or 6 in. dimension).  The 

reinforcement of specimens S3-3, S3-4, S3-11, S3-12 all had the same 

amount of reinforcement as S2-3, but varied in boundary conditions as 

discussed in the following section.  These reinforcing schemes 

represented variables not investigated in the series 2 specimens. 

dimension).  These reinforcing schemes represented variables not 

investigated in the series 2 specimens 

3.5.4 Series 3 Boundary Conditions 

As stated previously, the boundary conditions varied within this 

series with S3-3, S3-4, and S3-7 through S3-12 having different boundary 

conditions than the typical specimen of series 2.  The standard bearing 

plate dimensions of 6 in. by 12 in. by 2 in. in series 2 was changed to 6 in 

by 6 in by 2 in is testing specimens S3-4, S3-7, and S3-8.  The standard 

bearing plate configuration of the series 2 specimen was changed to allow 

shear deformations and eliminate horizontal friction in specimen S3-3 as 

shown in Figure 3.11.  Specimens S3-9 and S3-10 were formed to have a 

thickness of 10 in. rather than the standard 6 in. and were tested using 4 

in by 12 in. by 2 in. bearing plates placed at the center of the plan area of 

the specimens.  Specimens S3-11 and S3-12 were cast having the 

standard height of 36 in. and depth of 6 in. but the width of these 
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specimens was changed to 60 in, and S3-11 was tested using the 

standard bearing plate dimensions while specimenS3-12 was tested using 

a larger bearing plate having the dimensions of 6 in. by 16 in. by 3 in.  The 

specific details of these specimens along with every specimen tested will 

be summarized in 3.6.   

3.5.5 Behavior of Series 3 Specimens 

The qualitative behavior of the specimens tested in series 3 was 

similar to all other specimens tested with the failure mode beginning as a 

hairline crack parallel to the load axis of the specimen and gradually 

widening until an ultimate non-ductile failure categorized by crushing of 

the concrete at the node-strut interface prevented any further load being 

sustained by the specimen. 

The data gathered from the electronic instrumentation placed within 

this series as well as all other data gathered from all the previous 

specimens, when analyzed, proved that no further testing was required 

and ended the experimental program after series 3 testing.  The complete 

data gathered from all specimens will be presented in Chapter 4 and 

analyzed with commentary in Chapter 5. 
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Figure 3.11 Modified Bearing Plate Configuration 

3.6 SPECIMEN SUMMARY 

A complete summary of the contents and configuration of every 

specimen tested is described in Table 3.1.  Figure 3.12 illustrates a typical 

specimen elevation for use with Table 3.1. Figure 3.13, Figure 3.14, and 

Figure 3.15 following Table 3.1 further illustrate specific reinforcement 

placement, non-standard conditions, or further explanation of the material 

presented in that table.  The material properties used in the fabrication of 

each specimen include the yield strain and the modulus of elasticity for the 

reinforcing steel listed in Table 3.2, the tensile strength of concrete listed 

in Table 3.3, and the compressive strength of concrete is listed in Table 

3.1.  The compressive strength of concrete was tested each day a 

specimen was tested while the tensile strength of concrete was tested 

after the complete testing of one series of specimen.   
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Figure 3.12 Typical Specimen Elevation for Use with Table 3.1 
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Table 3.1 Continued Summary of Specimens   
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1Nominal yield stress
2 Letter corresponds to mat types in Figure 3.13
3 A or B corresponds to Figure 3.6 X indicates node 
confined by surrounding concrete

4 Data lost during testing
5 #2 bars are 6mm diameter Mexican manufactured bars

6 Modified bearing plate configuration seen in Figure 3.11
7 Refer to Figure 3.14for testing conditions
8 Refer to Figure 3.15for complete details of specimen

1Nominal yield stress
2 Letter corresponds to mat types in Figure 3.13
3 A or B corresponds to Figure 3.6 X indicates node 
confined by surrounding concrete

4 Data lost during testing
5 #2 bars are 6mm diameter Mexican manufactured bars

6 Modified bearing plate configuration seen in Figure 3.11
7 Refer to Figure 3.14for testing conditions
8 Refer to Figure 3.15for complete details of specimen
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Table 3.2 Reinforcing Steel Properties 

0.002723.7 x 103#3

0.003125.8 x 103 #2

εy
1Es (ksi)1Bar Size

0.002723.7 x 103#3

0.003125.8 x 103 #2

εy
1Es (ksi)1Bar Size

1 Average of 3 tests  
 

 

Table 3.3 Tensile Strength of Concrete 

0.470533

0.70079 2

0.35239.81

fsp (ksi)1Compressive
Force (k)1Series

0.470533

0.70079 2

0.35239.81

fsp (ksi)1Compressive
Force (k)1Series

1 Average of 3 tests  
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Figure 3.13 Details of Reinforcing Bar Placement 

 

 

88



B

A
LL

 S
PE

C
IM

EN
S 

36
 in

.

PL TOP

PL’s BOT

2

1

3 in. TYP.

NOTE:
for further information
refer to Figure 3.12

B

A
LL

 S
PE

C
IM

EN
S 

36
 in

.

PL TOP

PL’s BOT

2

1

3 in. TYP.

NOTE:
for further information
refer to Figure 3.12  

 

Figure 3.14 Specimen S3-4 Elevation at Testing 
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Figure 3.15 Specimens S3-9 and S3-10 Non-Standard Details 
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4.0 PRESENTATION OF THE TEST RESULTS 

4.1 INTRODUCTION 

The experimental program described in Chapter 3 is congruent with 

similar experimental investigations by many researchers ([11], [13], [21], 

[34], [39], [44]) in which specimens were loaded on a surface smaller than 

that of the supporting surface of the specimen.  In these tests, 

compressive stresses spread away from their local introduction to a 

uniform stress distribution across the section.  Most of these experimental 

investigations, with the exception of Sanders [44], concentrated on finding 

the ultimate bearing capacity of these specimens by using fracture 

mechanics or empirical relationships.   Sanders [44] showed that the 

stress fields created from the local introduction of a bearing stress may 

also be modeled with the strut-and-tie method as bottle-shaped struts. 

This type of analysis provided a conservative estimate of the bearing 

capacity of the specimen provided that equilibrium and the chosen yield 

criteria were satisfied within the model.   

The purpose of the experimental investigation reported herein was 

to build on the strut-and-tie method of modeling the behavior of specimens 

of this type which originated with the work done on NCHRP 10-29 [17], 

[39], [44], [51], which were described in Chapter 2.   

The remaining experimental investigations that did not model the 

behavior of this type of specimens with the strut-and-tie method still 

provide some insight into the behavior of bottle-shaped struts and 

therefore will be mentioned briefly in the following paragraphs to provide 
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the reader with some basic background information on methods of 

previous analyses.  

Experimental investigations that resulted in empirical relationships 

to describe the behavior of bottle-shaped struts include work done by 

Adebar and Zhou [11] in which specimens were tested in a manner similar 

to that of a double-punch-tested specimen as shown in Figure 4.1 A.  The 

specimens were instrumented to capture the cracking load while the ratios 

of D/d and H/d were varied.  The cracking load is a direct measure of the 

tensile strength of concrete in the double-punch configuration. In the 

Adebar and Zhou tests the cracking load was a function of both these 

ratios.  An empirical relationship was produced that limited the 

compressive stress to that of the cracking stress for unreinforced 

specimens with the assumption that stress redistribution would be limited 

without reinforcement.   Previous to Adebar and Zhou, Marti [27] provided 

a relationship based on fracture mechanics that accounted for the size 

effect of the specimens in determining a limiting tensile stress for concrete 

using double-punch tests which was substantiated by the work of Adebahr 

and Zhou.   

More investigations that resulted in empirical relationships to 

describe the behavior of bottle-shaped struts are those of Niyogi [34], [35], 

[36], and Rigden et. al [13], [14].  The specimens fabricated in theses 

investigations were lightly instrumented when reinforcement was present, 

and only the ultimate load and failure mechanism was recorded when 

reinforcement was not present.  Niyogi, presented empirical relationships 

based on the plate dimensions relative to the dimension of the loaded 
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surface; while, Rigden et.al presented a relationship based on linear 

regression of data to account for type and amount of reinforcement for a 

given loading condition. 

Hawkins [21], [21] described the behavior of bottle shaped-struts 

using fracture mechanics, to model the conical failure cones observed 

under the bearing plate for various loading configurations.   

In all previous investigations, the experimental data collected 

consisted of visual observations, ultimate bearing stresses under the 

loading plate, and steel strain gauges when reinforcing bars were present 

in the specimens.  The current experimental investigation described in 

Chapter 3 supplied experimental results of 4 types: 

 visual observations 

 ultimate stress under the loaded area 

 reinforcement strains 

 concrete strains on the surface of the specimens 

The results in these four series are presented sequentially in the 

following sections. 
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Figure 4.1 Specimens Used in Investigating Bottle-Shaped-Struts 
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4.2 VISUAL OBSERVATIONS 

The failure mechanism initiated in the same manner for all 

specimens in that a hairline crack formed at the specimen centerline 

parallel to the loading axis as shown in Figure 3.4 and propagated toward 

the bearing plate in either direction.  The crack did not extend into the 

nodal zone, defined as an isosceles triangle with a height equal to half the 

bearing plate width, until the specimen was near failure. The next stage of 

the failure mechanism followed a trend as the percentage of reinforcement 

transverse to this crack increased in the specimens.    

At ultimate failure, mechanisms ranged from a tensile failure 

(Figure 4.2) resulting in the failure of a plane bi-axially stressed tending to 

the crushing of the concrete at or around the nodal area (Figure 4.3) as 

the relative percentage of reinforcement increased.    In every specimen 

tested concrete located directly under the bearing plate developed a 

wedge in the basic proportions of an isosceles triangle.  In specimens with 

higher quantities of transverse reinforcement wedge concrete forming the 

node became smaller and more pronounced.  Figure 4.2 displays the 

ultimate failure mechanisms for some “lightly” reinforced specimens while 

figure 4.3 displays the ultimate failure mechanisms for a number of 

specimens with higher percentages of transverse reinforcement.  Figure 

4.2 also shows the wedge of nodal concrete for specimen S3-10 which,  

with specimen S3-9, are the only specimens tested in which the bearing 

plate dimension was less than that of the thickness of the specimen 
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resulting in the three-dimensional confinement of the node by the 

surrounding concrete.  Specimens S3-9 and S3-10 exhibited the tensile 

failure mechanism.   In one case, specimen S2-8 (Figure 4-2) the failure 

plane is slightly inclined at the nodal region, as an extension of the tensile 

crack initiating at the specimen centerline.  S2-8 contained #2 bars at 8 

inches on center placed at 45 degrees to the load axis in two layers 

(Figure 3.13 F).   

Figure 4.3 displays specimens with reinforcement percentages that 

force the failure mechanism from the tensile failures away from the node 

to crushing of the concrete at the node face.  In these specimens the 

nodal area of concrete is apparent when extraneous crushed concrete is 

removed.   

Figure 4.4 displays a basic comparison of two specimens with 

same reinforcement regime.  The reinforcement for specimen S2-8 is as 

described above.  S2-6 contained #3 bars at 6 inches on center oriented 

at 45 degrees relative to the load axis (Figure 3.13 E), placed in two 

orthogonal layers.  The reinforcement percentage given in this figure is the 

component of total amount of reinforcement on plane parallel with the 

transverse axis.   The νe value shown in this figure is the ultimate bearing 

stress normalized to the concrete strength.  Comparing the failure 

mechanisms in this manner the specimens can be classified as “confined” 

since they exhibited the crushing failure and pronounced nodal wedge or 

“unconfined” which exhibit the tensile failure mechanism.   
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Figure 4.2 Tensile Failure Mechanism  

 

 

 

97



INVERTED VIEW

S2-3

S2-4

S3-11

S2-6  
Figure 4.3 Concrete Crushing at Node Failure Mechanism 
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Figure 4.4 Comparison of Failure Mechanisms for Confined and 
Unconfined Specimens 
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The degradation of shear transfer reported by Wollman [51] is 

shown in specimen S2-8 in Figure 4.4.  Figure 4.5 presents a similar 

degradation as the point where the internal angle of friction of the concrete 

is less than that of the coefficient of static friction between to rough 

concrete surface areas.  The concrete in confined specimens crushes 

before significant shear degradation occurs.  

Δ

A) Confined Specimens

concrete crushing at
node-strut interface 

B) Unconfined Specimens

degradation of shear
transfer before crushing

tanφ<μ , σ>σcrush tanφ>μ , σ<σcrush
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Figure 4.5 Degradation of Shear-Transfer for Unconfined  
       Specimens 
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In the case of confined specimens a secondary failure mechanism 

was observed at or immediately after the crushed concrete at the node as 

shown in Figure 4.6.  This mechanism can be described as splitting tensile 

failure initiating at the bearing plate and propagating down the loaded 

surface of the specimen.  In some cases the tensile crack propagated 

down the outer edge of the specimen parallel to the load axis.  It is likely 

that this mechanism began to form as the node was forced toward the 

transverse axis generating a cleaving action in the specimen.  For 

specimen S2-10, the most heavily reinforced specimen, this failure 

occurred simultaneously with concrete crushing around the node resulting 

in an extremely explosive and brittle failure.  It is also interesting to note 

that crack on the loaded surface only appeared to the side of the node in 

which concrete has crushed, which is an indication that these failure 

mechanism are linked.   

4.2.1 Summary of the Results Obtained from Visual Observations 

It is clear from the observation of the failure mechanism of these 

specimens that, as the percentage of transverse reinforcement increased, 

the failure mechanism changed from a tensile failure on planes away from 

the nodal area to compressive failures at or near the nodal face.  A 

secondary tensile failure along the loaded surface associated with the 

compressive failure of “heavily” reinforced specimens is also apparent.  

The observed failure mechanism can be used to classify the specimen as 

either “confined” exhibiting the crushing failure or “unconfined” exhibiting 

the tensile failure.   
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Figure 4.6 Secondary Failure Mechanism Associated with “Heavily”   

Reinforced Specimens 
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4.3  ULTIMATE STRESS UNDER LOADED AREA 

After cracking and ultimate stresses under the bearing plate area 

were normalized with respect to f`c (νe - ultimate efficiency factor, νc - 

cracking efficiency factor) to allow comparisons, a distinct categorization 

was apparent.  The ultimate load carried by the specimens was a function 

of reinforcement provided, the ratio of cross-sectional area to that of the 

bearing plate area (A=bt/Ab), as well as, the ratio of the height of the 

specimen to the thickness of the specimen.   

Furthermore, the three specimens in series 1 (S1-3, S1-4, S1-5) 

which had nodal confinement in the form of closed ties had high bearing 

capacities relative to those which contained similar reinforcement and A/Ab 

ratios. The ultimate capacities of specimens S1-3, S1-4, and S1-5 

however, were less than those specimens with higher A/Ab rations with no 

confinement of the node. 

Specimens S3-9, and 3-10, which also had the largest bt/Ab ratios 

and similar reinforcement ratios as specimens S2-3, S2-4, S2-7, S3-4 and 

S3-7, exhibited the largest capacity.  The ultimate bearing capacities are 

shown in increasing order in Figure 4.7, and grouped according to their 

geometric ratios (A/Ab, h/2b). 

The term νe - νc or the normalized ultimate stress less the 

normalized cracking stress is an indicator of the level of redistribution in 

the specimens.  This term is plotted in Figure 4.8, and it is apparent that 

the level of redistribution is proportional to A/Ab ratio.  This behavior is 

similar to that observed by Adebar and Zhou [11].   The first group of 



specimens is plotted in Figure 4.9, in which there is the most drastic 

variation of transverse reinforcement; it is apparent that the amount of 

stress redistribution is directly proportional to the amount of reinforcement 

provided. 
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Figure 4.7 Ultimate Capacities 
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Figure 4.8 Stress Redistribution 
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The amount of reinforcement provided in each specimen enhanced 

the ultimate capacity of the specimens also as shown by Figure 4.10.   
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Figure 4.10 Effect of Reinforcement on Ultimate Capacity  
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It is apparent from Figure 4.10 that there is an upper limit on the increase 

in the ultimate capacity attributable to the reinforcement provided.  

Specimen S2-10 had a relative reinforcement ratio twice that of specimen 

S2-3 yet the capacities were similar.  For A/Ab ratios equal to 6, it appears 

that the reinforcement provided had little or no effect on the capacity.  

Specimen S3-8 had the greatest amount of reinforcement yet the lowest 

capacity within the group.  This specimen was reinforced with #3 bars at 6 

inches on center placed in an orthogonal mat that was rotated at an angle 

of 30 degrees relative to the load axis resulting in half the reinforcement at 

an angle of 30 degrees relative to the load axis and half the reinforcement 

at an angle of 60 degrees relative to the load axis (Figure 3.13 K).  The 

configuration of the reinforcement was not efficient in confining the 

specimen and therefore the ultimate capacity is lower than those 

specimens in the group with less reinforcement placed perpendicular to 

the load axis of the specimen.   The reinforcement provided in specimen 

S3-9 was placed in two mats near the outer surfaces of the specimen 

(Figure 3.15).  The reinforcement provided in S3-10 was identical to S3-9 

with an additional 35 % of transvere reinforcement placed as ties between 

the two layers of steel placed near the form and finished faces (Figure 

3.15).  Both configurations of reinforcement were inefficient in further 

enhancing the ultimate capacity of the specimen and are consistent with 

the findings of Rigden et al [13].   



 

 

 

109

4.3.1 Summary of the Results Obtained from the Ultimate Stress 

under the Loaded Area 

The ultimate stress under the loaded area or the ultimate capacity 

of each specimen is influenced by the geometric conditions of loading 

which provide different levels of confinement for the nodal area, as well 

as, the amount of confining reinforcement placed at the nodal area.  The 

ultimate capacity was also enhanced by the amount and orientation of 

reinforcement provided with respect to the load axis of the specimen.  The 

enhancement of the ultimate capacity by reinforcement reaches a 

saturation point at which the specimen will fail in compression regardless 

of the amount of reinforcement provided.   

4.4 RESULTS OBTAINED FROM REINFORCEMENT STRAINS 

The readings taken from the strain gauges placed on the 

reinforcement, when plotted against the normalized ultimate capacity, 

further help identify the failure mechanism for each specimen.  Figure 4.11 

shows the strain recordings for bars placed at three-quarter height of four 

specimens that typify the behavior for the two categories of “confined 

specimens” and “unconfined specimens”.  The initiation of the shear 

degradation (Figure 4.5) resulting from a tensile failure can be seen in the 

unconfined specimens S3-6 and S2-2 at points X and Y where the slope 

of the stress-strain curves reduces and becomes nearly horizontal.  The 

relatively flat slope is an indication of the large deformation resulting from 

the node cleaving the specimen.  Point X and Point Y, which are the 



points at which the shear degradation begins, are dependent on the 

amount of reinforcement provided within the specimen,  
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Figure 4.11 Strain Recordings Indicating the Type of Failure      

Mechanism 
The strain recordings normalized to the bearing stress for confined 

specimens have a steeper slope leading to failure by crushing of the 

concrete at and around the nodal area.  The slope of these lines is 

dependent on the total amount of reinforcement provided within each 

specimen and not on the yield strength of the reinforcing bars used.   
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To estimate the stresses in the reinforcement at various load 

stages the strain recordings were converted to stresses using the elastic-

plastic relationship shown in Figure 4.12 and into forces by multiplying the 

stress by the area of the reinforcing bar.  The elastic-plastic relationship 

was chosen because the strain-hardening range of a typical stress-strain 

curve for reinforcing bars was reached only in specimens with minimal 

transverse reinforcement (S2-2, S3-2, and S3-6).   
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Figure 4.12 Constitutive Relationship for Reinforcing Steel 

The stress in the reinforcing bars at various heights, separated 

according to confined and unconfined condition, are plotted in Figure 4.13 

at a load equal to 90% of the cracking load to estimate the tensile stress in 

the specimen before cracking.  Regression analyses of the data points 

provide an average stress in the elastic range of confined and unconfined 

specimens.  The order of regression was chosen based on the least 

cumulative error between the regression line and the data points.  
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Figure 4.13 Average Reinforcement Stress in the Elastic Range for              
Confined and Unconfined Specimens 
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An integration of the average stress over the height of the 

specimen excluding the nodal area (assumed 6” at either end) yields 

similar values of the tensile force at the centerline of a specimen for 

confined and unconfined specimens even though the regression is quite 

different in either case.   Integrating the reinforcing steel stress over the 

area of the specimen clearly implies a cross-section made of steel.   To 

convert the area of steel to an area of concrete the geometric mean of the 

modular ratio for all specimens was computed, and after the conversion 

an average concrete tensile stress 0.09 f’c was computed.  This value is 

consistent with tensile strengths obtained from split-cylinder tests which 

range from 0.07 f`c to 0.12 f`c, as well as, the average split-cylinder tensile 

strengths obtained for these specimens which was equal to 0.11f`c.  

 It is apparent from Figure 4.13 that the reinforcement is strained 

little in the elastic range and the stresses developed in the reinforcing bars 

of confined and unconfined specimens are of similar magnitude.  Once the 

initial crack at the centerline of the specimen forms the strains and 

stresses of the reinforcing steel began to deviate according to the 

geometric conditions of loading.  The deviation is shown in Figure 4.14 in 

which the regression of the bar forces along the height of the specimen is 

different for three main geometric conditions of loading.  For the four inch 

thick specimens tested in Series 1, the regression of the bar force tends to 

pinch toward the center, while the six inch thick specimens have a more 

robust distribution of bar force along the height.  The regression line for 

the specimens loaded with six inch by six inch bearing plates is misleading 

by showing a curve that tends to decrease over the height.  This decrease 



results from the testing conditions of three specimens tested with six inch 

by six inch bearing plates.  In two of these specimens the upper bearing 

plate was a six inch by six inch bearing plate while the lower bearing area 

was either two six inch by six inch bearing plates spaced at a distance of 

six inches apart or a single six inch by twelve inch bearing plate; only one 

of the three specimens (S3-8) was tested with two six inch by six inch 

bearing plates at both ends.  There was only two strain gauges at 

midheight in this specimen, one of which was functional.  The direct 

comparison of the group with the A/Ab ratio equal to six is not exactly fair 

or valid because only one of three specimens in the group was tested 

using typical bearing plate configuartions, but is included to display the 

effect of the size of bearing plate on the reinforcement strains.    
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Figure 4.14 Reinforcing Bar Forces of Confined Specimens of            
Different Geometric Loading Conditions 



A direct comparison of the regression of bar forces along the height 

of the specimen of confined and unconfined specimens was made, and is 

shown in Figure 4.15.  From this figure, the average bar force is higher at 

the loaded surfaces of the specimen for unconfined behavior opposed to 

confined behavior which shows a robust distribution of bar force along the 

height of the specimen with maximum force was reached at mid-height.    

P = 0.9 Pult (#3) Asfy(#2) Asfy

 λ2 (bar force)
all confined specimens
except S3-9 and S3-10

bar force (k)

 λ2 (bar force)
all unconfined specimens

0 2 4 6 8

6

12

18

24

30

36

P = 0.9 PultP = 0.9 Pult (#3) Asfy(#2) Asfy

 λ2 (bar force)
all confined specimens
except S3-9 and S3-10

bar force (k)bar force (k)

 λ2 (bar force)
all unconfined specimens

0 2 4 6 8

6

12

18

24

30

36

0 2 4 6 8

6

12

18

24

30

36

 
Figure 4.15 Reinforcing Bar Forces of Confined and Unconfined 

Specimens 
For the two three-dimensional specimens tested (S3-9, S3-10) the 

bar stresses parallel to failure plane are stressed to 60-70% of their yield 

stress values.  In Specimen S3-10, reinforcement was placed 

perpendicular to the failure plane, and Figure 4.16 shows that the stresses 

in these bars were around 3% of the forces in the bars parallel to the 

failure plane.  From Figure 4.16, it would appear that the reinforcement 
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which directly crossed the failure plane was highly inefficient in 

redistributing the stresses after cracking, more so than reinforcement 

placed at the outer edges parallel to the failure plane.  This could also be 

an indication that reinforcement of this type does little to enhance the 

capacity of three-dimensional specimens.  A more suitable type of 

reinforcing arrangement would be closed ties around the perimeter of the 

specimens as suggested by Rigden et al [11].   
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Figure 4.16 Reinforcing Bar Forces for Three-Dimensional    

Specimens  
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The reinforcement pattern in five specimens (S1-1, S1-3, S1-6, S3-

5, and S3-6) contained reinforcing bars parallel to the load axis as well as 

perpendicular to the load axis of the specimen.  In order to define the 

effect of the reinforcing bars parallel to the load axis, these bar forces at 

the ultimate load were computed and subtracted from the ultimate 

capacity as shown in Figure 4.17.  On average the bar forces parallel to 

the load axis were stressed to a level of 63% of that of the reinforcing bars 

perpendicular to the load axis.  The net effect of reinforcing parallel to the 

load axis was minor. 
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Figure 4.17 Effect of Reinforcing Bars Parallel to the Load Axis of the    

Specimen 
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While keeping the percentage of reinforcement relatively constant 

as well as the geometric conditions of loading (A/Ab = constant, h/2b = 

constant), the orientation, size, and distribution of the reinforcement varied 

in several specimens.  The effect of the orientation, size, and distribution 

of reinforcement had little effect on the ultimate capacity of the specimens 

as shown in Figure 4.18.   
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Figure 4.18 Effect of Variations of Reinforcement on the Ultimate 

Capacity of the Specimen 
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4.4.1 Summary of the Results Obtained from Reinforcement Strains 

For planar specimens the amount of reinforcement provided 

enhanced the ultimate load carrying capacity of the specimen, with a 

stress redistribution occurring past the initial cracking and in some cases 

pass the yield point of the reinforcing bars.  For confined behavior a 

saturation level is apparent by comparing specimens S2-3 and S2-10 

which had similar capacities yet specimen S2-10 had twice the percentage 

of reinforcement as S2-3. For the same percentage of reinforcing steel 

provided, the orientation of reinforcing bars either perpendicular to the 

load axis or at angles of 45 degrees produced the same level of 

enhancement and a confined failure while reinforcing bars placed at angle 

less than 45 degrees relative to the load axis produced an unconfined 

failure of specimen S3-8.  Furthermore lumped reinforcing and distributed 

reinforcing of the same amount produced similar effects either providing a 

confined or unconfined failure of the specimen depending on the amount 

of reinforcement provided.  Reinforcing bars parallel to the load axis of the 

specimen provided little enhancement to the ultimate capacity or 

influenced the type of failure.   

An interesting result obtained from the reinforcing strains is that the 

tensile forces in the reinforcing bars of specimens exhibiting the 

unconfined failure were, on average, greater at the loaded surface of the 

specimen while the tensile forces of reinforcing bars of specimens 

exhibiting the confined failure were, on average, maximum at the center of 

the specimen.  
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4.5 RESULTS OBTAINED FROM CONCRETE STRAIN ON THE SURFACE OF THE 

SPECIMENS 

The most significant result from concrete strains on the surface of 

the specimen was that, in almost every specimen tested, tensile strains 

were developed at the outer edge of the specimen.  The magnitude of the 

tensile strains was dependent on the amount of reinforcement provided 

within the specimen.  Specimens exhibiting unconfined failure exhibited 

large tensile strains at the outer edge while specimens exhibiting the 

confined failure had smaller magnitudes of tensile strains at the outer 

edge.   

When small or no tensile strains were present in the specimen 

reasonable values of concrete stress were attainable by using a slightly 

modified version of Hognestad’s parabola as a constitutive relationship, 

and the stresses (assumed constant over the thickness) integrated over 

the area matched well with the load applied as seen in Figure 4.19. 

In some instances as with specimen S2-2 recorded tensile strains 

were higher than 0.001 with no visible cracking at the location of this 

strain.  It is impossible that the concrete could achieve a stress 0.9f’c 

using a linear Ec - ε relationship for tensile stress.  Figure 4.20 shows the 

post testing conditions of specimen S2-2 and the strain recording for the 

concrete surface gauge and a reinforcing bar directly beneath it.  The two 

gauges match quite well, however the stress in concrete and the stress in 

the steel are significantly different.   
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Figure 4.19 Verification of Constitutive Relationship for Compressive 
Strains 
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Figure 4.20 Tensile Strain Developed In Specimen S2-2 
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The constitutive relationship chosen to convert strain into concrete 

stress needed to account for these large tensile strains developed at the 

outer edge of unconfined specimens. 

Three distinct constitutive relationships were considered for the 

tensile stains developed in the concrete specimen; the first assumed that 

no tensile stress could develop after cracking; the second assumed that a 

reduced tensile stress could develop after cracking but would significantly 

decrease with increasing crack width; the third assumed a modification of 

the first, in that, tensile strains could develop in the section based on the 

tension stiffening effect due to the vertical fabrication bar shown in Figure 

4.20, if present.    

The constitutive relationship shown in Figure 4.21 C was deemed 

most suitable for the purpose of approximating the stress distribution 

across the centerline of the specimen.  In order to employ the tensile side 

of the constitutive relationship a value of f`t must be considered that 

models the tensile stress field at the outer edge of the specimen.  Since 

there is a definite strain gradient form the centerline to the edge of the 

specimen a value closer to the modulus of rupture is more pertinent than 

the uni-axial tensile strength.  No modulus of rupture tests were 

performed; however, split-cylinder tests were used to find the tensile 

strength of the concrete used in the specimens.  The average split-

cylinder strength from the three batches of concrete averaged 0.11f’c.  

The average compressive strength of the four batches of concrete was 4.5 

ksi.  7.5 times the square root of the average compressive strength equals 



0.11f`c (code value for tensile strength).  A value of f`t = 0.10f`c was 

chosen for the limiting tensile stress. 
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Figure 4.21 Constitutive Relationships Considered for Concrete 

Once the parameters of the constitutive model were chosen, the 

data recording from the strain gauges on the concrete surface were 

converted to stresses, normalized with respect to the stress under the 

bearing plate, and plotted against the distance at which they occur from 

the centerline of the specimen normalized with respect to half the bearing 

plate dimensions.  This normalization of both axes allows for direct 
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comparison of the stress fields at the centerline of the panel at different 

load stages under different geometric loading conditions.  The stress fields 

at the centerline of the panel at a load equal to 90% of the cracking load of 

each specimen is shown in Figure 4.22 and Figure 4.23 as a second order 

regression of the data points separated by geometric loading conditions.   

The normalized stress integrated over the normalized distance form 

centerline should theoretically equal 1.0 for planar specimens.   Figure 

4.22 and Figure 4.23 show the integration for each geometric category.  

The deviation of the integration from 1.0 is a measure of accuracy of the 

constitutive model in the elastic range.  The constitutive model over 

predicts the stress at the centerline for Group III, and this may be due to 

the limited amount of data for that group.   Group IV specimens include 

S3-9 and S3-10 whose behavior is three dimensional, and it is likely that 

the stress does not remain constant over the thickness.  For the three 

dimensional nature of these specimens the integration of surface stresses 

is an ambiguous figure but should be less than the integration of surface 

stresses for planar specimens as the intensity of compressive stress 

diminishes through the thickness of the specimen toward the surface.  

The same process for normalizing stresses was carried out for a 

load equal to 90% of the ultimate load and shown in Figure 4.24 and 

Figure 4.25.  A regression analysis of the data was provided to reflect an 

“average value” within the group.   The order of the polynomial that 

describes the regression line was chosen that best fits the trend of the 

data. In some cases the trend was linear and parabolic in others. 
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Figure 4.22 Normalized Stress at Mid-height of the Specimen in   

the Elastic Range 
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Figure 4.23 Normalized Stress at Mid-height of the Specimen in   
the Elastic Range Cont. 
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   The integrated stresses over the normalized distance from 

centerline ranged from 0.74 to 1.3 with an under prediction occurring for 

unconfined specimens and over predictions for the Group III specimens.  

This would indicate that the constitutive model did not capture the 

behavior of the stress field after redistribution as well as in the elastic 

range.  This should be expected, because the exact tensile stress is 

difficult to capture past cracking.    Figure 4.24 and Figure 4.25 also 

display the difference in the stress distributions at the centerline for 

confined and unconfined specimens.   
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Figure 4.25 Normalized Stress at the Centerline of the Specimen after 

Redistribution Cont. 
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The gradient of the stress distribution of confined specimens is less 

then the gradient of the stress distribution of unconfined specimens 

ultimately contributing to larger tensile stress at the edge of the specimen.  

The spread of compressive stresses can be taken as the ratio of the 

distance from the edge of the bearing plate (1) to the point where the 

regression line crosses the distance axis divided by the half the height of 

the specimen normalized with respect to the half the bearing plate 

dimension.  These ratios are displayed in Table 4.1.   

 

Table 4.1 Spread of Compressive Stress 
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The ratios shown in Table 4.1 convert to angle between 14 degrees 

and 32 degrees.  The steepest angle is that of the Group II unconfined 

specimens of which there were three specimens that exhibited an 

unconfined failure mechanism, two of which had confining reinforcing at 

the node which altered the stress distribution at the centerline of the 



 

 

 

132

specimen and therefore were not included.  The exclusion of specimens 

S2-4 and S1-5 left only specimen S1-2 which contained no reinforcing.  

The steep angle is consistent with amount of reinforcement present in that 

the angle tends toward zero with respect to vertical as the amount of 

reinforcing steel provided decreases.  In general, specimens with sufficient 

reinforcement to produce a confined failure of crushing at or around the 

nodal area had a characteristic spread of compression at a rate of 1 

horizontal unit to 2 vertical units or larger.  Unconfined specimens 

exhibited a slightly smaller spread of compressive stresses leading to 

greater tensile stress at the outer edge of the specimen.  This variation 

between confined and unconfined specimens stayed constant between 

geometric groups; however, as the ratio of the loaded surface to bearing 

plate increased in Group III the spread of compression also increased.   

4.5.1 Summary of Results Obtained from Strain on the Concrete 

Surface of the Specimens 

The stress distribution across the centerline of a specimen was 

reasonably attainable with limited amounts of concrete surface gauges 

placed at regular intervals along the centerline of the specimen.    The 

stress distribution across the centerline depended on the load stage 

considered, the amount of reinforcement provided and the geometric 

conditions of loading.  At load stages after cracking, tensile stresses 

developed at the edge of the specimen and the stresses were greater in 

specimens that exhibited an unconfined failure mechanism of a tensile 

failure at a plane further away from the node than the confined failure of 
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crushing of concrete at and around the nodal area.  The spreading of the 

compressive stress varies by the geometric conditions of loading and the 

reinforcement provided; however the spread may reasonably be assumed 

at a rate of 1 horizontal unit to 2 vertical units as depicted in Appendix A of 

the ACI 318-02.   
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5.0 ANALYSIS OF THE RESULTS AND CONCLUSIONS 

5.1 DESCRIBING THE BEHAVIOR WITH EMPIRICAL METHODS 

As mentioned in Chapter 4, specimens analogous to those 

fabricated in the experimental program described in Chapter 3 have been 

investigated by many researchers [11], [13], [14], [21], [22], [34], [35], [36], 

[39], [44], [50].  The result of many of these investigations has been the 

development of empirical relations based on regression analyses of the 

parameters considered in each investigation.   For example Niyogi [34] 

presented an equation for the bearing capacity as a function of the ratios 

of bearing plate dimensions to that of the adjacent dimensions of the 

loaded surface. Roberts [39] used a semi-empirical equation to describe 

the behavior of specimens in which the loaded area was smaller than that 

of the supporting surface and included an empirical term as well as a term 

describing the behavior of confined concrete in the presence of 

rectangular ties or spirals.   An empirical relationship for the bearing 

capacity of the specimens tested in the experimental program reported 

here is also reported in this chapter.   

The main parameters affecting the behavior of the specimens 

tested were: the amount of reinforcement provided, the ratio of the cross-

sectional area to that of the bearing plate area (A/Ab), and the height of 

the specimen to that of thickness of the specimen (h/2b).  As seen from 

Figure 4.7, the width of the compression field at the centerline of the 

specimen was a function of the amount of reinforcement provided. 

Relating the width of the compression field at midheight of the specimen 

(which is dependent on the amount of reinforcement provided) to the area 
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of the loaded surface indirectly combines two parameters.  An empirical 

equation was produced from regression analyses of the parameters 

mentioned previously and a comparison of the regression analyses to the 

test results is illustrated in Figure 5.1.  Figures 5.2 and 5.3 compare the 

empirical equation presented by Niyogi [34] and semi-empirical equation 

presented by Roberts [39] to the test results.  The efficiency factor of 

concrete defined as the ultimate stress under the bearing plate normalized 

to the compressive strength of concrete (νe) is the parameter by which the 

comparison of empirical equations to test results was made. 

It can be seen by Figures 5.1, 5.2, and 5.3 that empirical equations 

correlate quite well in some instances and rather poorly in others.  The 

variation is due to the fact that the empirical relations are modeled after a 

specific set of specimens and geometric loading conditions beyond which 

the parameters used in developing the empirical relations may not be 

directly applicable.    

It was not the intent of this research project to develop empirical 

relations for the bearing capacity of concrete specimens loaded over a 

limited surface area; however, empirical relations and comparisons with 

the test data are presented here to illustrate an important point: strut-and-

tie models can be used to describe the behavior of concrete elements that 

have previously been unexplainable by classical methods of analysis.   
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Figure 5.1 Empirical Relationship Developed for the Test Specimens 

in This Investigation              
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Figure 5.2 Empirical Relationship from [34] and Comparison to Test 
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Figure 5.3 Semi-Empirical Relationship from [39] and Comparison to 

Test Data 
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5.2 DESCRIBING THE BEHAVIOR WITH STRUT-AND-TIE MODELS 

Strut-and-tie models were used to describe the stress fields created 

within the specimen at various load stages.  These models provided 

insight into the redistribution of stresses and the mechanics of failure for 

these simple specimens.  Typical models at various load stages are 

illustrated in Figure 5.4.  The introduction of applied stress creates 
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Figure 5.4 Typical Strut-and-Tie Models at Various Load Stages 
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a region of biaxial compression in planar elements and tri-axial 

compression in three-dimensional elements directly under the bearing 

plate.  In reality no structural concrete members are truly planar and have 

some finite thickness in the third dimension leading to a tri-axial state of 

compression at the midpoint of the thickness of the element, which 

gradually reduces to a state of biaxial compression at the surface of the 

element.  Such nodal regions are commonly referred to as hydrostatic 

nodes and to satisfy equilibrium, stresses perpendicular to the applied 

stress must equal the applied stress.   The equilibrium of sresses 

geometrically forms an isosceles triangle with a height equal to half the 

width, of which, the stresses are equal on all sides.  The geometry of 

these nodes was continually substantiated by the geometry of the intact 

concrete under the bearing plate of the specimens within the experimental 

program.  As a result of the stress state within the nodal region, 

compressive stresses propagate from the node initially at 45 degrees.   To 

satisfy equilibrium, elements at the interior of the specimen, defined as the 

region enclosed by a line drawn at 45 degrees from the edge of the 

bearing area to the edge of the specimen, are subjected to some degree 

of transverse tensile stress as shown in Figure 5.5.   

 
Figure 5.5 Stress Fields for a Typical Specimen Adapted from [33] 
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Once the specimen cracks, the transverse stiffness provided by the 

uncracked concrete in tension disappears, and a significantly reduced 

stiffness provided by the reinforcement replaces the initial concrete 

stiffness.  The net effect is the movement of the centroid of compressive 

stresses to the centerline of the section.   

Consider a free-body diagram composed of one symmetrical 

quadrant of an uncracked specimen (Figure 5.6 A).  The stress present at 

the vertical face of the hydrostatic node is equal to the bearing stress and 

is also equal to the tensile stress developed within the concrete plus a 

negligible amount of tensile stress provided by the reinforcement.  The 

struts anchoring the tension in the concrete and the tension in the 

reinforcement must provide a force equal the resultant of the compressive 

stresses at the horizontal and vertical faces of the node.  Summing the 

moments about point X in Figure 5.6 A yields a system of nonlinear 

equations with two unknowns which are the angles θ and φ.  There is no 

unique solution to this system of equations.  Each solution will result in the 

same stress distribution across the mid-height of the panel depending on 

the tension force assigned to the reinforcement.  However, some solutions 

are more suitable than others.  Solutions that result in angles of φ that 

deviate strongly from the elastic stress distribution, as well as, solutions 

that that result in the concrete tension component being much larger than 

the tension capacity of concrete calculated by the area of concrete 

extending from the node to the midheight of the section should also be 

avoided.  The elastic strut-and-tie model shown in Figure 5.6 A) is the 

culmination of two sub-models that divides the load carried by each sub-

model based on the angle θ chosen from the range of possible solutions.   
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Figure 5.6 Strut-and-Tie Models for Cracked and Uncracked Sections 
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Figure 5.7 Separation of Sub-Models in the Elastic Range 
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The strut-and-tie model for the elastic range as stated previously will 

produce different stress distributions across the midheight of the specimen 

dependent on the tensile force assigned to the reinforcing bars crossing 

the vertical crack.  The difference in stress distribution at midheight of the 

specimen dependent on the amount of reinforcement provided is 

substantiated by comparing specimens with relatively large amounts of 

reinforcement (confined specimens) to unconfined specimens under the 

same geometric conditions of loading as shown in Figure 5.8.    
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Figure 5.8 Stress Distribution of Group I Specimens in the Elastic 

Range  
Furthermore, specimens tested with smaller bearing plates cracked at 

higher loads compared to specimens with the same amount of 

reinforcement and larger bearing plates.  The increase in capacity is due 
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to the increase of the concrete tensile component created from reducing 

the size of the node.   

Once the section cracks, the strut-and-tie model changes 

significantly as displayed in Figure 5.6 B.  The concrete tensile component 

disappears yet the compressive stresses at the vertical face of the node 

are still present.  The loss of the concrete tensile capacity results in large 

tensile stress fields at the edges of the specimen which are modeled as 

tensile forces parallel and perpendicular to the load applied.  The tensile 

stresses at the edge of the specimen act normal to the plane of the model 

shown in Figure 5.6 B within the thickness of the specimen causing 

splitting failures as seen in the specimens tested and shown in Figure 4.6.  

Anchoring the splitting forces is a strut whose magnitude is determined by 

the tensile forces at the top face and side face of the specimen.  A 

numerical example of producing a typical strut and tie model including the 

tensile forces at top edge and side edge of the specimen is presented in 

Figure 5.9.  The splitting forces developed within the specimens are 

analogous to other structural elements where a force couple is not present 

to restrain the compressive stresses of the vertical face of a singular node.  

Two examples of the splitting force being restrained by force couples are 

the uncracked specimen in Figure 5.6 A where the compressive force is 

resisted by the tensile force in the concrete and a node in the compression 

zone a beam where the stress at the vertical face of the node is resisted 

by the force couple due to bending.     
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Figure 5.9 Numerical Example of a Typical Strut-and-Tie Model 
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Muttoni [33] shows one such example of splitting forces in the case 

of a pre-tensioned beam shown in Figure 5.9. 

splitting forcessplitting forces

 
Figure 5.10 Splitting Forces within a Pre-Tensioned Beam from [33] 

Sanders [44] did not include the splitting forces shown in Figure 5.9 

in the models he proposed for his anchorage specimens which were 

present in the specimens in which a crack propagated to the base 

negating the uniform stress distribution assumed within the models, 

instead, he based his models solely on the reinforcement within the 

section as shown in Figure 5.11.  Sanders’ models were conservative and 

provided good correlation with the test data gathered within his 

experimental program; however, his models did not reflect the behavior of 

unreinforced specimens.   
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The strut-and-tie models presented followed Schlaich’s [46] 

approach which assumed that sub-models could be created that divided 

the load in any manner desired by the designer with the caveat that 

equilibrium most be satisfied.  The strut-and-tie model presented for the 

cracked section split the force applied to the vertical face of the node into 

two components; one consisted of the force couple of the tension steel, 

while the other component was the remainder of the force at the node 

transferred into a splitting tension as shown Figure 5.12. 
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Figure 5.11 Comparison of Strut-and-Tie Models with [44] 
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Figure 5.12 Force at the Vertical Face of the Node Split into Two 
Components 

The strut-and-tie model for the uncracked specimen showed a similar sub-

division of the load by separate models.  Schlaich’s [46] idea was 

experimentally substantiated by Maxwell [29] and again by Chen et al [18].  

The elegancy of strut-and-tie models resides in the ability to subdivide the 

load a any manner possible as long as equilibrium is satisfied.  The fault of 

 

 

149



 

 

150

STM is not in the modeling itself but in the subjective choice of failure 

criteria for the elements within the strut-and-tie model to ensure plastic 

behavior.   

5.3 ANALYSIS OF THE STRUT-AND-TIE MODELS 

In order to distinguish between different types of behaviors and to 

make comparisons, a strut-and tie model was created and analyzed for 

each specimen.  To accomplish this task the stress distribution across the 

midheight of each specimen at the ultimate conditions was obtained from 

the data collected from the surface gauges in the experimental program.  

The strains were converted to stresses using the constitutive relationship 

described in Chapter 4.  Plots similar to those in section 4.4 were 

produced excluding the regression analyses.  Interpolated values of the 

stresses calculated were used to predict the stresses across the midheight 

of the section where no data was available.  The interpolation consisted of 

splines between known points containing parabolic endpoints.  The tensile 

stresses were integrated across the midheight of the specimen dictated by 

the constitutive relationship on the tensile side.  The portion of the entire 

load that was assigned as a tension value, the average force in the 

reinforcement at ultimate, and the ultimate load placed on the specimen 

were then used to create the strut-and-tie models.  This process is shown 

in Figure 5.13 A and B.  A measure of the accuracy of the tensile force at 

the edge of the specimen, and hence the entire model, was made by 

comparing the location of the compressive stresses calculated by the 

model to the centroid of the compressive stresses given by the parabolic 

spline interpolation.  The comparison is shown in Figure 5.13 C.   
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Figure 5.13 Production of the Strut-and-Tie Models for Each 

Specimen 
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The mean difference between the centroid of the compressive stresses 

calculated by the model and the centroid of compressive stresses given by 

the stress distribution was .44 inches with a standard deviation of 0.3 

inches.  These values indicate that the tensile forces at the edge of the 

specimens were calculated fairly well in light of the fact that capturing the 

tensile stress in concrete is extremely difficult due to factors mentioned in 

section 4.6.    

The result of the analysis shows that the type of failure mechanism 

associated with each specimen has a strong correlation with the location 

of point Y in Figure 5.6 B.  Unconfined failures are typified by larger 

distances of point Y from the singular node, or in other terms, a longer 

strut length Siii as shown in Figure 5.14.  As the percentage of steel 

increased, the length of strut Siii  steadily decreased edging closer and 

closer to the singular node.  The length of the critical strut Siii was 

dependent on the angle of the strut that anchors the deviation of the 

splitting force around the corner of the specimen as shown in Figure 5.9, 

and the relative distance from the node to the anchoring point of the 

tensile forces (dT/ab in Figure 5.14).  As the steel yields the steel force 

remains nearly constant; however the horizontal splitting force increases 

linearly with the stress applied due to the modeling assumptions shown in 

Figure 5.12; the tensile force along the vertical edge of the specimen to 

increases with the load applied, but at a smaller rate than the horizontal 

tensile force.  The difference in the increase of tensile forces at the edges 

of the specimen result in smaller values of the tangent of φ shown in 

Figure 5.14.  The splitting failure observed in the heavily reinforced 
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specimen could be a result of a compatibility failure as the strut begins to 

orient itself on top of the horizontal tensile tie.   

The comparison of strut-and-tie models between specimens that 

were loaded through different sizes of bearing plates, yet had the same 

percentage of reinforcement shows the same trend as the comparison 

between specimens of differing reinforcement percentages as shown in 

Figure 5.14.  The length of Siii  in specimen S3-4, and S3-7, which were 

loaded with 6 inch by 6 inch bearing plates, was considerably smaller than 

the lengths of Siii of the strut-and-tie models for specimens S2-3 and S3-3 

which had exactly the same reinforcement percentages but were loaded 

with 6 inch by 12 inch bearing plates.    

The overall analysis of the strut-and-tie models showed trends only 

with out incorporating particular failure criteria.  In other words, the strut-

and-tie models shown in Figures 5.6 B, 5.9, 5.11 B, 5.13 B, and 5.14 were 

not used to predict the ultimate load for the specimen; instead these 

models were used to understand the behavior of the specimens 

throughout the loading process. The strut-and-tie models showed the 

distinct difference between specimens that exhibited the unconfined failure 

and those that exhibited the confined failure.  The difference was the 

length of strut Siii in Figure 5.14.  The specimens that failed at higher 

values of νe had the shortest lengths of the strut Siii.   The length of this 

strut was dependent on the amount of reinforcement provided and the 

geometric conditions of loading.  It can be inferred from the analysis that 

either the geometric conditions of loading or the amount reinforcement 

dictated the location of the failure plane.  The failure always consisted of a 

strut failure substantiated by the fact that the concrete directly under the  
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Figure 5.14 Comparison of Strut-and-Tie Models  
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sted.  

 

 the loading conditions of the specimens needed to be 

explored further.   

5.4 M

f the 

a function of the state of 

multi-a

 at 

s on 

ted by 

to 

 

bearing plate defining the node remained intact in every specimen te

Based on the observations of the strut failures, in which unconfined 

failures consisted of cracked concrete and confined failures consisted of 

crushed concrete, it can be surmised that unconfined struts failed due to 

higher levels of bi-axial tension while confined struts failed in the presence 

of direct compression.  For this reason the multi-axial state of stress within

the concrete under

ULTI-AXIAL STATES OF STRESS AND STRUT-AND-TIE MODELS 

It is evident form the observations of the location and condition of 

the failure planes of the specimens tested coupled with the analyses o

strut-and-tie models described in the previous section that the failure 

mechanism associated with each specimen is 

xial stress at the node-strut interface.   

Figure 5.15 illustrates the state of stress of concrete elements

various distances from the loaded surface in the specimens tested.  

Concrete elements within the specimen are subjected to greater tensile 

stresses further away from the node.  As the tensile stress increase

the concrete elements, the ability to sustain compressive stresses 

decreases.  The increase of tensile stress at greater distances from the 

node is a plausible explanation to the observed failure mechanisms of the 

specimens.  For unconfined failure, the failure mechanism was initia

a tensile crack resulting in a wedge of concrete in the shape of an 

isosceles triangle under the bearing plate.  The wedge was pushed in
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 amount of steel 

provid

t 

ar 

crete which 

was around 3.8 times the compressive strength at failure.  

the body of the specimen as further load was applied until aggregate 

interlock was degraded between the wedge of concrete under the node

and the remaining body of the specimen.  On the other hand, confined 

failure mechanisms consisted of a region of crushed concrete closer to th

wedge of concrete in the form of an isosceles triangle under the be

plate.   Specimens that contained small amounts of reinforcement 

exhibited the unconfined failure while specimens with larger amounts of 

reinforcement exhibited the confined failure.  The amount of steel provide

in the specimen dictated the distance of the failure plane and the failure 

mechanism by restraining tensile stresses in the concrete around the no

area providing the concrete the ability to fail in pure compression at the 

node-strut interface.  Without sufficient reinforcement, the concrete would 

fail in tension as bi-axial states of stress controlled the failure mechanism

which occurred at planes farther away from the node.  The strut-and-

models developed in the previous section described the mechanical 

behavior behind the distance at which either failure plane occurred (stru

length Siii in Figure 5.14) which was dependent on the

ed and/or the dT/ab ratio shown in Figure 5.14. 

The current provisions for STM within ACI 318-02 Appendix A 

contain no direct provisions for biaxial stress states, and therefore will 

overestimate or underestimate the failure criterion for struts dependent 

upon the state of stress at the node-strut interface.  To illustrate this poin

Thompson’s [47] CCT node specimens are considered in Figure 5.16.  

The tri-axial stress state in front of the rectangular head of the headed b

is apparent form the average compressive stress in the con
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Figure 5.15 State of Stress for Elements at the Nodal Region 

 

 

157



WHead

HHead

WPlate

AStrutWHead

HHead

WPlate

AStrut

6

5

4

3

2

1

0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Bearing Stress
fc’

N
um

be
r o

f T
es

ts
 in

 R
an

ge

8.0

ACI Limit
0.8

Average
3.8

6

5

4

3

2

1

0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Bearing Stress
fc’

N
um

be
r o

f T
es

ts
 in

 R
an

ge

8.0

ACI Limit
0.8

Average
3.8

6

5

4

3

2

1

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

N
um

be
r o

f T
es

ts
 in

 R
an

ge

Bearing Stress
fc’

# 11 Bar
Tests

# 8 Bar
Tests

Total

ACI Limit
bottle shaped
strut with no

reinforcement
0.51

ACI Limit
uniaxial

strut
0.85

6

5

4

3

2

1

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

N
um

be
r o

f T
es

ts
 in

 R
an

ge

Bearing Stress
fc’

# 11 Bar
Tests

# 8 Bar
Tests

Total

ACI Limit
bottle shaped
strut with no

reinforcement
0.51

ACI Limit
uniaxial

strut
0.85

WHead

HHead

WPlate

AStrutWHead

HHead

WPlate

AStrut

6

5

4

3

2

1

0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Bearing Stress
fc’

N
um

be
r o

f T
es

ts
 in

 R
an

ge

8.0

ACI Limit
0.8

Average
3.8

6

5

4

3

2

1

0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Bearing Stress
fc’

N
um

be
r o

f T
es

ts
 in

 R
an

ge

8.0

ACI Limit
0.8

Average
3.8

6

5

4

3

2

1

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

N
um

be
r o

f T
es

ts
 in

 R
an

ge

Bearing Stress
fc’

# 11 Bar
Tests

# 8 Bar
Tests

Total

ACI Limit
bottle shaped
strut with no

reinforcement
0.51

ACI Limit
uniaxial

strut
0.85

6

5

4

3

2

1

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

N
um

be
r o

f T
es

ts
 in

 R
an

ge

Bearing Stress
fc’

# 11 Bar
Tests

# 8 Bar
Tests

Total

ACI Limit
bottle shaped
strut with no

reinforcement
0.51

ACI Limit
uniaxial

strut
0.85

 
Figure 5.16 Stresses at Node Face and Node-Strut Interface from [47] 
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  Thompson [47] shows a difference in the stresses acting at the 

node-strut interface for the # 8 bar specimens and the #11 bar specimens.  

For either bar size the areas of the heads anchoring the bars are similar, 

and therefore, the nodes should be of similar dimensions for either case.  

The similarity is due to the fact that a hydrostatic node will develop based 

on the most highly stressed plane which is behind the head of the headed 

bar.  The other two planar dimensions of the node assumed by Thompson 

were too large to equilibrate the stresses acting behind the head of the 

headed bar.  Figure 9 shows the actual node developed in Thompson’s 

tests.   

 
Figure 5.17 Node Developed in Thompon’s [47] Headed Bar Tests 
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   Even though the node-strut interfaces assumed by Thompson are 

larger than the actual planes of a hydrostatic node, calculated stresses for 

the #8 bar specimens averaged over 1.5 times the uni-axial compressive 

strength of the concrete used in fabrication of the specimens.  The large 

value indicates that there were some bi-axial compressive stresses acting 

on these planes. 

The AASHTO 5.6.3 provisions for STM include a term for a reduced 

compressive capacity for cracked concrete as lateral strains imposed by 

reinforcement increase as shown in Figure 5.18.   

ε1

fce

fce

cracks

fce =  f`c
0.8 + 170ε1

ε1

fce

fce

cracks

fce =  f`c
0.8 + 170ε1

f`c
0.8 + 170ε1  

Figure 5.18 AASHTO Provision for Reduced Concrete Capacity as a 
Function of Lateral Strain from [41] 

 

The expression developed by Collins et al. [30] shown here as 

equation 5-1  
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fce =  f`c
0.8 + 170ε1

fce =  f`c
0.8 + 170ε1

f`c
0.8 + 170ε1

                                                                                (5-1)                       

                                                                                      

 

is not suitable as a biaxial failure criterion for bottle-shaped struts loaded 

through rigid plates.   If sufficient reinforcement and adequate detailing is 
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provided that ensures ample plastic deformations, it is unlikely that an 

ultimate failure will occur in a cracked region such as the one depicted in 

Figure 5.18.  Stress redistribution will continue until the stiffest element 

has failed in compression at the point of highest stress, which typically 

occurs at singular nodes.  Collins’ expression (5-1)  was developed 

through testing of specimens in which the transverse strain was active, in 

that, transverse reinforcement within specimens was tensioned while 

compressive force was applied.  The transverse reinforcement in the 

specimens tested in this investigation was strained only through 

deformation (passive) of the specimen after a crack through the centerline 

had formed and further load was applied.  The transverse reinforcement in 

some specimens that exhibited the unconfined tensile failure mechanism 

was strained well beyond yield, yet the ultimate load was much greater 

than that predicted by equation 5-1 indicating that the role of the 

reinforcement was only to change the bi-axial stress condition at or around 

the nodal area.   This point is proven by Figure 5.18 which the efficiency of 

concrete to sustain compressive stresses in the presence of transverse 

tensile strain normalized to the concrete strength predicted by equation  

5-1 is compared with the failure stress of the specimens normalized to the 

compressive strength of the concrete of the specimens within the 

experimental program.   
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Figure 5.19 Failure Stress as a Function of Transverse Strain 

5.5 THE TRANSITION STRESS FIELD 

A stress field developed by M. Schlaich [46] was proposed in a brief 

paper in 1990 that exploits the tensile strength of concrete to create a 

statically admissible transition stress field between two adjacent one-

dimensional stress fields of differing intensity.  The transition stress field is 

used to satisfy equilibrium at hydrostatic nodes in the cases where one-

dimensional stress fields are either larger or smaller than the design 

strength of the node.  Figure 5.20 shows example of either case.  Figure 

5.20 A shows the case where the one dimensional stress field has an 

intensity smaller than the design strength of the node such was the case 

with the specimens tested in the experimental program.  In order to satisfy 
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equilibrium at the hydrostatic node, the stress field with a smaller intensity 

must taper to the node.  Figure 5.20 B shows the case where the incoming 

one-dimensional stress field must enlarge to the node.  This case might 

occur at nodes whose design strength is reduced in the presence of 

tensile stresses induced by reinforcement anchored at the node.    

transition stress field

one-dimensional stress field

node

node

node

one-dimensional stress field

transition stress field

node

A) Transition Stress Field Tapering to the Node

B) Transition Stress Field Enlarging to the Node

transition stress field

one-dimensional stress field

node

node

transition stress field

one-dimensional stress field

node

node

node

one-dimensional stress field

transition stress field

node

one-dimensional stress field

transition stress field

node

A) Transition Stress Field Tapering to the Node

B) Transition Stress Field Enlarging to the Node  
Figure 5.20 Examples Of the Transition Stress Field  
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The trapezoidal transition stress field is composed of four triangular 

stress fields that are in equilibrium with each other and the one-

dimensional stress fields on either end of the transition length.   

The trapezoidal stress field separated by each triangular stress field is 

shown in Figure 5.21.  At the external boundaries of the trapezoid the 

normal stresses due to the adjoining one-dimensional stress fields 

disappear leaving the stress state inside triangles AOC and BOD one 

dimensional and parallel to AC and DB.  The tensile force T results in the 

one dimensional stress state inside triangles ACO and BDO acting at 

angle α with respect to the one-dimensional stresses acting on surfaces 

CD and AB.  The tensile force T acts across OF while an equal and 

opposite compressive force acts across OE.  If the intensities of the one-

dimensional stress field are known then the tensile force T depends only 

on the length of the transition area dictated by α.  To define the length of 

the transition area, the compressive stress acting on OE is set equal to the 

compressive strength of the concrete defining the position of point O and 

the transition length.  The tensile strength of concrete can be set at one 

value or be reduced according to the intensity of the compressive stresses 

present in the one-dimensional stress fields.   

Equation 5-2 was derived by M. Schlaich that relates the length of 

the transition area in proportion to the initial width of the larger one 

dimensional stress field.   Equation 5-2 is plotted in Figure 5.22 for various 

values of the design strength of the node and a tensile capacity of 

concrete equal to 10% of the compressive capacity.  
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Figure 5.21 Transition Stress Field Adapted from [46] 
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Figure 5.22 ψ-νs Relationship with Differing Values of νns 
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As seen in Figure 5.22 for values of νs less than nodal-strut 

compression limit the strut tapers to the node, and for values grater than 

the node-strut compression limit, the strut enlarges to the node.  The latter 

case may apply to nodes anchoring reinforcement in which the biaxial 

tension associated with the anchorage of the reinforcement might limit the 

compressive stress at the node-strut interface as shown in Figure 5.20 B.   

The transition stress field is a planar model as shown in Figure 5.22 

that indirectly incorporates a biaxial failure criterion.  The planar model 

may be improved by adding a stress tensor in the third dimension, but is 

beyond the scope of this phase of the research project.  The elegancy of 

the transition stress field lies in the fact that any biaxial failure criterion can 

be implemented.  To illustrate this point 3 different biaxial failure criteria 

were investigated which are in the form of Kupfer’s [23] envelope for 

planar stress.   

The first failure criterion was developed using 3 data points 

obtained in the experimental program and is shown in Figure 5.23.   The 

first point (point i) was derived from the average tensile stress and 

compressive stress from the split cylinders tested, the second point (point 

ii) was computed by integrating the best fit curve of the tensile stress in 

the reinforcement (Figure 4.13) just before cracking over the area of 

concrete between the nodes and dividing by the mean modular ratio 

between all reinforcing steels and concrete used in fabrication of the 

specimens.  The compressive stress corresponding to this tensile stress 

was taken as the average of the best-fit curve of the compressive stresses 

at the mid-height of the specimens for each geometrical condition of 

loading (Figure 4.22, Figure 4.23).  The third point (point iii) was found by 
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averaging the cylinder strengths for all batches of concrete used and was 

the value to which all other values were normalized.   

The two other bi-axial failure models compared in Figure 5.24 were 

the common failure criterion established by Chen and Drucker and given 

in the paper by M. Schlaich [46], as well as, a failure criterion that did not 

reduce the tensile stress from 0.1 f`c as the intensity of the compressive 

stress increased. 

In Figure 5.24 6 values of ψ (eq.5-2) as function of the stress in the 

strut are plotted.  In 3 of the plots a maximum value of 0.85 (νns) for the 

node-strut interface was used and in 3 plots the maximum value of 1.0 at 

the node-strut interface was used.  The discontinuity seen in the curves for 

νns equal to 1.0 are the points at which the tensile stress begins to 

decrease which, in turn, increase the transition length.  The area of the 

strut always remains a constant value only dependent on the ratio 

between the nodal compression limit and the stress in the strut since the 

normal force applied to these two faces are the same.  The length of the 

transition area depends only on the value of α in Figure 5.21.  As the 

tensile capacity of the concrete decreases based on the level of 

compressive stress applied to the strut face, the length of the transition 

area increases based on the value of α which is continually decreasing 

toward zero.  At an angle of α equal to zero the transition area would no 

longer be trapezoidal; it would be square with length of the strut equal to 

the length of the node face and equal to the length of the transition area.  

This concept is shown in Figure 5.25.  As the tensile capacity decreases 

at the point of discontinuity the value of ψ as a function of the level stress 



applied to the strut becomes asymptotic with the square root of the ratio of 

the area of the node to the area of the strut. 
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Figure 5.23 Example Bi-axial Failure Criterion Developed from the    

Experimental Program 
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Figure 5.24 Effect of the Failure Criterion on the ψ-νs Relationship 
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Figure 5.25 Explanation of the Point of Discontinuity in the ψ-νs 
Relationship 
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5.6 APPLICATION OF THE TRANSITION STRESS FIELD TO TEST DATA 

The transition stress field as presented here is a planar model, and 

assumes that the stress fields at the node-strut interface and at the strut 

face are one-dimensional, as well as the normal force applied to the 

transition field is constant.  With the fundamental assumptions behind the 

model understood, it may reasonably be applied to the specimens tested 

in the experimental program only after the basic parameters of the model 

are chosen.  The two main parameters are the failure criterion used and 

the maximum allowable stress at the node-strut interface. 

The value of α that determines the length of the transition area is 

only dependent on the level of stress applied at the strut face and the 

value of ψ which, in turn, is only dependent upon the failure criterion 

chosen.  The decision made regarding the failure criterion used in the 

model was based on the advice of Drucker, 

 “…once we leave the elastic range, all hope 

disappears of finding both a simple and 

complete description of the mechanical 

behavior.  When solving problems simplicity 

comes first.  Full generality is not the goal; full 

generality is complete chaos and contains no 

information.” 

      -Drucker- 

and the fact that the observed failure planes were at maximum 10 inches 

away from the assumed isosceles triangle forming the singular node.  The 

simplest failure criterion that results in the shortest transition length was 

Failure Criterion III as proven in Figure 5.24.  Drucker might consider 
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failure Criterion III full generality; however, when used in combination with 

the transition stress field, the information provided by the combination 

proves to be valuable.  

A correctly chosen value for the node compression limit (νns) poses 

some epistemic uncertainty and needs further substation through 

experimental testing.  It was decided that this value should be set equal to 

1.0 indicating the face of the node could withstand compressive stresses 

equal to the compressive strength of concrete.  The decision was made 

based on several planar specimens achieving values of νe greater than 1.0 

and as high as 1.3 (S3-4).  Since the concrete forming the node was intact 

in these specimens, the indication was that the area around the node-strut 

interface (area of the transition stress field) could be pushed into the realm 

of bi-axial compression if enough reinforcement was provided so that the 

value of νns equal to 1.0 was a conservative estimate.  It could be argued 

that the specimens tested within the experimental program are highly 

determinate and therefore were able to achieve such high values of 

compressive stress due to the fact that the specimens tested underwent a 

constant deformation.  For indeterminate structures the failure deformation 

is not reached simultaneously for all elements, but at different deformation 

stages of the complete system.  Therefore, the effective concrete strength 

should be reduced according to the theory of plasticity.   This point is valid 

but depends on the level of stress redistribution in the structure 

considered.  More experimental testing is needed to prove or refute this 

argument. For the time being a value of νns = 1.0 is considered to be 

adequate. 
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Once the parameters of the model were chosen, the model could 

then be applied to the specimens.  The transition stress field, when 

applied to one half of the singular node of the specimen is shown in Figure 

5.26.  The recorded bearing capacity form the specimens tested in the 

experimental program can then be applied to the model as the νs value.  

Using the bearing capacity as the νs term in the ψ - νs relationship (eq. 5-

20) is justified by the assumptions that the nodes developed at the bearing 

plates of the specimens were hydrostatic and the assumption that the 

same force was applied to the strut face (area Z in Figure 5.26) and the 

node-strut interface (area β in Figure 5.26).  Figure 5.27 shows the 

transition stress field superimposed on the nodal region of two specimens 

tested in the experimental program.   
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Figure 5.26 The Transition Stress Field Applied to the Singular Node 
of the Specimens 
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Figure 5.27 The Transition Stress Field Applied with Experimental 

Data 
With test values of νe used in place of the νs values of the ψ - νs 

relationship, the decision to use νns equal to 1.0, and using Failure 

Criterion III in Figure 5.24, a domain of the ψ - νs relationship could be 

established for the test specimens.  The domain of the ψ - νs  relationship 

for the specimens tested is plotted in Figure 5.28.   

 

 

176



0 0.3 0.6 0.9 1.2 1.5

0.2

0.4

0.6

0.8

1

ψ

νns = 1.0
Yield Criterion III

S1-1

S1-6

S3-4

S3-7
S3-8

νs , νe

violation of yield criterion

B) ψ - νe Domain Used in Analysis 

0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

νs , νe

ν ns = 1.0
Yield Criterion III

ψ

A) ψ - νe Relationship Used in Analysis 

0.5 0.6 0.7 0.8 0.9 1

0.4

0.8

1.2

1.6

2

νs , νe

ψ

νns = 1.0
Yield Criterion I

C) Possible ψ - νe Relationship

0 0.3 0.6 0.9 1.2 1.5

0.2

0.4

0.6

0.8

1

ψ

νns = 1.0
Yield Criterion III

S1-1

S1-6

S3-4

S3-7
S3-8

νs , νe

violation of yield criterion

0 0.3 0.6 0.9 1.2 1.5

0.2

0.4

0.6

0.8

1

ψ

νns = 1.0
Yield Criterion III

S1-1

S1-6

S3-4

S3-7
S3-8

νs , νe0 0.3 0.6 0.9 1.2 1.5

0.2

0.4

0.6

0.8

1

0 0.3 0.6 0.9 1.2 1.5

0.2

0.4

0.6

0.8

1

ψ

νns = 1.0
Yield Criterion III

S1-1

S1-6

S3-4

S3-7
S3-8

νs , νe

violation of yield criterion

B) ψ - νe Domain Used in Analysis 

0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

νs , νe

ν ns = 1.0
Yield Criterion III

ψ

0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

νs , νe

ν ns = 1.0
Yield Criterion III

ψ

A) ψ - νe Relationship Used in Analysis 

0.5 0.6 0.7 0.8 0.9 1

0.4

0.8

1.2

1.6

2

νs , νe

ψ

νns = 1.0
Yield Criterion I

C) Possible ψ - νe Relationship

0.5 0.6 0.7 0.8 0.9 1

0.4

0.8

1.2

1.6

2

νs , νe

ψ

0.5 0.6 0.7 0.8 0.9 1

0.4

0.8

1.2

1.6

2

0.5 0.6 0.7 0.8 0.9 1

0.4

0.8

1.2

1.6

2

νs , νe

ψ

νns = 1.0
Yield Criterion I

C) Possible ψ - νe Relationship  
Figure 5.28 Domain of the ψ - νs Relationship Used 

 

 

177



 

 

178

It can be seen from Figure 5.28 A. that certain test specimens 

violated the yield criterion for planar stress meaning that the strut failed at 

the node face in a manner conducive to biaxial compression having 

compressive capacities in the vicinity of 1.2 f`c.  These specimens include 

the three specimens tested with 6 in by 6 in bearing plates, and two 

specimens fabricated in the first series that were 4 inches thick.  

Automatically excluded from this analysis were the two specimens tested 

in which the behavior was three dimensional (S3-9, S3-10), and the 

specimens in the first series that included confining reinforcement of the 

node by means of rectangular ties, which introduce tri-axial compression.  

For the specimens not automatically excluded from the analysis, the 

violation of the yield criterion possibly resulted in the fact that the area of 

steel provided relative to the area of bearing plate was sufficient to confine 

the stress field of the strut at the node-strut interface in a bi-axial manner.  

Figure 5.28 C is included to remind the reader that any failure criterion 

could have been used in this type of analysis.  With further testing in 

regard to the failure criteria for concrete and maximum compressive 

capacities for nodes, a more suitable model might be implemented that 

could be easily incorporated into the analysis 

  The biggest influence on the compressive capacities of the 

specimens tested were the amount of transverse reinforcement crossing 

the vertical plane perpendicular to the axis at which the load was applied 

and the size of bearing plates used to load the specimens.  A combination 

of these two parameters was plotted that renormalized the percentage of 

reinforcement with respect to the area of the bearing plate used to load 



the specimens. The plot yielded a straight-line regression shown in Figure 

5.29.     
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Figure 5.29 Linear Regression of the Strut Capacity based on the 

Area of Steel Provided Normalized to Area of the Bearing 
Plate 

A reduction from the straight-line regression is also shown that was 

fit by passing a straight line through the two lowest values of compressive 

capacity based on the amount of steel provided relative to the bearing 

 

 

179



 

 

180

plate dimensions.  The reduction of the straight-line regression should 

provide conservative estimates of the bearing capacity.  The reduction line 

was capped where it predicted a compressive capacity of the strut greater 

than 1.0 f`c.  The cap is needed because the model used to analyze the 

specimens is planar with no allowance for bi-axial compression and values 

of νe greater than 1.0 violate the yield criterion.   Substituting the 

conservative equation for the strut capacity based on the reinforcement 

provided for the νs term in the ψ - νs relationship with the parameters of νns 

= 1.0 and Failure Criterion III in Figure 5.24 produces the curves shown in 

Figure 5.30. 

As seen from Figure 5.30 as the amount of reinforcement increases 

so does the strut capacity until a maximum level of the compressive 

strength of the concrete is reached.  While the compressive capacity of 

the strut face increases to 1.0 the length of the transition area in 

proportion of the area of the node face (L/β) decreases to zero and the 

area of the strut face (Z/β) relative to the area of the node face decreases 

to unity.    The inverse of the (Z/β) value is ultimately the effective 

compressive force capable of the strut.   It can also be seen that the 

transition length relative to the length of the node face takes the same 

form as the variation of α as a function of the amount of reinforcement 

provided.  This similarity lies in the fact that the transition length is purely a 

function of α which is exclusively a function of the failure criterion chosen. 

The maximum capacity of the strut occurs when the transition 

length equals zero meaning that the strut face becomes the node-strut 

interface.  This is consistent with the observations of the confined failure 

planes, as well as, the fact that tensile stresses decrease at closer 



distances to the introduction of applied stresses which enhances the 

compressive capacity.  
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 Figure 5.30 Transition Stress Field as a Function of the  

 Reinforcement Provided 
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With no reinforcement provided, the maximum capacity of the strut 

is equal to 0.6 times the uni-axial compressive strength of concrete 

occurring at the maximum distance of 1.3 times the length of the node 

face.  The maximum compressive force acts over the strut face equal to 

1.6 times the length of the node face.  If the length of the node face is set 

equal to 1.0 then α equals tan-1 ½(1.6-1.0)/1.3 which equals 13 degrees 

and is the same value for α depicted in Figure 5.30.    The transition stress 

field when applied to two specimens within the experimental program in 

shown in Figure 5.31. As seen from Figure 5.31, the application of the 

transition stress field to both sides of the node leads to developing stress 

fields for the entire specimen.  From the stress fields the strut-and-tie 

model shown in Figure 5.6 B can be envisioned as seen in Figure 5.32. 

The ultimate load capable by the strut and hence the specimen is 

calculated by dividing the value of β which is always known by Z obtained 

from Figure 5.30 based on the amount of reinforcement provided and 

multiplying that value by the bearing area of the applied load.  This value 

shown in Figure 5.31 is a simplification of the ultimate load obtained as 

shown in Figure 5.32.  Finally, the geometry of the transition stress field 

should be checked to ensure that it does not overlap any other stress 

fields and is within the boundary of the structural element considered.   
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Figure 5.31 Stress Fields for Two Specimens 
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Figure 5.32 Strut-and-Tie Model obtained from the Stress Fields in 

Figure 5.31 
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Figure 5.33 Obtaining the Ultimate load for a Strut from the 

Transition Stress Field 
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5.7 CONCLUSIONS 

The objective of this research project was to either substantiate or 

refute the stress limitations for bottle-shaped struts given by ACI 318-02 

Appendix A STM provisions and AASHTO LRFD 5.6 STM provisions and 

to unify the provisions for bottle-shaped struts given by each code.  The 

ACI 318-02 Appendix A provisions provided a reinforcement ratio (ACI 

equation A-4) as an amount of reinforcement required to confine bottle-

shaped struts to increase their compressive capacity.  The substantiation 

of this amount of confining steel stipulated by ACI equation A-4 was 

necessary to meet the objective    

The specimens tested within the experimental program constantly 

failed at higher levels of compressive stress than allowed by ACI or 

AASHTO.  The AAHSTO expression for strut capacity (equation 5-1) 

based on active transverse tensile strains in the reinforcement did not 

reflect the behavior of the specimens tested, in that, the transverse strains 

in the reinforcement were developed passively through deformation of the 

specimen and had no detrimental effect on the compressive capacity of 

the strut as the strain in the steel increased.   

The compressive capacity for bottle-shaped strut as a function of 

the amount of steel required to confine the strut is reported here as 

equation 5-3 taken from Figure 5.29 without the normalization with respect 

to the yield stress of the steel used in the fabrication of specimens.  
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ACI equation A-4 was reported here in Chapter 1 as equation 1-4. 
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The ACI 318-02 provisions stipulate that if a reinforcement ratio of 

0.003 or greater is provided to confine the transverse spreading of the 

bottle-shaped strut then the strut may resist compressive stresses not 

exceeding 0.64 f`c.  If the reinforcement ratio called for by equation 1-4 is 

not provided then a bottle-shaped strut may resist compressive stresses 

not exceeding 0.51 f’c.   

To allow for a comparison between equation 1-4 and equation 5-4 it 

must be assumed that the dimensions of the bearing plate (Ab) in equation 

5-4 are a unit dimension along the length of the structural element and 

equal to the thickness of the element.  For this condition, equation 5-4 

predicts exactly half the amount of steel (0.0015) for a compressive 

capacity of 0.64 f’c.  Furthermore, equation 5-4 allows a bottle-shaped 
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strut to resist compressive stresses equal to the compressive strength of 

the concrete if a reinforcement ratio of 0.016 or greater is provided.   

M. Schlaich [46] proposed a geometrical stress field that is statically 

admissible between two one-dimensional stress fields.  This transition 

stress field developed by M. Schlaich was used to describe the observed 

and recorded behavior of the bottle-shaped struts developed within the 

specimens tested.  The transition stress field is significant because it 

employs a bi-axial failure criterion for concrete under compressive and 

tensile stresses, while simultaneously providing a physical geometry for 

the stress fields originating from an applied source of loading.  The added 

information about the geometry of the stress fields helps the designer in 

determining sufficient dimensioning of the members of a truss model.  

The rudimentary failure criterion used in the stress field developed 

by M. Schlaich [46] as it was engaged to the specimens may be altered 

with further experimental investigation to incorporate bi-axial compression 

and tension in the third dimension or any other combination of stresses in 

the three principal axes of a structural element.   

With further investigation, the stress field may also be used to 

describe the behavior of struts anchored by CCT nodes.  Since the 

transition stress field depends on allowable values of compressive 

stresses placed on various nodes, failure criteria may be developed that 

link node and strut behavior for singular nodes.  The correlation between 

nodes and struts is ideal because the critical stresses within strut-and-tie 

models are usually those at the node-strut interface of singular nodes.   
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