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Abstract 

 

Simplified Methods of Evaluating the Redundancy of Twin Trapezoidal 

Box Girder Bridges  

 

 

 

 

Vasileios Athanasiou Samaras, M.S.E. 

The University of Texas at Austin, 2009 

 

Supervisor:  Karl H. Frank 

 

According to the AASHTO Load and Resistance Factor Design (LRFD) Bridge 

Design Specifications, a bridge is defined to be fracture critical when a failure of a 

tension component will result in the collapse of the bridge. In the case of a twin box 

girder bridge, the tension flanges in the positive moment portion of the bridge, as well as 

the webs, are considered to be fracture critical elements. Due to this classification, those 

bridges are subjected to stringent inspections at least every two years. Those inspections 

are crucial for ensuring the safety of the bridge, yet are expensive and time consuming. 

Multiple cases of FCBs (Fracture Critical Bridge) that have experienced a fracture in 

one of their elements without collapse have encouraged owners of those bridges to 

question the validity of AASHTO’s requirements. The Texas Department of 

Transportation is interested in indentifying when a fracture of an element could lead to a 

catastrophic collapse of a bridge. A better understanding of fracture critical bridge 
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behavior may allow TxDOT and other state DOTs to reduce the frequency of the 

inspections, which could potentially reduce the cost of an otherwise attractive bridge 

design.  

The goal of this research project is to determine the level of redundancy of twin box 

girder bridges. Simplified analytical methods and guidelines that will conservatively 

estimate the behavior of such bridges will be presented in this thesis. Those guidelines 

will be one of the tools that an engineer in practice could use to determine if a bridge is 

prone to collapse following the failure of a fracture critical component. A full-size bridge 

has been constructed at the Ferguson Structural Engineering Laboratory to test the 

response of these systems following a simulated fracture. A series of tests were 

conducted to determine the response of the bridge in the event of a tension flange 

fracture. The results provided important information for the development of the 

simplified methods.    

The FSEL test bridge performed extremely well throughout all the testing and 

supported a load of over four times the AASHTO design truck load. Several elements 

contributed to create alternative load paths that could sustain the entire applied load with 

a full-depth fracture of one of its two girders. The large section of the concrete railing 

above the fractured girder acted as an inverted beam and transmitted a portion of the load 

back to the supports once the expansion joint closed due to the downward deflection of 

the bridge. The concrete deck acted as a shear diaphragm and also transferred significant 

loads in both horizontal directions. Because the performance of the test bridge far 

exceeded the AASHTO criteria, and because this behavior can be computed using the 

simplified methods presented in this thesis as well as through detailed finite element 

models, consideration should be given to revising the current AASHTO specifications 

and to developing alternate inspection and maintenance requirements that accurately 

reflect the redundancy available in various types of fracture critical bridges. 
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CHAPTER 1 

Introduction and Research Motivation 

1.1 INTRODUCTION 

Since the late 1950s when the interstate highway system was beginning to be 

expanded, commuters and transportation companies started depending on the highway 

system for travel and to distribute goods and services. Highway bridges are a vital 

component of the US transportation system because they provide a passage over barriers, 

such as rivers or roadways. The consequences on the economy of any disruption of a 

highway bridge are several. For instance, the cost to displaced motorists who depend on a 

bridge that is being inspected has been estimated to be approximately $400,000 per day 

[Olson, (2008)].  

In the past, collapses of bridges have resulted in major changes to inspection and 

maintenance procedures in the US. In 1967, just after the collapse of Silver Bridge in 

Point Pleasant (Figure 1-1), the National Bridge Inspection Program was established. 

Later failures of the tension elements of bridges raised concerns about these fracture 

critical components. In response to those concerns, new provisions were established that 

increased the material toughness and fabrication standards for critical members and 

required more stringent inspections during construction as well as hands-on inspection 

during the service life of such bridges. The term ‘fracture critical bridge’ was first used in 

1970 to describe a bridge which is expected to collapse if a tension component fractures 

[AASHTO LRFD]. 
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Figure 1-1: The Silver Bridge at Point Pleasant. (a) During service, (b) Fractured Eye Bar 

 

Today, each of the approximately 416 fracture critical bridges in Texas are 

required to be visually inspected at least once every two years regardless of their 

expected service life and fatigue performance. One of the most common fracture critical 

bridges in Texas is the twin box girder bridge. Usually, they are used for highway 

flyovers due to their slender and aesthetically pleasant profile, which improves the 

appearance of the elevated interchanges.  

The objectives of inspection are to track fatigue cracks in the tension members 

and to evaluate the remaining life of those fracture critical components of a bridge. Those 

inspections are important for finding cracks, yet are extremely expensive for the owner.  

1.2 RESEARCH MOTIVATION 

Multiple cases of Fracture Critical Bridges (FCBs) that have experienced a fracture in 

one of their elements without collapse have made owners of those bridges question the 

validity of AASHTO’s requirements. There is interest among bridge engineers and state 

Departments of Transportation (DOTs) in indentifying when a fracture of an element 

could lead to a catastrophic collapse of a fracture critical bridge. A better understanding 

of the performance of such bridges will potentially allow the Texas Department of 

Transportation (TxDOT) and other state DOTs to reduce the frequency of the inspections 

and, to a large extent, reduce the cost of an otherwise attractive bridge design. It is 
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estimated that TxDOT spends $26 million a year to inspect its 416 fracture critical 

bridges. If it is possible to estimate the redundancy level of a bridge and prove that it has 

enough sufficient capacity to sustain its service loads, then the required inspections could 

be performed less often.  

In order to develop tools that could estimate the redundancy level of twin box girder 

bridges, TxDOT and the Federal Highway Administration (FHWA) have funded the 

research project described in this thesis. The main objective of this research project is to 

develop methods for evaluating the redundancy level of fracture critical bridges. The best 

way to model such a complex system and obtain detailed results is through finite element 

modeling. Finite element analysis may provide the most accurate results, yet it requires a 

substantial amount of work and time. Simplified procedures for initial checks of the 

bridge redundancy level will be beneficial to engineers in practice. Thus, if the simplified 

methods are available and are adequate to characterize bridge behavior, then engineers 

could potentially save a significant amount of time. Otherwise, a more sophisticated finite 

element analysis can be used to determine the redundancy level of a bridge. For the 

current study, a set of guidelines was developed to estimate the behavior of a bridge in 

the event of a fracture. A full-size bridge was constructed at the Ferguson Structural 

Engineering Laboratory, which was used to evaluate the redundancy of a typical twin box 

girder bridge in Texas. A series of tests were conducted to determine the response of the 

bridge in the event of a tension flange fracture. The results provided important 

information for the development of the simplified analysis methods presented in this 

thesis. 

 

1.3 PREVIOUS WORK AND SCOPE OF THIS THESIS 

One of the goals of Sutton’s [Sutton, (2007)] research was to develop a set of simple 

calculations to predict the behavior of the FSEL test bridge during the fracture test. The 

simple analysis calculations presented in his thesis showed that the deck and the intact 
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girder would be able to provide an alternative load path when a full-depth fracture occurs 

at the mid-span of the fractured girder. An uncertainty in the calculation of the capacity 

of the shear studs motivated the research team to conduct a series of laboratory tests to 

determine the tensile capacity of a group of shear studs. Sutton’s conclusion was that the 

haunch played a significant role in the strength and ductility of the shear studs, 

jeopardizing their ability to carry and to redistribute loads during a fracture event [Sutton, 

(2007)].  

Joshua Mouras extended Sutton’s [Sutton, (2007)] research on shear studs [Mouras, 

(2008)]. Laboratory tests were performed to evaluate the strength and ductility of various 

stud configurations, including shear studs spaced transversely and longitudinally, 

different heights of studs in the haunch, and dynamic loading of stud specimens. Mouras 

[Mouras, (2008)] developed modifications to the existing ACI code equations to 

represent the findings obtained from the laboratory test program. The proposed strength 

equations are able to predict the strength of these alternate shear stud configurations and 

the effect of the haunch.  

This thesis will focus on the development of simplified methods and guidelines that 

will conservatively estimate the behavior of a twin box girder bridge in the event of a 

fracture of a critical element.  
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  CHAPTER 2 

Test Results: Test 2 

2.1 INTRODUCTION 

After reconstructing a full-size twin box girder bridge and using it as a test specimen, 

the objective of Test 1 was to investigate the behavior of the bridge in the event that a 

fracture occurred in one of the critical tension flanges. In Test 1, an explosive charge was 

used to cut the entire thickness of one of the bottom flanges. It was believed that the 

fracture would propagate to the webs due to the fact that the tension flanges of the twin 

box-girder bridge were fracture critical members. The bridge was loaded at the mid-span, 

which was the location of the maximum bending moment, with concrete blocks weighing 

75,000 lbs in total. The concrete blocks were positioned on the bridge in a pattern 

corresponding to the AASHTO-specified design truck load [AASHTO LRFD, (2004)]. 

Based on the AASHTO Bridge Design Specifications, a total collapse of the bridge was 

expected after Test 1. However, the FSEL test bridge sustained the total applied load 

without suffering any significant damage, and the fracture remained confined to the 

bottom flange of one girder. 

Instrumentation data for Test 1 were limited due to a miscommunication, which led to 

a delay in the start of the data acquisition system. As reported by Neuman [Neuman, 

(2009)], the system began recording data after the explosion had occurred and the initial 

pulse had passed. The most significant data of Test 1 were the deflections of the girders 

during several stages of the test (e.g., after completion of construction, after live load 

placement, etc.) [Barnard, (2006), Neuman, (2009)].  

Many lessons were learned from Test 1. The analysis of the results from the first test 

helped with the development of a more extensive instrumentation scheme. The 

instrumentation scheme for Test 2 has been reported by Neuman [Neuman, (2009)]. The 

gage layout in a typical girder cross section is shown in Figure 2-1.  
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Figure 2-1: The instrumentation plan of the cross-section for Test 2 [Neuman, (2009)] 

 

Longitudinal and transverse concrete strain gages on the deck were installed to 

capture the behavior of the concrete deck in both directions. Concrete strain gages on the 

top face of the east railing recorded the strains during Test 2. The strain history of the east 

railing gave the opportunity to the project team to observe the behavior of an important 

element that could prevent the collapse of the test bridge. In addition to the concrete deck 

gages, uniaxial gages on the bottom flange of the fractured girder measured the strain in 

the longitudinal direction of the bridge. Rosette gages were used on the webs and bottom 

flanges to determine principal stresses and shear in these components. Linear 

potentiometers were mounted on the exterior top flange of the fractured girder to measure 

the separation between fractured girder and concrete deck. The locations of the defined 

sections that will be discussed throughout this document are illustrated in Figure 2-2. 

Finally, a plan view of the top surface of the deck is presented in Figure 2-3. 
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Figure 2-2: Plan view of FSEL bridge with significant features [Neuman, (2009)] 
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Figure 2-3: Arrangement of the concrete gages on concrete deck Test 2 [Neuman, (2009)] 

 

2.2 GIRDER AND CONCRETE DECK DEFLECTION SURVEY  

The primary objective of Test 2 was to observe the behavior of the bridge in the case 

that the fracture would have propagated in Test 1. For this reason, the full depth of the 

webs was cut, and the same load as in Test 1 was applied to the bridge. A scissor-jack 

system was used in Test 2 to support the fractured girder while the webs were cut. The 

scissor-jack was designed so that it was able to instantly release the fractured girder and 

allow it to deflect as if the fracture occurred in the webs. Based on this fact, the curves of 

Figures 2-4 and 2-5 “Before Scissor-Jack Release” and “After Scissor-Jack Release” 

illustrate the deflections of the two girders before and after the test, respectively. 

Additionally, the curve “After Live Load Release” refers to the deflected shape the 

girders had after removing the live load (i.e., concrete blocks used to simulate a truck) 
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that was used during the test. As described by Neuman [Neuman, (2009)], the bottom 

flanges of both girders were surveyed before and after Test 2, as well as after removing 

the live load from the bridge. The deflection plots of the intact girder and fractured girder 

are shown in Figures 2-4 and 2-5.  

 

 

 Figure 2-4: Intact girder deflection during Test 2 [Neuman, (2009)] 
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Figure 2-5: Fractured girder deflection during Test 2 [Neuman, (2009)] 

 

In addition to measuring the girder deflections, the top surface of the deck was 

surveyed after Test 2 to determine its deflected shape. By combining the measurements 

from the two surveys (deck and girders), it was possible to identify the separation that 

had occurred at the interior top flange of the fractured girder. The results of direct 

measurement of the separation between the box girder and the deck and the difference 

between the deflection of the girders and deck computed from the survey results were 

essentially the same (Figure 2-7). Based on these observations, the project team was 

motivated to develop further the Simplified Strip Model, which could predict the pulling 

out of the studs from the bridge deck. A more detailed description of the Simplified Strip 

Model will be presented later in this thesis.   
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Figure 2-6: Concrete deck deflected shape after Test 2 [Neuman, (2009)] 

 

 

Figure 2-7: Fractured girder’s interior top flange separation after Test 2 [Neuman (2009)] 



12 

 

2.3 GIRDERS AND END DIAPHRAGMS GAGE DATA ANALYSIS 

2.3.1 Instrumentation analysis of intact and fractured girder 

The instrumentation of the two girders was different due to the fact that different 

behaviors were expected. The fractured girder (FG) was instrumented with uniaxial strain 

gages on the bottom flange because the torsion and vertical shear in the webs was 

expected to be small, while rosette gages were installed on the intact girder (IG) because 

torsional and flexural behavior was expected to be important. During the test, the bottom 

flange of the fractured girder was in compression along the whole span, which has been 

well captured by the uniaxial gages (Figure 2-8). Moreover, all the strain values of the 

monitored locations were in the elastic range. The compressive state of the bottom flange 

was consistent with the deflected shape of the fractured girder, which was similar to two 

beams cantilevered from the supports (Figure 2-5). It is worthwhile to mention that the 

first couple of seconds were the most interesting period of time, and for this reason, all 

the strain plots focus on this period. 

The intact girder was one of the critical members of the bridge because it had to 

sustain the entire dead load of the bridge and live load of the simulated truck. The 

deflected shape of the intact girder shown in Figure 2-4 suggests that the bottom flange 

should be in tension. This observation was verified by the gage data shown in Figure 2-9. 

The strain values were in the elastic range, and their magnitude was higher than the gages 

on the bottom flange of the fractured girder. The fractured girder deflected under its own 

weight, whereas the intact girder deflected under the total load.  
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Figure 2-8: Bottom flange strain gages data of the fractured girder during Test 2 

 

 

Figure 2-9: Bottom flange strain gages data of the intact girder during Test 2 
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A combined plot of all the gages located on both bottom flanges (Figure 2-10) gives 

an overall view of the different behavior of the girders. The initial pulse from the release 

of the jack and the damped oscillations of the structural system are clearly shown in 

Figure 2-10. A dynamic load could have a significantly larger effect than a static load of 

the same magnitude due to the structure's inability to respond quickly to the loading. The 

increase in the effect of a dynamic load was given by the dynamic amplification factor 

(DAF), which could be computed as the ratio of umax/ustatic. As it was reported by Neuman 

[Neuman, (2009)], a dynamic amplification factor of 1.3 has been observed in the output 

of the strain gages used during Test 2. 

The strain in the bottom flange of both girders is shown in Figures 2-11 and 2-12. All 

the values shown in these figures are the static values captured by the strain gages after 

the end of Test 2 with the exception of the data corresponding to the end points, which 

have been extrapolated by data from S2, S3, N2 and N3 sections.  

 

 

Figure 2-10: Bottom flange strain gages data of the girders during Test 2 
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Figure 2-11: Bottom flange strain diagram of fractured girder after Test 2 

 

 

Figure 2-12: Bottom flange strain diagram of intact girder after Test 2 

 

The moment diagram for the intact girder (Figure 2-13) was constructed using the 

static values of the strains recorded from the gages on the bottom flange of the intact 

girder and on the top surface of the deck. The strains of the extreme fibers of the elastic 

composite cross section were used to construct the strain gradient. By converting the 

strain gradient to stresses, the internal forces, which acted on different parts of the elastic 
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section, could be calculated. Then, the moment was calculated by adding the moments of 

the forces acting at various parts of the section about the bottom flange of the girder. It 

was assumed that the elastic section for the calculation of the bending moment along the 

length of the bridge was based on a section that consists of the steel box of the intact 

girder, the concrete deck, and the railing. Half of the width of the deck was assumed to be 

the effective width of the elastic section. The details of the calculations are given in 

Appendix A.   

 

 

Figure 2-13: Moment diagram of the intact girder after Test 2 

 

The shear flow at the defined sections was calculated by analyzing the different 

components of the rosette gages on the intact girder. From the rosette gage on the bottom 

flange, the torsional shear could be readily calculated because the bending in the bottom 

flange was almost zero. The torsional shear multiplied with the thickness of the bottom 

flange gives the shear flow of the bottom flange. The shear in the webs contains two 

components, the torsional shear and the bending shear. After separating the two 
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components of the shear, the shear flow was equal, as above, with the product of the 

torsional shear times the thickness of the web. Figure 2-14 shows that the calculated 

shear flow in the webs was the same as at the bottom flange, which was expected. The 

curves of two defined sections (N1 and S2) are missing due to the fact that some of the 

components of the rosettes did not capture the data properly.  

If the composite section of the intact girder was treated as a closed section where the 

shear flow in the deck was assumed to be the same as in the webs and the bottom flange, 

then it was possible to calculate the torque that was applied on the intact girder by the 

live truck load and the dead load of the bridge that the fractured girder could not support. 

The torsion at each section was equal to: 

 
T=2·A·q (Equation 2-1) 

where A was the inner area of the closed section (A= 26.74 ft
2
), and q was the shear flow 

value at each section. The magnitudes of the shear flow at N3, N2, S1 and S3 were -14.98 

kips/ft (-1.25 kips/in), -10.36 kips/ft (-0.86 kips/in), 1.60 kips/ft (0.13 kips/in), 14.60 

kips/ft (1.22 kips/in), respectively. All the values were calculated from the static strain 

values. The torsional moment diagram (Figure 2-16) was constructed by inserting all 

these values into Equation 2-1. The applied distributed torque was equal to the slope of 

the line shown in Figure 2-16. The distributed load which was transferred to the intact 

girder could be calculated as the distributed torque divided by the distance between the 

centerline of the girders. The calculated distributed torque was equal to 26.59 kips·ft/ft, 

whereas the distributed torque produced by half of the dead load (weight of the fractured 

girder plus half the weight of the deck) was 23.19 kips·ft/ft. In this comparison, the three 

concentrated torques produced by the front and the two rear axles of truck, which were 

8.18·9.89=80.90 kips·ft and 33.92·9.89=335.47 kips·ft, respectively, should be taken into 

account. The total calculated load that was transferred to the intact girder was 265.87 

kips. Considering that a portion of the simulated truck load was being transferred to the 
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supports by the action of the concrete deck and railing, the value of the total applied load 

from the strain data was relatively close with the assumed total applied load being 

supported by the fractured girder. Realizing that the strain gage data may contain small 

errors, this load was relatively close to the load of 307.89 kips, which represents half the 

bridge dead load plus the truck load. 

 

 

Figure 2-14: Shear flow of defined intact girder sections during Test 2 
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Figure 2-15: Inner area of the closed section 

 

 

Figure 2-16: Torsional moment diagram of the intact girder after Test 2 
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The overall behavior of the bridge after Test 2 was more than satisfactory. The 

fractured girder’s deflections were small under its own dead load, and the intact girder 

was able to hold the entire dead load of the bridge and the simulated truck live load. The 

end diaphragms played a significant role in providing torsional moment restraint at the 

ends of the intact girder. A lack of torsional restraint would have resulted in larger 

rotations and deflections than those that were measured. The angle from the horizontal 

axis “x” (φ°) and the magnitude of the principle stresses (σ1, σ2) was calculated [VISHAY 

Micro-Measurements, (2008)] for both end diaphragms by using data that the rosette 

gages captured during Test 2 (Figure 2-17). At the north end diaphragm, it was found that 

σ1 = 4.29 ksi, σ2 = -5.68 ksi, τmax = 4.99 ksi and φ = 45.02°, whereas at the south end 

diaphragm, σ1 = 8.05 ksi, σ2 = -3.77 ksi, τmax = 5.91 ksi and φ = 48.61°. The fact that the 

principle axes were oriented at almost 45° indicates a pure shear stress state at both end 

diaphragms. The rosette was not able to capture any out-of-plane behavior, and for this 

reason, all the results were only for in-plane behavior. 

 

 

Figure 2-17: Principle stresses orientation at the end diaphragms 
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2.3.2 Instrumentation analysis of deck  

The bridge deck and the end diaphragms were the two elements that connect the two 

girders, and they were the only elements of the bridge that could transfer loads from the 

fractured girder to the intact girder. For this reason, it was decided to instrument the top 

surface of the deck as well as the east railing (Figure 2-3). Additionally, some of the 

reinforcing steel in the deck and the shear studs were instrumented during construction of 

the bridge.  

After Test 2, it was recognized that the exterior (or east) railing was acting as an inverted 

beam, and it was able to carry a part of the load that the fractured girder was not able to 

support. Moreover, the behavior of the deck, which acted as a shear diaphragm, provided 

a load path to transfer the loads from the fractured girder to the intact girder and back to 

the supports. Figure 2-18 shows the strain data history of the gages located at the exterior 

railing. At no location was the concrete strain close to crushing. Strain gages were not 

installed at the centerline expansion joint, so no data point was obtained at this location. 

For this reason, the strain values for the centerline expansion joint were extrapolated from 

measured data points. The extrapolation showed that the concrete strain might be at a 

range of 300 micro-strains, which was 1/10 of the crushing strain (0.003 in/in). During 

Test 2, a thin layer of concrete at the centerline expansion joint spalled (Figure 2-19). The 

spall was produced by the localized contact strain caused by the engagement of the 

railing at the expansion joint. The strain through the height of the centerline expansion 

joint away from the areas of contact was small. The strain values at the north and the 

south expansion joints were close to zero due to the fact that there was no continuity of 

the railing at the open expansion joints.  
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Figure 2-18: Cyclic peak micro-strain along exterior railing during Test 2 

 

The moment diagram of the exterior railing depicted in Figure 2-21 was constructed 

using static strain values from the gages that were attached on the top face of the east 

railing. The section that was used to calculate the moments from the strains consists of 

the typical T501 traffic rail and a part of the bridge deck (Figure 2-20). More detailed 

calculations of the moment diagram are given in Appendix A. 
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Figure 2-19: Crushed concrete at the CL exterior railing after Test 2 

 

 

Figure 2-20: Railing section used for the moment calculation of the railing 
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Figure 2-21: Moment diagram of the exterior railing after Test 2 

 

After Test 2, initial observations appeared to show an intact bridge, though these 

observations were in contrast to the computations of the finite element model as well as 

the results from the Simplified Strip Model. Both analyses indicated that the interior top 

flange of the fractured girder and the concrete deck should have been separated. As 

reported by Neuman [Neuman, (2009)], only after a closer inspection, it became apparent 

that the interior top flange was not connected to the deck. The separation occurred in an 

unzipping mode, depicted in Figure 2-22, which started from the centerline and extended 

almost 30 ft. to each side.  Each group of shear studs of the interior top flange, starting 

from the centerline, was loaded up to its tensile capacity due to double curvature bending 

of the deck. The unzipping mode occurred because once the tensile capacity of the shear 

stud was reached, it pulled out of the deck. The double curvature bending of the deck 

across the width and between the two girders was the result of the downward deflection 

of the fractured girder after the fracture had been propagated. The connection of the shear 

studs with the deck played a significant role in the deformed shape of the deck. The 

cross-section, in which the connection of the shear studs with the concrete deck was 

intact, deflects in double curvature bending (Figure 2-23b). For sections where the shear 

studs are no longer attached, the deck deflects across its width in single curvature. 

Therefore, the deflected shape of the deck was dependent upon the existence (or lack 

thereof) of the force transmitted from the deck to the interior top flange of the fractured 
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girder through the shear studs in tension. Under this state, the extreme fiber of the top 

surface of the deck located above the interior top flange of the fractured girder was under 

compression. After the tensile capacity of the shear stud connection was reached, the 

group of shear studs was pulled out of the concrete deck, releasing the reacting force on 

the deck. The loss of the downward force affects the deformed shape of the cross-section. 

As a result of this change, the deformed shape of the cross-section will be changed from 

double curvature to single curvature (Figure 2-23b, c). 
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Figure 2-22: Shear stud unzipping mode during Test 2 [Neuman, (2009)] 
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Figure 2-23a: Undeformed shape of the bridge before Test 2 

 

 

Figure 2-23b: Deformed shape of the bridge in double curvature during Test 2 
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Figure 2-23c: Deformed shape of the bridge in single curvature during Test 2 

 

The unzipping of the shear studs was captured from the strains that were measured on 

the top surface of the deck, which were recorded from the transverse concrete gages 

located immediately above the interior top flange of the fractured girder (Figure 2-24). 

Figure 2-24 shows the stain data history for the first 0.6 second of response. All the 

curves in Figure 2-24 show the strain reversals of the extreme fiber on the top surface of 

the concrete deck located above the interior top flange at the fracture location. The blue 

curves represent the strain transverse to the span of the bridge above the interior top 

flange of the fractured girder at the N1 and S1 sections, which are located 6 ft. away from 

the centerline. The red curves show similar strain data for the N1.5 and S1.5 sections, 

which are 12 ft. from the centerline. The green curves are the plot of the strain readings 

taken at the N2 and S2 sections, which are 18 ft. from the centerline. The last two purple 

curves represent strain data from the gages at N3 and S3, which are 30 ft. from the mid-

span. The presence of strain reversals indicates that the curvature of the deck changed at a 

given location from double to single curvature. The strain reverses from compression to 



29 

 

tension, which indicates that the top surface of the deck initially deformed in a double 

curvature shape; once the unzipping of the shear studs started, it changed to single 

curvature. Just after the release of the scissor-jack, the gages 6 ft., 12 ft., and 18 ft. away 

from the fracture captured sudden strain reversals. The behavior captured by those strain 

gages were in good agreement with the change in deck curvature described above. 

Moreover, the strain reversals at equal distances from the centerline occurred 

approximately at the same time, illustrating the symmetric behavior of the bridge about 

the fracture location. The strain gages located at the N3 and S3 sections, which are 30 ft. 

from the mid-span, do not indicate a change in curvature, thereby indicating that studs did 

not continue to pull out at these locations.    

Figure 2-25 shows the strain behavior of gages that were installed longitudinally to 

the bridge span, on the top surface of the railing and 6 ft. away from the centerline, 

relative to the strain reversals of the deck gages described above. The progressive 

unzipping of the shear studs from the deck extended beyond 18 ft. from the centerline, 

but once the exterior railing engaged and started picking up load, pullout of the shear 

studs was arrested somewhere before reaching 30 ft. from mid-span. The reason why the 

railing started picking up forces later was due to the closing of the ¾-in. expansion joint, 

which was not closed before the bridge deflected. After the scissor-jack was released, the 

compressive strain at the railing increased, indicating that the expansion joint at mid-span 

was starting to close. The railing strain reached its peak 0.33 second after the beginning 

of the test. As reported by Neuman [Neuman, (2009)], the peak compressive strain of the 

railing and the maximum dynamic displacement of the fractured girder happened in a 

time period where the strain of the extreme fiber of the top surface of the deck above the 

interior top flange of the fractured girder at the N2 and S2 sections showed sudden 

reversals. Inside the same time frame, the compressive strains at the top surface of the 

deck for similar positions at the N3 and S3 sections reached their maximum values, but 

they did not undergo reversals. These data indicate that, as the fractured girder deflected 

under its own weight, the shear stud connection was progressively failing until the point 

that the joints in  
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Figure 2-24: Strain reversals transverse to bridge span above interior top flange of 

fractured girder [Neuman, (2009)] 

 

 

Figure 2-25: Peak compressive strain in exterior railing [Neuman, (2009)]
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the rail closed and the rail began to take a portion of the load.  The length of the 

separation which was predicted by the strain reversals was in agreement with the 

measured separation between the interior top flange of the fractured girder and the 

concrete deck (Figure 2-7).  

 

2.4 SUMMARY 

Many lessons were learned after Test 2. Despite the significant displacements and 

damage of the fractured girder, the FSEL test bridge resisted collapse while sustaining the 

large truck load positioned directly above the fracture location. Alternative load paths 

through several elements including the railing, the concrete deck and the end diaphragms 

were engaged. The role of these elements was important for the performance of the 

bridge. Based on the method that was used to identify the separation of the fractured 

girder’s interior top flange, the Simplified Strip Model was developed. The Simplified 

Strip Model will be described in the next chapter. 
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CHAPTER 3 

Simplified Strip Model of Deck Behavior 

3.1 INTRODUCTION 

The behavior of a complex structural system can often be analyzed with the 

assistance of a finite element program. Although finite element programs may produce 

the most accurate results, consideration must also be given to the amount of time and 

work that is required to model and analyze a structural system. The main goal of this 

thesis is to provide engineers simplified methods to check the redundancy level of twin 

box girder bridges before investing time and effort in developing a sophisticated and 

complex finite element model. Depending on the results from the simplified analytical 

modeling methods, an engineer can decide if a finite element model is needed.  Thus, if 

the results from the simplified modeling methods show that a bridge has adequate 

redundancy, then the effort and the cost of a more detailed analysis will have been saved. 

The Simplified Strip Model is developed to predict the tensile failure of shear studs 

from the bridge deck. The tensile strength of shear studs is one of the initial checks that 

an engineer needs to perform to evaluate the redundancy level of twin box girder bridges. 

The initial checks, which will be described in the next section, are focused on 

determining the ability of the concrete deck connecting the two girders to transmit the 

load from a fractured girder to the intact girder, and the ability of the intact girder to carry 

the entire load. The critical elements are the shear stud tensile capacity, the transverse 

moment capacity of the deck, the shear and moment capacity of the intact girder, and the 

flexural strength of the railing. These components of a twin box girder bridge play a 

significant role in the behavior of the bridge after fracture of one of the girders occurs. 

Several assumptions are made in order to simplify the analyses. The assumptions used to 

develop the Simplified Strip Model are presented in following sections.  

Depending on the results of the initial checks, a yield line analysis may be needed to 

be implemented. The Yield Line Model is presented in Chapter 5. The initial checks and 
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the Yield Line Model are a set of simple modeling methods that can help an engineer to 

conservatively predict the redundancy level of twin box girder bridges. 

3.2 INITIAL STRENGTH CHECKS 

Consistent with the experimental testing program, it is proposed that evaluations of 

bridge redundancy be performed for the case in which a single HS-20 truck is positioned 

on the bridge deck above the presumed fracture location so as to cause the most severe 

internal stresses to develop. Thus, on an in-service bridge, this worst-case scenario would 

occur when the design truck load was passing across the bridge at the location that 

induced the maximum internal bending moment at the same instant that a fracture event 

occurred at that point of maximum moment. Under these conditions, initial strength 

checks are performed to determine if there is sufficient strength in the intact girder to 

support the weight of the bridge and the factored truck load and to evaluate if the deck 

has sufficient strength to transmit the load carried by the fractured girder to the intact 

girder. If the bridge under consideration does not satisfy these initial strength checks, a 

three-dimensional finite element model may developed to provide a more accurate 

estimate of the bridge’s performance.  

An initial check should determine if the concrete deck has adequate flexural and shear 

capacity to transfer all the unsupported loads of the fractured girder to the intact girder 

(e.g., dead load of the fractured girder plus any truck live loads). Analysis of the test 

results has shown that the fractured girder is capable of sustaining a portion of its load; 

however, to obtain a conservative solution, it was assumed that the total load was 

transferred to the intact girder. The deck capacity can be calculated using a strip model of 

the deck (Figure 3-1) with a width equal to shear stud spacing. The deck strip should be 

analyzed as a continuous beam with roller connections at the location of top flanges 

(Figure 3-2).  
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Figure 3-1: Bridge divided in strips 

 

 

Figure 3-2: Typical deck strip cross section with boundary conditions 
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First, the bridge deck shear capacity should be greater than the transferred shear. The 

shear capacity is the sum of the capacity of the individual deck strips. The transferred 

shear is assumed to be equal to the entire dead load carried by the fractured girder plus 

the factored truck load. The unsupported load must be transferred to the intact girder, and 

therefore the deck shear capacity should be adequate. The maximum shear capacity is 

taken as the smaller of the shear corresponding to a plastic moment mechanism in the 

deck and the shear capacity of the deck, VDeck. The shear developed from the plastic 

moment deck mechanism shown in Figure 3-3 is given by (Equation 3-1 

 
DeckV

S

MM
V 


 21

 
(Equation 3-1) 

where M1 and M2 are the positive and negative moment capacity of the deck, and S is the 

distance between the mid-width of the fractured girder’s interior top flange and the edge 

of the interior top flange of the intact girder (Figure 3-3).  

 

 

Figure 3-3: Plastic deck mechanism 
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The shear studs connecting the deck to the fractured girder must have sufficient 

tension capacity to develop the plastic beam mechanism in the bridge deck. The required 

shear stud tensile capacity can be estimated using the model of the bridge deck shown in 

Figure 3-4. The required tension capacity of the group of shear studs included in the strip 

can be calculated using (Equation 3-2.  

 

V
b

M
T  2

 
(Equation 3-2) 

where T is the tensile capacity of the shear stud group in the strip, M2 is the positive 

moment capacity of the deck strip, b is the distance between the mid-width of the top 

flanges of the fractured girder, and V is the shear from the plastic deck mechanism. The 

tensile capacity of the shear studs group can be estimated by using the modified ACI 

equations developed in this research and detailed in the report “The Tensile Capacity of 

Welded Shear Studs” (FHWA/TX-08/9-5498-R2). 

 

Figure 3-4: Shear stud pull out capacity 

 

Moreover, a check of the flexural, shear and torsional capacity of the intact girder 

should be undertaken to make sure that it can support the dead and live loads on the 

bridge, including those transferred from the fractured girder. The bending moment 

produced by the loading should not exceed the plastic positive moment capacity at the 
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critical positive moment location of the span, nor should it exceed the plastic negative 

moment capacity at the interior pier. A failure of the intact girder would lead to a 

catastrophic collapse of the whole bridge.  

The torsional capacity and stiffness of the intact girder is an important factor in the 

ability of the bridge to carry load after a fracture. The closed composite box sections are 

torsionally stiff.  A large torque acts on the intact girder through the concrete deck by the 

live load and dead load carried by the fractured girder. The shear of the end panels of the 

intact girder should be checked to ensure that the webs have adequate capacity. The end 

panel’s shear is limited to its buckling capacity, and the capacity of an interior support is 

equal to its tension field strength. The shear in the girder due to the torsion and vertical 

loads transferred from fractured girder need to be included in the strength check. Results 

from the test program on the full-scale test bridge indicated that the torsion introduced 

into the intact girder was nearly symmetrical (Figure 2-16); therefore, it is assumed that 

the intact girder has symmetrical torsional boundary conditions. It is further assumed that 

the live load and dead load is uniformly distributed. The torques of the dead load and live 

load are given in Equations 3-3 and 3-4, respectively: 

 TDL = w0.5DL·eDL (Equation 3-3) 

where: 

w0.5DL = weight of fractured girder plus the weight of one railing and 1/2 the 

concrete deck 

eDL = centerline distance between the two girders for straight girders or calculated 

eccentricity using Equation 3-19 for curved girders 

and 
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TTL = wTL·eTL (Equation 3-4) 

where: 

wTL = truck load 

eTL = distance between intact girder’s center and truck center, or calculated 

eccentricity (Equation 3-19)  

The FSEL test bridge had a large radius of curvature, allowing the eccentricity for the 

torque calculation to be approximated as the distance between the two girders or the 

distance between the intact girder’s center and the truck center. In-service twin box-

girder bridges, however, may be designed with a significantly smaller radius of curvature 

than that of the test bridge. A decrease in the radius of curvature increases the torsion on 

the bridge, which must be resisted by the intact girder in the event of a fracture of a 

critical tension flange. Under such conditions, the eccentricity should not be taken as the 

distance between the centerlines of the girders; it should be computed as the distance 

from the center of gravity of the loads to the line of the intact girder interior supports. The 

center of gravity for non-prismatic girders can be determined by using equations 

developed by Stith (2010), modified for the case of box-girders. In the equations 

presented below, polar coordinates are used, and the origin of the coordinate system is 

located at the center of radius of the girder. Figure 3-5 provides a schematic of a curved 

girder with a definition for all the variables needed for the derivation. 
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L1:   Length of Section 1 

L2:   Length of Section 2 

W1: Weight per Unit Length of Section 1 

W2: Weight per Unit Length of Section 2 

θ 0 = 0 

θ1:   Internal Angle from the Beginning  

       of the Girder to the End of Section 1 

θ2:   Internal Angle from the Beginning  

       of the Girder to the End of Section 2 

R:     Radius of Curvature of the Girder 

Figure 3-1: Variable definition for center of gravity (C.G.) 

 

where θ1 and θ2 are given in (Equation 3-5 and 3-6: 

 
   

  
 

 (Equation 3-5) 

 
   

  
 
    (Equation 3-6) 

The weight of the girder in Figure 3-5 can be defined as follows: 

 
                    ∫       

  

  

  ∫       
  

  

 (Equation 3-7) 

     (     )     (     ) (Equation 3-8) 

The generalized form of the total girder weight equation is provided in Equations 3-9 

and 3-10, where n is the number of the different cross sections along the length of the 

bridge under consideration: 
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 (Equation 3-9) 

 
   ∑   (       )

 

 

 (Equation 3-10) 

 

 

 

: Center of Gravity 

 ̅:  Angular Distance to C.G. 

 ̅:  Length along Girder to C.G. 

 ̅:  Radial Distance to C.G. 

tT : Top Flange Thickness 

OFFSET: Radial Distance of 

C.G. from the Girder Centerline 

Figure 3-2: C.G. Location 

 

The angular distance from the beginning of the girder to the center of gravity is 

determined by taking a weighted average of each segment’s centroid, which is located at 

the angular center of each cross-section.  For the girder shown in Figure 3-6, the angular 

distance is given by Equations 3-11 through 3-13: 
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 (Equation 3-11) 
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 (Equation 3-12) 
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(Equation 3-13) 

The generalized form of the equation for determining the angular distance to the 

center of gravity is  

 
 ̅   

 ∑   (  
      

 ) 
 

 
 ∑   (       )

 
 

 
 (Equation 3-14) 

The following equation determines the location along the length of the girders to 

center of gravity: 

  ̅    ̅   (Equation 3-15) 

The radial distance to the center of gravity is determined by taking the weighted 

average of the girder projected onto the  ̅ radial line.  This distance is show schematically 

in Figure 3-6, and it can be computed using Equations 3-16 and 3-17: 
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 (Equation 3-16) 
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 (Equation 3-17) 

The generalized equation to compute the radial distance to the center of gravity for a 

girder with multiple cross-sections is given by can be determined by the generalized form 

of Equation 3-18: 

 
 ̅  

  ∑    [   (    ̅)     (      ̅)]
 
 

 ∑   (       )
 
 

 (Equation 3-18) 

Equation 3-18 should be used two times to compute D —once for the fractured girder 

and once for the intact girder. Because the line of rotation of the bridge passes through 

the supports of the intact girder, each girder’s offset from the center of gravity to the line 

of rotation is given by Equation 3-19: 

 )2/cos( INTii RDe  (Equation 3-19) 

where: 

RINT = Radius of curvature at the location of the interior intact girder’s supports 

φ = LINT / RINT  

LINT = Arc length at the location of the interior intact girder’s supports 
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Equations 3-5 through 3-19 can be used to calculate the eccentricities of each girder. 

When multiplied by the dead load of each girder and the truck load, the torque applied on 

the end sections of the intact girder can be computed. 

Assuming that half of the calculated torque is applied to each end of the intact girder, 

the shear flow of the closed section can be determined by Equation 3-20. 
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  (Equation 3-20) 

where: 

TDL = torque due to dead load, which is equal to the dead load multiplied by the 

eccentricity to the chord of the intact girder supports 

TTL = torque due to truck load, which is equal to the dead load multiplied by the 

eccentricity to the chord of the intact girder supports 

A = area enclosed by the mid-thickness of the composite box-girder section 

Note that the calculated torques are divided by two, because it is assumed that the end 

torques are equal. 

The concrete deck forms the top flange of the closed box section and should be 

checked to ensure that it has adequate capacity to resist the shear force due to torsion. 

According to ACI 318-08, the shear capacity of reinforced concrete is given Equation 3-

21. Equation 3-21 should always be greater that the shear due to torsion (VTORSION = q·b) 

 VS = At ·fyt·b·cot(θ)/s (Equation 3-21) 

where: 
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b = width of the concrete deck between the top flanges 

At = area of a reinforcement bar in the transverse direction 

s = spacing between the reinforcement bars 

θ = angle of the crack with the horizontal (ACI 318-08 recommends 45°)  

The shear stress developed in the webs due to torsion must be added to the shear 

stress due to bending of the girders using the following procedure: 

i. Calculate the shear stress in the webs due to torsion using Equation 3-22. 

 τ TORSION WEB = q/t WEB (Equation 3-22) 

where t WEB = thickness of the web 

ii. Calculate the shear stress due to bending at webs through Equation 3-23. 

 τFLEXURAL WEB = V / (2 · dWEB · tWEB · cos(β)) (Equation 3-23) 

where: 

dWEB = height of the web 

β = angle of web inclination 

V = one-half of the total factored load on the span 

iii. Ensure that the summation of the shear due to torsion and bending is less than or 

equal to the shear buckling stress as given below: 
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 τ n = C 
.
0.58·fyw ≥ τ TORSION WEB + τ FLEXURAL WEB (Equation 3-24) 

where: 

C = ratio of shear-buckling resistance to the shear yield strength (AASHTO Sec. 

6.10.9.3.2) 

The larger tension field shear capacity can be used to check the shear at interior supports. 

iv. The bottom flange at the pier should be checked for combined shear and 

compression (AASHTO Sec. 6.11.8.2.2)  

v. The end diaphragm and its connection to both girders needs to be checked to ensure 

that it has adequate resistance to the torque applied to the intact girder. This applied 

torque is resisted by a couple generated by the bearings of the two girders (i.e., 

bearing reactions). The reaction at the bearing of the fractured girder is equal to the 

torque applied to the intact girder divided by the distance between the bearings of 

the two girders. In the case of a continuous girder, the interior support is not as 

critical as the end support because some of the applied torque is resisted by the 

continuous girder. Thus, it is always critical to check the end diaphragm of the end 

support.  

Following the steps outlined above, the redundancy level of a twin steel box-girder 

bridge can be evaluated. If the bridge under investigation satisfies the following 

conditions, the bridge has sufficient strength to sustain load without collapsing: 

i.  Intact Girder has adequate shear and moment capacity 

ii. Deck has adequate shear capacity 

iii. Shear studs have adequate tension capacity 
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If the bridge satisfies only the first two conditions, it is still possible that it can sustain 

load without collapsing. Under these conditions, a yield line analysis—described in 

Chapter 5—can be used to evaluate the ability of the deck to transmit load to the intact 

girder without the shear studs connecting the deck to the fractured girder. In the event 

that the capacity predicted from the yield line analysis is not adequate, a more refined 

analysis can be performed. 

3.3 DEVELOPMENT OF THE SIMPLIFIED STRIP MODEL 

Preliminary studies before Test 1 assumed the concrete deck would deflect in double 

curvature across its width (Figure 3-7) due to the downward deflection of the fractured 

girder. The model estimates the capacity of the bridge deck bending moment and the 

shear stud tension capacity to transfer the load that was carried by the fractured girder to 

the intact girder [Sutton, (2007)]. In these analyses, the critical elements of the load path 

were the flexural and shear capacity of the concrete deck as well as the shear stud tensile 

capacity.   

 

Figure 3-7: Deformed shape of the cross section in double curvature 
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After Test 2, it was recognized that the deflected shape of the bridge deck depended 

upon the magnitude of the tensile force of the shear studs located at the interior top flange 

of the fractured girder. Once the tensile capacity of the shear studs was reached, a brittle 

tensile failure occurred, causing a separation of the interior top flange and the deck.  

After the pull out of the shear studs, the deck would deflect in a single curvature as 

discussed in Chapter 2 and shown in Figure 3-8.  

 

Figure 3-8: Deformed shape of the cross section in double curvature 

 

As discussed above, a simple strip model of the deck was used to estimate the forces 

in the shear studs. The deck was sub-divided into strips with a width equal to the shear 

stud spacing. The strips were analyzed as a three-span beam (Figure 3-2) with supports 

corresponding to the top flanges of the girders. Due to the symmetrical layout of the 
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girders, the lengths of the end spans in the model was equal to the top width of the 

trapezoidal box sections, and the middle span was equal to the distance between the two 

interior top flanges. After defining the section properties, the strips forming the 

continuous beam were subjected to support settlements that were equal to the 

displacements measured after Test 2. From the imposed deformations, the internal forces 

and the moments of the beam could be calculated.  

From the imposed deformations, the internal forces and the moments of the beam 

could be calculated. The rows of shear studs in the bridge were spaced longitudinally in 

approximately equal increments of 22 in. Thus, the bridge deck was divided in 22-in. 

wide strips as shown in Figure 3-1, with each strip containing one row of shear studs. The 

section properties of the strip in the transverse direction were calculated based on the 

uncracked section. Moreover, it was assumed that the concrete deck stiffness remained 

constant until the plastic moment capacity was reached, and the additional stiffness of the 

haunch was ignored. The analysis of the concrete deck strips assumed that the deck 

behaved as an elastic-perfectly-plastic material. Accordingly, the deck was treated as a 

linear-elastic material below the plastic moment capacity (MP), and beyond MP it was 

assumed that the concrete deck could sustain the plastic moment MP. Figure 3-9 shows 

the typical sections from which the moment capacities were calculated. As reported by 

Barnard [Barnard, (2006)], the average as-built height of the haunches above the flanges 

was 3 in. at all the haunch locations except for the interior haunch of the intact girder, 

which was 3.8 in. The moment capacity of the haunch area was calculated assuming a 

3.8-in. tall haunch because the negative moment was developed at the interior haunch of 

the intact girder as the fractured girder deflected downward in Test 2. It should be 

emphasized that the negative moment capacity in the haunch area was bigger than in the 

rest of the concrete deck due to the deeper section. Figure 3-10 illustrates both the 

negative and the positive moment capacity in different regions. The concrete and 

reinforcement strength used in all the calculations were 6.26 ksi and 60 ksi, respectively, 

based on lab tests. Appendix A contains detailed calculations of the moment capacity 

calculations. 
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The tensile capacity of shear stud groups was investigated in laboratory tests 

performed by J.P. Sutton [Sutton, (2007)] and J.M. Mouras [Mouras, (2008)]. The shear 

stud group configuration used in the test bridge included three 5-in. tall shear studs 

installed transversely to the span direction. The tensile capacity of this configuration was 

found to be 17.3 kips. Accordingly, when the reaction of the strip at the girder flange was 

equal to this value, the reaction was released for subsequent load steps.  

 

 

Figure 3-9: Sections based on which moment capacity was calculated 

 

 

Figure 3-10: Positive and negative moment capacity in different regions 
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3.4 ANALYSIS OF THE BRIDGE STRIPS 

After defining all the section and material properties, the internal forces and moments 

of the three-span continuous beam formed by the 22-in wide strips of the concrete deck 

could be calculated by using the measured deflections and classical structural analysis 

methods. For this research, the slope-deflection method was used. The following 

fundamental equations were derived using the moment-area theorems [Norris, Charles 

H., Wilbur, John B., (1960)].  
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(Equation 3-26)

 

where MAB and MBA are the moments that are developed at the A and B ends, respectively, 

of a flexural member. By definition, θΑ and θΒ are the rotations of the tangent to the 

elastic curve at the respective ends of the element measured from the original position of 

the element, and the values are taken as positive when the tangent has rotated in the 

clockwise direction relative to the initial direction. The rotation of the chord (Figure 3-

11) connecting the two ends of the elastic curve of the member (ψΑΒ) is taken as positive 

when this chord has rotated clockwise relative to the original direction. If the member has 

fixed ends, then θΑ, θΒ and ψΑΒ are equal to zero, and the last two terms of Equations 3-25 

and 3-26 are equal to the so called fixed end moments. The fixed end moments could be 

easily calculated for any given load. 
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Figure 3-11: A typical example of the slope-deflection method 

 

The measured deflections of the intact and the fractured girder after Test 2 were 

divided into 50 displacement increments, which were then applied to the beam model. 

This procedure was adopted to investigate the behavior of each strip and to compute the 

tension forces in the shear studs as the girders deflected (Figure 3-12). To determine the 

deflections of the strips which were located between the survey points, additional data 

points were interpolated from the survey locations.  

At each increment, after calculating all the reactions and moments using the slope 

deflection equations, the moments and reactions were checked at the critical locations to 

determine if they exceeded the allowable capacities. Figure 3-13 illustrates all the 

possible critical failure locations. If a failure occurred, the structural model was revised to 

match the new boundary conditions. For instance, if a shear stud has pulled out in region 

1, then at the next step the support of this location was removed. If the applied moment 

exceeded the moment capacity of a section, a hinge was inserted at the location. The 

analysis was performed on a spreadsheet constructed by the author. 
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Figure 3-12 Incremental deflection curves of both girders Test 2 

 

Figure 3-13: Critical failure locations 
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In the next section, the results of several analyses are presented and compared with 

observations from the actual test. Additional detailed calculations of the Simplified Strip 

Model iterations are presented in Appendix B. 

3.5 RESULTS OF THE SIMPLIFIED STRIP MODEL ANALYSIS 

Test 2 was the starting point for development of the Simplified Strip Model. This test 

was used to evaluate and to calibrate the model. The results of the analysis were in good 

agreement with the observations from the test. 

The analysis showed that all the connections of the interior top flange of the fractured 

girder to the deck had failed over a length of 62.33 ft. A close inspection of the interior 

top flange of the fractured girder found that the shear studs had pulled out over a length 

of 60 ft (Figure 2-7), which was within 2 feet of the length predicted using the Simplified 

Strip Model. Figure 3-14 shows the forces of the shear studs of the interior top flange of 

the fractured girder along the span. The shear studs were in compression close to both 

ends. This behavior was not expected and appears to be due to an initial differential 

deflection between the top flanges of the fractured girder near the ends.  
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Figure 3-14: Interior top flange of the fracture girder force Test 2 

 

Figure 3-15 illustrates an interesting behavior observed during the analysis. It was 

found that the shear stud group located above the interior top flange of the fractured 

girder pulls out just before the positive moment capacity at the same location was 

reached. Once a shear stud that was located at the interior top flange of the fractured 

girder pulls out, the force of the exterior top flange of the same girder changes from 

compressive to tensile. Figure 3-16 shows clearly the reversal of the force from 

compression to tension over the region that a shear stud failure has occurred. Although 

both exterior top flanges were in tension, their forces never reach the tensile capacity of 

the shear stud group connection (Figure 3-16, 3-17). A plastic hinge formed in the 

concrete deck above the interior top flange of the intact girder and expanded as the shear 

studs on the interior top flange of the fractured girder pulled out of the deck. Figure 3-18 

shows how the moment diagram at the mid-span changes during the analysis. The first 

shear stud pulls out in increment 5. The increase in moment at increments 10 and 15 were 

due to pull out of the studs from adjacent strips. The moment in increment 19 was zero 

throughout the width of the bridge due to the hinge that has formed at the interior top 
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flange of the intact girder.  At the end of the analysis, the total length of the plastic hinge 

in the deck was computed to be 14.67 ft. After Test 2, major cracking of the concrete 

deck was observed at the same location as captured in the Simplified Strip Model, 

indicating that a hinge line was formed.  

 

 

Figure 3-15: Typical moment diagram just before a shear stud pulls out 

 

 

Figure 3-16: Exterior top flange of the fractured girder force Test 2 
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Figure 3-17: Exterior top flange of the intact girder force Test 2 

 

Figure 3-18: Moment diagram at the mid-span 
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3.6 DEFLECTION IMPLEMENTATION FOR GIVEN LOADS 

After validating the model with the results of the test, the extension of the model to a 

bridge where the displacement was not known a priori was developed. Assuming that a 

fracture has occurred in one of the bottom flanges of the girders, an engineer needs to be 

able to calculate the deflections of the girders for a given load acting on the bridge being 

analyzed. Accordingly, a procedure was developed using an estimate of the girders’ 

deflections.  

In the first step, the bridge was divided along the mid-width of the concrete deck into 

two parts, which represent the intact girder and the fractured girder composite sections. 

Each part was analyzed individually to calculate the deflections of each girder, which 

would be inserted into the Simplified Strip Model. The intact girder was analyzed based 

on the boundary conditions of each bridge. For this project, the FSEL bridge was a single 

span and simply supported. According to this layout, both the intact and the fractured 

girders were analyzed as simply supported beams. The moment of inertia used for the 

intact girder was assumed to be the whole composite section calculated about the centroid 

of the elastic transformed composite steel section (Figure 3-19). At the locations of the 

expansion joints in the rail, a reduced moment of inertia was calculated neglecting the rail 

(Figure 3-20). The reduced moment of inertia was used over a length of one foot to each 

side of the rail expansion joint. The length of one foot was equal to the distance between 

the mid-points of the first and second stirrups connecting the railing to the concrete deck 

on each side of the expansion joint (Figure 3-21).  
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Figure 3-19: Full composite and transformed composite section of the intact girder 

 

Figure 3-20: Reduced composite and transformed composite section of the intact girder 
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Figure 3-21: Inactive length of the railing 

 

Parametric studies for the influence of including the railing were carried out and are 

presented in Figures 3-22 through 3-24. It could easily be observed that the railing plays a 

significant role in the behavior of the bridge.  

The next step should be the identification of the loading combinations for which the 

intact girder would be analyzed. As mentioned before, to obtain a conservative solution, 

it was assumed that the total load would be carried by the intact girder, even if a portion 

of it was carried by the railing above the fractured girder. Based on this assumption, the 

intact girder should be loaded with a distributed load equal to the whole dead load of the 

bridge (two girders, concrete deck and railing) and the truck live load as concentrated 

point loads at the same longitudinal distances as it would be positioned above the 

fractured girder. The torsional effects due to the eccentricity of the truck relative to the 

intact girder were neglected in the analysis to estimate deflections. A torsional check 

should be included in the preliminary analysis of every bridge. Detailed calculations are 
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given in Appendices B, C and D. The deflections produced from this analysis were 

compared with the actual measurements during different stages in Figures 3-22 to 3-24. 

In those graphs, it can be observed that the best correlation between the estimated and the 

actual deflections was when the bridge was analyzed with the railing (with or without 

expansion joints). Several analyses indicated that it was more conservative to model the 

bridge with expansion joints than without because the estimated failure region was more 

extensive when expansion joints were present. As will be discussed below, the fractured 

girder deflections were in better agreement with the actual deflections when the 

expansion joints were included in the analysis. For these reasons, it was concluded that an 

engineer should include the expansion joints in the analysis to estimate the deflections of 

the girders. 

 

 

Figure 3-22: Deflection vs. location diagram of the intact girder Test 2 
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Figure 3-23: Deflection vs. location diagram of the intact girder Pre-Test 3 

 

Figure 3-24: Deflection vs. location diagram of the intact girder Test 3.A 
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The procedure to obtain the deflection profile of the fractured girder was essentially 

the same as that for the intact girder. The only difference was the insertion of a section 

without a bottom flange and webs at the fracture location. Figure 3-25 shows the 

fractured section, which only includes the railing, the concrete deck and the haunch. The 

moment of inertia of the fractured section was calculated about the centroid of the 

section. The expansion joint in the rail was ignored. The railing was included in the 

calculation of the moment of inertia because the gap in the railing closes as the bridge 

deflects. The initial deflection to close the gap in the rail should be included in the total 

deflection of the fractured girder. The deflection could be calculated using Equation 3-27. 

Because the shear stud groups were spaced equally every 22 in., it was decided to assign 

the fractured section properties over a length of 22 in. in which the midpoint of the 

fractured section coincides with the centerline. 

 

 

Figure 3-25: Fractured section 



63 

 

The fractured girder should be loaded with a distributed load equal to half the dead 

load of the bridge (one girder, half of the concrete deck and one railing) and the entire 

truck live load. The middle axle of the truck should be positioned at the point of the 

maximum moment obtained from the dead load, which is the location that the fracture 

was assumed to occur. For the FSEL bridge, this point corresponds to the centerline. The 

HS-20 truck load with all the axles spaced 14 ft. apart was used in the analysis to produce 

the largest moment. The calculated deflection at the fracture location was used to define 

the deflected shape of the fractured girder.  The downward deflection at the fracture 

location for the FSEL bridge was calculated as 3.21 in. It is worthwhile to be mentioned 

that the loads used in the analysis of the bridge girders were assumed    

Even if the truck and some portions of the concrete deck were included in the deflection 

calculations of both girders; their contribution to the total deflection was based on the 

following assumptions. It was assumed that the fracture girder was not able to sustain any 

load, and the entire load was transferred to the intact girder. In other words, the fractured 

girder was analyzed with half the dead load and the entire truck load in order to estimate 

its deflections which would be used in the Simplified Strip Model. The intact girder’s 

deflections were calculated with the entire load in order to be consistent with the 

assumption that the entire load was carried by the intact girder. 

Initially, the railing at the centerline was assumed not to be in contact due to the gap 

in the expansion joint. After the fracture of the girder, it was assumed that the bridge 

would deflect downward until the gap in the railing closed and the railing becomes 

effective. Figure 3-26 illustrates that the width of the expansion joint decreases by an 

amount z1+z2, when the bridge deflects downward by Δ, where z1 and z2 are the 

horizontal displacements of each segment of the railing. Due to the downward deflection, 

each segment of the railing rotates by an angle θ1 and θ2, respectively. For small angles θ1 

and θ2, the horizontal displacements z1, z2 could be determined as z1/h=tan (θ1) and 

z2/h=tan (θ2), where h was the distance from the top of the railing to the bottom of the 

haunch, which was assumed to be the center of rotation. Moreover, Δ / L1 = tan (θ1) and 

Δ / L2=tan (θ2), where L1 and L2 were the lengths of the two girder segments that span 
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from the nearest supports to the fracture location. Knowing that the total width of the 

expansion joint z was equal to z = z1+z2, Equation 3-27, which gives the initial deflection, 

could be derived. 

 Δinitial = z·(L1·L2) / (h·(L1+L2)) (Equation 3-27) 

 

Figure 3-26: Basic geometry of the Equation 3-3 

 

In the case of the FSEL test bridge, the fracture was at the centerline, so L1 = L2 = 60 

ft (or 720 in.). The width of the expansion joints were 0.75 in. During Test 2, the webs of 

the bridge had been cut up to 8 in. from the top flange. Using an h equal to 43 in. 

(hRAILING + hHAUNCH + hUNCUTTED WEB = 32 + 3 + 8 = 43 in.) because the center of rotation 

was 8 in. below the haunch, the initial deflection was calculated as 5.60 in. As a result, 

the total deflection at the centerline of the FSEL test bridge (8.81 in.) was the summation 

of the initial deflection (5.6 in.) and the elastic deflection (3.21 in.), which was estimated 

from the analysis. 
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Based on the deflected shapes from the actual measurements, a formula to estimate 

the deflections of the fractured girder was investigated. It was found that the best curve to 

replicate the deflections of the fractured girder measured at different stages of the tests 

was a sine curve. According to this fact, it was assumed that the sine curves given in 

Equations 3-28 and 3-29 would be used to estimate the deflections of the fractured girder. 

Equation 3-28 represents the sine curve that was used to estimate the deflected shape of 

the segment of the fractured girder between the simple support and the fracture location. 

The range of the angle φ is limited between 0° and 50° because this range provides the 

best deflection estimate. 

 Y (φ) = W·sin(φ) - W· sin(50°), 0° ≤ φ ≤ 50° (Equation 3-28) 

where W = (Δinitial + Δanalysis) / sin(50°) = Δtotal at the fracture location / sin(50°). It should be 

mentioned that Y (0°) is the deflection at the fracture location and Y (50°) = 0 is the 

deflection at the simple support. Figures 3-27 to 3-29 illustrate that the deflections 

produced by Equation 3-28 are in good agreement with the deflections of the fractured 

girder that were measured during different stages of Tests 2 and 3.  
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Figure 3-27: Deflection vs. location diagram of the fractured girder Test 2 

 

Figure 3-28: Deflection vs. location diagram of the fractured girder Pre-Test 3 
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Figure 3-29: Deflection vs. location diagram of the fractured girder Test 3.A 

 

It is important to note that the maximum deflection at the centerline in Figure 3-29 

was obtained by assigning the fractured section over a larger length of the span than was 

considered for the previous figures. This assumption is reasonable if it is taken into 

account that the shear stud connections at the exterior top flange of the fractured girder 

had failed almost 30 ft. on each side of the centerline after Test 3.A. Thus, in order to 

obtain a good estimate of the deflections, at each increment of the load, the length of the 

fractured girder which had lost the shear stud connections in both top flanges should be 

estimated from the Simplified Strip Model. The reduced stiffness fractured section should 

be assigned to the length equal to the length that the shear studs have pulled out.  

In the case of a continuous bridge, the segment between the fracture and the interior 

support should deflect according to Equation 3-29. Parametric studies indicated that the 
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range of angle φ should be between 15° and 75° for this case. Therefore, for continuous 

bridges, 

 Y (φ) = W·sin(φ) - W· sin(75°), 15° ≤ φ ≤ 75° (Equation 3-29) 

where W = (Δinitial+Δanalysis)/(sin(15°)-sin(75°)) = Δtotal at the fracture location/(sin(15°)-sin(75°)). 

In addition, Y (15°) is the deflection at the fracture location and Y (75°) = 0 is the 

deflection at the interior support. It should be mentioned that Equations 3-28 and 3-29 

were based on a sine curve. It would be beneficial if other types of curves to estimate the 

deflections would be investigated. Moreover, Equation 3-29 was not verified with any 

test results because the FSEL bridge was a simply supported bridge. Equation 3-29 was 

based on results of computational analyses of fractured girders on continuous bridges. 

After establishing the Simplified Strip Model, the ultimate load that the FSEL test 

bridge could sustain was estimated to be 126.4 kips. This estimation was compared with 

the results obtained from Test 3. As will be discussed in Chapter 4, the bridge actually 

collapsed at a much higher load (363.75 kips) than that predicted by the Simplified Strip 

Model. This large deviation between the estimated and the actual ultimate load was due 

to the fact that the Simplified Strip Model does not take into account the behavior of the 

concrete deck in the two horizontal dimensions. The Yield Line Model, which will be 

described later on in this thesis, provides a better estimation of the ultimate load than the 

Simplified Strip Model. It is worthwhile to mention that the Simplified Strip Model 

should be used initially to check if the shear studs are expected to fail. In the event that 

the shear studs do not fail and hinge lines are formed at the interior top flanges of the 

concrete deck, then the Simplified Strip Model would provide a good estimation of the 

ultimate load. In contrast, if shear stud failure occurs, then the Yield Line Model should 

be used to estimate the ultimate load that a bridge could sustain.  

All the deflections from the various tests (Test 2, Pre-Test 3, etc.) were the average of 

the measured deflection of the two edges of each bottom flange. As reported by Neuman 
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[Neuman, (2009)], the twist of both girders was negligible. Only after the shear stud 

connections of the fractured girder pulled out over the entire length of the bridge did the 

twist of the intact girder became significant. Based on this observation, it was assumed 

that both girders would not twist as they deflect downward so that girder deflections 

could be estimated at both ends of the bottom flange for use in the Simplified Strip 

Model. 

Detailed calculations of how to analyze the FSEL bridge and two other bridges with 

the simple methods presented in this chapter are given in Appendices B, C and D. 

3.7 SUMMARY 

The Simplified Strip Model provides a quick and easy way to predict the length of 

shear stud failure and the formation of hinge lines at the interior top flanges of twin box 

girder bridges with a fracture. This simple method is very beneficial for an engineer who 

wants to evaluate the redundancy level of a twin box girder bridge. Because the FSEL 

test bridge results are the only information available to verify this model, future 

evaluation of the simplified model may be needed. A comparison between the results of 

the strip model and other test or finite element model results will be beneficial in order to 

refine the Simplified Strip Model. Because the Simplified Strip Model was developed 

before Test 3, it was used to estimate the ultimate load of Test 3. Further discussion of 

the estimation is given in the next chapter. 
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CHAPTER 4 

Test Results: Test 3 

4.1 INTRODUCTION 

After Test 2, the bridge was damaged, but still able to sustain the applied loads. In 

order to determine the maximum load that the FSEL bridge could sustain and to 

determine the failure sequence, it was decided to perform an additional test. The bridge 

was tested to failure in Test 3. Test 3 was not a single test but rather a series of tests. The 

series of tests included in Test 3 are Pre-Test 3, Test 3.A, Test 3.B and Test 3.C. In Pre-

Test 3, the bridge was loaded with concrete blocks that were placed to form the perimeter 

of a rectangular (40 ft × 8 ft) bin. The rectangle was symmetrically placed about the 

bridge centerline in the longitudinal direction in order to maximize the bending moment 

on the bridge. In the transverse direction, the bin was located 2 ft. from the railing over 

the fractured girder. Inside the rectangular bin, road base material was poured during Test 

3. The static loading procedure relied on a crane to place increments of load on the 

bridge. The bridge had a full-depth fracture on one of the girders, and there was no 

external system to support the fractured girder. By loading the bridge with increments of 

loads in excess of the design truck load (HS-20), the ultimate strength of the bridge with 

both webs fractured and a fractured bottom flange was determined. Table 4-1 summarizes 

significant events during Test 3 and under what load they occurred. Due to the fact that 

the loading was in increments rather than continuous, all the strain data in this chapter are 

presented as step plots. Because the total applied load changed constantly, all the data are 

presented as load versus strain plots. It is worthwhile to note that all the residual strains 

after unloading the bridge at the end of Test 2 have been included in several strain plots 

presented in this chapter. The residual stresses were only added in the instrumentation of 

the steel girders and reinforcement bars and only at the locations where strain gages 

existed in Test 2. 
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Table 4-1: Failures of the bridge elements under different loads during Test 3 

Load  Element Failure Event 

(kips) 
 

34.23 
Fracture at the exterior web of the fractured girder propagated all the way to 

top flange 

107.6 
Initiation of shear stud failure at the centerline of the exterior top flange of the 

fractured girder 

161.52 
Shear stud of exterior top flange of fractured girder pulled out instantaneously 

over a length of 60 ft. and arrested at south and north expansion joint 

363.75 Total collapse of the bridge 

 

Following the end of Test 2, the instrumentation of the bridge was repaired, and new 

strain gages and displacement transducers were installed at several new locations. 

Overall, the new instrumentation scheme was similar to Test 2 except for few small 

changes. Figure 4-1 presents a typical instrumented cross-section for Test 3. All the 

instruments used in Test 3 have been reported by Neuman [Neuman, (2009)].  

 

 

Figure 4-1: A typical instrumentation plan of a cross-section for Test 3 [Neuman, (2009)] 
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4.2 GIRDERS AND END DIAPHRAGMS GAGE DATA ANALYSIS 

4.2.1 Instrumentation analysis of intact and fractured girder 

Although there were a few small changes, the instrumentation of the two girders for 

Test 3 was similar to the instrumentation employed in Test 2. The fractured girder (FG) 

was instrumented with uniaxial strain gages on the bottom flange, except the N1 and S1 

uniaxial gages were removed because the strains of these locations were almost zero. In 

addition, several more uniaxial gages were installed on both top flanges of the fractured 

girder for Test 3. It was assumed that the top flange, as the extreme top fiber of the 

fractured girder, would develop a tensile force to resist the cantilever-like deflected shape 

of the fractured girder.  

In Test 3, the bridge behaved in a similar way as in Test 2. Thus, the bottom flange of 

the FG was in compression along the whole span, which was well captured by the 

uniaxial gages (Figure 4-3). Moreover, all the strain values of the monitored locations 

were in the elastic range. In Figures 4-3 and 4-4, several significant stages of the bridge 

behavior are depicted. During Pre-Test 3 and at the point that the total load on the bridge 

was 34.23 kips, the fracture on the exterior web of the fractured girder propagated all the 

way up to the top flange (Figure 4-2).  
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Figure 4-2: Fracture propagation on the exterior web of the fractured girder 

 

Figure 4-3: Bottom Flange strain gage data of fractured girder during Test 3 
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Due to the propagation of the fracture, the fractured girder deflected downward, 

forcing the bottom flange to bend in a cantilever-like shape. As illustrated in Figure 4-3, 

the strains had a large increase at the load level of 34.23 kips when the fracture 

propagated. A similar increase in strain was recorded in the uniaxial gages installed on 

the top flange at the centerline of the fractured girder as shown in Figure 4-4. The 

fracture propagated at a lower load than the load applied in Test 2. The lower temperature 

of the steel may have contributed to this behavior. Test 2 took place on a hot summer day 

(6/6/2008) when the temperature had risen to 93° F, whereas Pre-Test 3 took place during 

a cold day when the temperature was 45° F.  

 

 

Figure 4-4: Top flange strain gages data of fractured girder during Test 3 
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Following Pre-Test 3, the bridge was incrementally loaded with road base material 

(Test 3.A through 3.C). During Test 3.A, the shear stud connections began failing as the 

load was increased. The first significant loss of shear studs was localized around the 

centerline of the exterior top flange of the fractured girder, and it occurred when the total 

load was 107.6 kips as shown in Figure 4-5. The strain in the bottom flange in Figure 4-3 

shows a large increase of strain at an applied load of 107.6 kips. However, in Figure 4-4, 

the slope of the exterior top flange of the fractured girder at the centerline curve changes 

at the same load The most significant loss of shear studs shown in Figure 4-6 happened 

suddenly at a load of 161.52 kips. The shear studs in the exterior flange pulled out almost 

instantaneously over a length of 60 ft., and the pullout of the studs arrested approximately 

at the locations of the south and north expansion joints in the railing. The discontinuity of 

the railings led to the opening of the south and north expansions joints of the east railing 

as the fractured girder deflected from the sudden loss of shear studs at the exterior top 

flange of the fractured girder. This event is illustrated in Figure 4-7. The linear 

potentiometer, which was installed at the south expansion joint, captured the opening 

 

 

Figure 4-5: Localized shear stud failure 
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Figure 4-6: Major shear stud failure 

 

and closing of the expansion joint as the bridge was responding from the sudden pull out 

of shear studs. Following the sudden loss of shear studs that took place at an applied load 

of 161.52 kips, no data were captured by this potentiometer because it had reached its 

stroke capacity. Furthermore, as shown in Figure 4-8, the separation at the centerline of 

the exterior top flange was over 3 in. In the same figure, the overall separation between 

the bridge deck and the top flanges on each side of the fractured girder is plotted. The 

plot stops after Test 3.A because all the instruments were at their stroke length, producing 

the vertical line in the plot.  The shear studs of the interior top flange of the fractured 

girder had been pulled out over a length of 60 ft. during Test 2, so all the values of 

separation of the interior top flange in Figure 4-8 are the additional separation following 

Test 2. Because all the instrumented shear studs on the fractured girder were damaged in 

the previous tests, no information on the forces in the shear studs was available.  
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Extensive finite element analysis [Kim, (In progress)] of the bridge indicated high 

stresses in the bottom flange of the intact girder at the centerline. To verify the 

computational predictions, two longitudinal uniaxial strain gages were installed on the 

inside and outside of the bottom flange of the intact girder at the centerline. The ability of 

the intact girder to sustain the entire dead load of the bridge and truck live load was 

necessary to prevent collapse of the bridge. Figure 4-9 indicates that all the strain values 

were in the elastic range, and their magnitude was much larger than the strains in the 

bottom flange of fractured girder. No spalling of paint was observed on the intact girder, 

further indicating that the girder remained elastic.  

 

 

Figure 4-7: South expansion joints opening Test 3 
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Figure 4-8: Fractured girder’s interior and exterior top flange separation Test 3 

 

Figure 4-9: Bottom flange strain gages data of intact girder during Test 3 
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Figures 4-10 and 4-11 show the strains measured in the bottom flange of the girders. 

After the major failure of shear studs, the strain in the bottom flange of the fractured 

girder did not change with application of the load to the bridge because the fractured 

girder was only supporting its own self weight. The strain at the end of the girders was 

estimated by extrapolating the data at S2, S3, N2 and N3 sections. The extrapolation is 

shown by the dashed lines in the figures.  

Figure 4-11 illustrates the increase of the strain in the intact girder’s bottom flange as 

the load was increasing.  The increase in strain was expected because the intact girder 

was carrying most of the applied load and was the member that prevented the collapse of 

the bridge. 

 

 

Figure 4-10: Bottom flange strain diagram of fractured girder during Test 3 
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Figure 4-11: Bottom flange strain diagram of intact girder during Test 3 

 

The moment diagram for the intact girder (Figure 4-12) was constructed using the 

strain values from the gages on the bottom flange of the intact girder and the longitudinal 

concrete gages on the deck. The procedure described in Chapter 2 was followed. The 

strains of the extreme fibers of the elastic composite cross section were used to construct 

the strain gradient. By converting the strain gradient to stresses, the internal forces that 

act on different parts of the elastic section could be calculated. The internal moment was 

calculated by adding the moments of the calculated forces acting at various parts of the 

section about a defined axis. As before, the section behaved elastically based on strain 

data. The section consisted of the steel box of the intact girder, the concrete deck and the 

railing. Half of the width of the deck was assumed to be the effective width of the elastic 

section. The details of the calculations are given in Appendix A.   
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Figure 4-12: Moment diagram of the intact girder during Test 3 

 

Following the procedure described in Chapter 2, the shear flow at the defined sections 

was calculated using strain data from different load levels. The torsional moment diagram 

provides an overall view of how the load was transferred to the intact girder for each 

stage of loading.  

If the composite section of the intact girder was treated as a closed section where the 

shear flow in the deck was the same as in the webs and the bottom flange, it was possible 

to calculate the torque that was acting on the intact girder due to the truck live load and 

the dead load of the bridge that the fractured girder could not support by using Equation 

2-1. As before, A was the inner area of the closed section (A= 26.74 ft
2
), and q was the 

shear flow value at each section. The shear flow values (q) at each section used to 

calculate the torsional moments are listed in Table 4-2. It should be mentioned that for 

sections N3 and S3, the shear flow of the bottom flange was used whereas for sections 
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N1, S1 and S2 the shear flow of the webs was used. This choice was based on the fact 

that the rosette gauges on the other locations did not record the data properly. 

 

Table 4-2: Average shear flow at the intact girder for different loads Test 3 

Applied Test 

Load 
N3 N2 N1 S1 S2 S3 

(kips) (kips/in) (kips/in) (kips/in) (kips/in) (kips/in) (kips/in) 

34.23 -1.13 -0.7 -0.06 -0.03 0.57 1.02 

34.23 -1.13 -0.7 -0.06 -0.03 0.58 1.03 

161.52 -1.57 -1.1 0.13 0.04 1.1 1.57 

161.52 -1.66 -1.08 0.09 0.04 1.12 1.71 

235 -1.92 -1.27 0.13 0.21 1.27 1.92 

363.75 -2.06 -1.34 -0.06 0.47 1.29 2.01 

 

Figure 4-13 shows the calculated torsional moment diagram for different loads. A 

uniformly distributed torque could be determined for each load level by computing the 

slope of each line show in Figure 4-13. The distributed load that was transferred to the 

intact girder could be estimated as the distributed torque divided by the distance between 

the centerline of the girders (12 ft). Table 4-3 presents the calculated distributed torque 

from the strain data. Table 4-4 shows the calculated distributed torque produced by half 

of the dead load (weight of the fractured girder plus half the weight of the deck) and the 

simulated truck load.  The contribution of dead load was included in the values of Table 

4-3. The self weight of the concrete and one girder was 1.56 kips/ft and 0.37 kips/ft, 

respectively. The values of the applied load in Tables 4-3 and 4-4 should be compared at 

the same load level. Taking into account that a portion of the simulated truck load was 

being transferred to the supports by the remaining intact segment of the fractured girder, 

concrete deck and railing, the values of the total applied load from the strain data were 

relatively close with the assumed total applied load until the point that the applied load on 

the bridge was 235 kips. As shown in Figure 4-14, above the load of 235 kips, load in the 
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girder estimated from the applied load exceeds that calculated from the strain data. This 

result was probably caused by the release of the steel girder weight due to the pull out of 

the shear studs and the transfer of load into the railing.  

 

 

Figure 4-13: Torsional moment diagram of the intact girder during Test 3 
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Table 4-3: Torque in intact girder based on strain gage data Test 3 

Applied 

Test load 

Applied distributed  

torque 

Distributed load transferred  

to the intact girder 

Vertical load on intact 

girder from torque 

(kips) (kips·ft/ft) (kips/ft) (kips) 

34.23 22.29 1.86 222.93 

34.23 22.46 1.87 224.58 

161.52 33.91 2.83 339.08 

161.52 35.74 2.98 357.44 

235.00 41.10 3.43 411.01 

363.75 44.04 3.67 440.35 

 

Table 4-4: Calculated Torque on Intact Girder from Dead Load of Fractured Girder and 

Applied Loads 

Load 
Distributed 

Load 

Applied distributed  

torque 

Length of 

distributed torque 

Total vertical load applied 

to intact girder  

  (kips)  (kips/ft)  (kips·ft/ft) (ft)  (kips) 

Dead Load 1.93 23.19 120 231.88 

34.23 0.86 34.48 40 266.11 

161.52 4.04 56.58 40 393.40 

235 5.88 71.77 40 466.88 

363.75 9.09 98.39 40 595.63 
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Figure 4-14 Total applied load on the intact girder from strain calculations and 

assumptions 

 

Similarly to Test 2, the end diaphragms played a significant role in providing 

torsional moment restraint at the ends of the intact girder. A lack of torsional restraint 

would have resulted in larger rotations and deflections than were measured during the 

test. The orientation and the magnitude of the principle stresses was calculated for both 

end diaphragms by using data that the rosette gages captured during  Test 3 (Figure 2-17). 

The results of the principle stress calculations are summarized in Table 4-5. Because the 

angle φ, which was the angle of the principle axes from the horizontal, was relatively 

close to 45°, it could be concluded that the stress state at the end diaphragms was nearly 

pure shear.  
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Table 4-5: Principle stresses of end diaphragms Test 3 

 
North End Diaphragm South End Diaphragm 

Load 
σ1 

(ksi) 

σ2 

(ksi) 

τmax 

(ksi) 

φ 

(degrees) 

σ1 

(ksi) 

σ2 

(ksi) 

τmax 

(ksi) 

φ 

(degrees) 

Before 34.23kips 5.65 -4.81 5.23 48.70 8.11 -3.40 5.76 50.11 

After 34.23kips 5.63 -5.28 5.46 49.12 8.04 -3.21 5.63 49.23 

Before 161.52 kips 7.04 -4.70 5.87 45.42 8.27 -2.27 5.27 56.02 

After 161.52kips 7.04 -4.43 5.74 43.52 8.30 -1.61 4.96 53.83 

235 kips 7.53 -4.70 6.12 41.65 8.25 -0.54 4.40 46.00 

363.75 kips 7.44 -4.34 5.89 39.02 6.99 2.16 2.42 49.09 

 

4.2.2 Analysis of concrete deck strain data  

The top surface of the concrete deck and both railings were instrumented as shown in 

Figure 4-15. Finite element analyses by Kim [Kim, (In progress)] indicated high stresses 

in various locations that were instrumented with concrete strain gages. As reported by 

Neuman [Neuman, (2009)], new concrete strain gages were installed on the top surface of 

the deck and on the east and west railings to monitor the response of the bridge. 

During Test 3, the collected test data and visual observations indicated that the exterior 

railing was acting as an inverted beam and was carrying a portion of the applied load. 

Figure 4-16 shows the strain data history of the gages located at the top surface of the 

exterior railing. At all of the monitored locations, the concrete strain was not close to 

crushing. Localized crushing occurred at the centerline after Test 3.A. The strain gages at 

this location did not record strains close to crushing. Instead, tensile strains were captured 

during Test 3 because a thin layer of concrete on which the strain gage was installed 

spalled off while the railing was crushing (Figure 4-17). The complete failure of the east 

railing at the centerline occurred just before the collapse of the bridge. With the exception 

of the top surface of the east railing, gages were installed along the height of the railing at 

the same locations as the strain gages on the top surface of the east railing sections to 

quantify its strain profile.  Figure 4-18 illustrates the way that the strain along the height 

of the railing at different locations changed during Test 3. It should be mentioned that for 
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sections N2, N1, S1 and S2, the strain gage was located at the mid-height of the section, 

whereas for the CL section, the strain at 6 in. from the top surface was captured. As the 

applied load increased, the strains in all the monitored sections also increased. An 

interesting observation was that after the major failure of the shear studs occurred, the 

strain values dropped off; however, they started building back up as the applied load 

increased.   

 

 

Figure 4-15: Arrangement of the concrete gages on concrete deck Test 3 [Neuman, (2009)] 
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Figure 4-16: Top surface of east railing strain gage data during Test 3 

 

 

Figure 4-17: Expansion joint of east railing at centerline during Test 3 
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Figure 4-18: East railing strain gage data along the height during Test 3 

 

The moment diagram of the exterior railing (Figure 4-19) was constructed using 

strain values from the gages that were attached on the top face of the east railing. The 

section that was used to calculate the moments from the strains consisted of the T501 

traffic rail and a part of the concrete deck. Detailed calculations of the moment diagram 

are given in Appendix A. The calculated moment in the railing decreases after the failure 

of shear studs because the self weight of the fractured girder was no longer being carried 

by the concrete deck due to the fact the fractured girder has been disconnected from it. 

Thus, a decrease of the load leads to a decrease of the moment developed at the railing. A 

similar reduction occurred in the calculated torsional moment transmitted to the intact 

girder. 
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Figure 4-19: Moment diagram of the exterior railing after Test 3 

 

The length over which failure of the shear studs was observed along the fractured 

girder did not change significantly after the first major failure occurred (161.52 kips). 

However, at the onset of bridge collapse when the failure of the railing at the centerline 

and the formation of a hinge line in the concrete deck occurred, the shear studs of both 

flanges of the fractured girder pulled out over the whole span. This observation illustrates 

the significant role of the railing and the concrete deck. 

Figures 4-20a, b and c illustrate the strain data from the concrete longitudinal gages 

located between the top flanges of the intact girder, mid-width of the bridge and between 

the top flanges of the fractured girder, respectively. All the strains were in the 

compression range, which was expected due to the bending of the bridge. The gages 

closer to the centerline have higher strain values than the gages located further away from 

the centerline.  

In the transverse direction, many gages were damaged due to extensive cracking. 

Figure 4-21 presents all the undamaged gages. The main purpose of this figure is to show 
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the change of the strain in the transverse direction of every section. TC1 was located 

midway between the flanges of the intact girder, TC2 was located above the interior top 

flange of the intact girder, TC3 was at the mid-width of the bridge, and TC4 and TC5 

were at the interior top flange and middle of the fractured girder, respectively. The hinge 

line observed during the testing initiated above the interior top flange of the intact girder 

as the concrete deck was bending transversely to the span. Cracks formed at location 

TC2. High strain values were also observed at TC1. As the intact girder was trying to 

resist the applied torque, high bending stresses were developed in the concrete deck 

above the intact girder.  

    

 

Figure 4-20a: Concrete deck longitudinal strain gages at the mid-box of the intact girder 

during Test 3 
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Figure 4-20b: Concrete deck longitudinal strain gages at the mid-width of the bridge 

during Test 3 

 

Figure 4-20c: Concrete deck longitudinal strain gages at the mid-box of the fractured 

girder during Test 3 
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Figure 4-21: Concrete deck gages in the transverse direction during Test 3 

 

The last two figures in this chapter (Figures 4-22 and 4-23) present strain values from 

the top and bottom reinforcement located at the interior top flanges of the girders. Due to 

the single curvature bending of the concrete deck across the width of the bridge (i.e., 

transversely to the bridge span), tension forces were expected to develop in the top mat 

reinforcement. High strain values were captured from the gages that were installed on the 

reinforcing bars at the location where the hinge formed (e.g., FR9 and FR10). This result 

was an indication that the reinforcement bars at these locations passed their yield limit. 
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Figure 4-22: Top reinforcement strain gages during Test 3 

 

Figure 4-23: Bottom reinforcement strain gages during Test 3 
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4.3 SUMMARY 

In this chapter, several observations from Test 3 were documented. A detailed 

analysis of the strain data has been presented in order to have an overall view of the 

bridge behavior and to identify the elements that resisted the applied loads.  

The bridge was successfully loaded to collapse during Test 3. The loading procedure, 

which consisted of over 100 loading increments, added a total load of 363.75 kips or over 

4.5 times the AASHTO design truck load to the already damaged bridge. The bridge was 

able to sustain this load before it collapsed.  The east railing and the concrete deck 

provided a redundant load path that sustained the entire load, and the bridge collapsed 

after these members failed.  

Once the railing at the centerline started to crush, the bridge began deflecting at a 

faster rate than it had prior to the crushing of the rail. The ultimate load carried by the 

bridge was reached after the railing section exhausted its moment capacity. A hinge line 

was initiated at the centerline of the span above the interior top flange of the intact girder 

and curved to the south and north expansion joints. The Yield Line Model was based on 

this hinge line shape to estimate the ultimate load that any bridge could sustain. The 

Yield Line Model is presented in the next chapter. 
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CHAPTER 5 

Yield Line Model 

5.1 INTRODUCTION 

Preliminary analysis of the bridge with the Simplified Strip Model indicated that the 

bridge would have failed at a lower load (126.4 kips) than the total applied load at the end 

of Test 3 (363.75 kips). After removing the road base material and the concrete blocks 

from the surface of the bridge, the cracking pattern of the concrete deck was revealed. 

Figure 5-1 shows an overall view of the damaged deck after Test 3. A hinge line formed 

over the interior flange of the intact girder at the centerline, and from that location, it 

curved and ended at the north and south expansion joints of the east railing (Figure 5-2). 

A simple yield line model was developed that captured the response observed from the 

test. The Yield Line Model developed is introduced later in this chapter.  

.  

 

Figure 5-1: Overall view of the damaged deck 
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Figure 5-2 Hinge line on the concrete deck looking south 

 

5.2 DEVELOPMENT OF THE YIELD LINE MODEL 

The Simplified Strip Model does not take into account the three-dimensional action of 

the concrete deck. Based on observations during and after Test 3, it was decided to 

investigate whether a yield model would provide a more realistic estimate of the bridge 

behavior than the Simplified Strip Model when the shear studs do not have adequate 

tension capacity. 
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The development of the yield line model was initiated after completion of the tests on 

the FSEL test bridge. A detailed survey of the deck’s top surface indicated that the failure 

in the deck followed the shape of a half-ellipse (Figure 5-3). A yield line pattern was 

developed using a combination of straight lines that provided a similar failure shape to 

the one observed on the test bridge. After investigating different yield line patterns to 

calculate the ultimate load, it was found that the optimum shape (Figures 5-4) consisted 

of straight lines lying on the perimeter of an ellipse along with two diagonals along 

diagonal interior fold lines. The results of the yield line analysis were in good agreement 

with the observed hinge locations in the deck. Thus, it was concluded that the assumed 

yield line shape could be used to estimate the ultimate load of the bridge. 

 

 

Figure 5-3: Observed yield line pattern 
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 Figure 5-4: Assumed elastic plate displaced by a virtual displacement Δ 

 

5.2.1 Description of the Yield Line Model analysis procedure 

When a slab fails in flexure under overload conditions, the reinforcement at a region 

of high moment will yield first, and then a plastic hinge will form at this location in the 

slab. When that occurs, the slab is only able to sustain the hinging moment. The hinging 

region will rotate plastically with an increase of the load, and the moments associated 

with the additional load will be distributed to adjacent sections, eventually causing them 

to yield.  

A yield line analysis was performed using virtual work principles which yielded an 

upper-bound solution to the problem. To implement the procedure, a yield line pattern 

was chosen, and a virtual displacement was introduced at the edge of the deck above the 

fracture in the girder (Figure 5-4). The principle of virtual work requires that the external 
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virtual work done by the external forces must be equal to the internal virtual work done 

by the internal forces of each element of a structure. The external virtual work is 

computed from the summation of the product of the externally applied forces multiplied 

by the virtual displacement at the load position, which was a function of the assumed 

virtual displacement. The total internal virtual work due to the virtual displacement is 

equal to the summation of the product of the bending moment developed at the segment 

of the yield line times the hinging rotation of each segment. The elastic moment and 

rotations were ignored with this approach, which was a reasonable assumption based on 

relative magnitude of the terms. 

All the geometric parameters of the yield line pattern have to be defined before 

calculating the internal virtual work. It was assumed that a straight yield line would 

always initiate at the interior top flange of the intact girder, and it would extend to 

intersect with the inner diagonal yield lines (Figure 5-5). The yield line pattern was 

completed with two outer yield lines that started at the intersection of the straight line 

with the inner diagonal and extended diagonally to the edge of the concrete deck above 

the fractured girder (Figure 5-5). A series of parametric studies suggested that a minimum 

load solution resulted when the angle φ between the inner diagonal and the vertical axis 

was held constant and equal to 55°. The length a, which is the horizontal distance from 

point A or D to the origin, was determined by finding the value that produced the 

minimum truck load. It should be noted that the length a and the magnitude of the truck 

load are mutually dependant. Accordingly, one of these variables should be fixed to 

obtain the other one. It is recommended that the live load magnitude corresponding to the 

number of trucks be selected first; with this value set, the length a for the given load 

magnitude can be obtained. If a valid solution for the length a is computed, the given 

truck load is a possible failure loading. In subsequent iterations, the truck load should be 

decreased until a valid solution for a no longer exists. The minimum truck load is the last 

one that gave a physically admissible solution for the length a. In contrast, if the initially 

chosen truck load does not provide a physically admissible solution for the length a, then 

the truck load needs to be increased in subsequent iterations. Once the length a has been 
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determined, all the coordinates of the yield line end points can be defined to calculate the 

variables used to compute the virtual work. These coordinates were calculated by 

applying fundamental trigonometric relationships. In the case of a bridge with significant 

horizontal curvature, the coordinates of points A and B would be affected. Adjustments 

should be made to account for the angle θ (Figure 5-5).  

 

 

Figure 5-5: Parameters of the yield line pattern 

 

The angle θ is given by Equation 5-1:  

 θ = sin
-1

(a / 2 · R) (Equation 5-1) 

where a (ft) is the horizontal distance of the point A or D from the origin, and R (ft) is the 

bridge’s radius of curvature. Radians should be used as units when sin
-1

(a / 2 · R) is 

calculated. 

The bending capacity varied along the yield line due to the fact that the reinforcement 

in the deck was not normal to the yield line.  If the yielding occurred along a line at an 

angle α to the reinforcement mat (Figure 5-6), the resultant bending capacity (mb) could 
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be calculated by inserting the bending capacities of the two directions (mx, my) in 

Equation 5-2 [Wight, MacGregor,(2008)] 

 mb= mx sin
2
 α + my cos

2
 α (Equation 5-2) 

 

 

Figure 5-6: Bending moment along a yield line at an angle α [Wight, MacGregor] 

 

In the case of the straight line and the inner diagonals, the bending moment capacities 

can be readily calculated because the angle α is equal to 0° and 35°, respectively. The 

bending moment capacity of the outer diagonals, however, is a function of the length a; 

consequently, an expression to define  is needed. Equation 5-3 can be used to determine 

the angle α of the outer diagonals. 
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where (Xi, Yi) and (Xj, Yj) are the coordinates of the end points of the outer diagonals. For 

any other case that the reinforcement is not oriented as shown in Figure 5-6, the angle α 

should be determined based upon the orientation of the reinforcement. 

In order to calculate the internal virtual work done by the concrete deck, the 

parameters needed are 1) the length of each line and 2) the angle of rotation of each plate. 

First, the length of each line can be calculated using the distance formula (Equation 5-4). 

Knowing the coordinates of each yield line’s endpoints, the length of the line is equal to  

    22

ijij YYXXl   (Equation 5-4) 

where, as before, (Xi, Yi) and (Xj, Yj) are the coordinates of the end points of the yield line. 

Second, the angle of rotation of each plate can be calculated by evaluating the 

geometry of the displaced shape corresponding to the assumed yield line pattern. The 

angle between two planes is given by the angle between the normal vectors. For example, 

if 3x - 2y + 5z = 1 and 4x + 2y - z = 4 are the equations that define two planes, the angle 

between these planes can be determined as follows: 

i. The two normal vectors are n = <3,-2,5> and m = <4,2,-1> 

ii. n · m  =  3·4 - 2·2 - 5·1 = 3 

iii. 385)2(3 222 n , 21)1(24
222

m  

iv. Hence, the angle is equal to radsRotation 46.1
2138

3
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Having all the parameters defined, the internal virtual work of each line with length l 

can be calculated as the product of dIW = mb·l· θRotation. 

As mentioned in previous chapters, the railing plays a significant role in contributing 

to the redundancy of a bridge, and, for this reason, the virtual work done by the railing 

should be included in the total internal virtual work calculation. As the bridge deflects 

downwards, the railing acts as an inverted beam and tries to resist the bending of the 

bridge in the longitudinal direction. The moment acting on the railing will depend on the 

type of railing (continuous or with expansion joints) and the location that the hinge line 

intersects the railing. Figure 5-7 illustrates the moments acting on the railing that should 

be included in the calculation of internal virtual work. The work done by the railing is 

equal to the moment capacity of the railing times the angle of rotation. In the case of 

positive moment capacity, the angle of rotation of the railing is two times the angle 

between the ABO and CDO planes (Figure 5-5); the angle of rotation for the negative 

moment capacity is equal to the angle of the ABO (or the CDO) plane with the 

horizontal. 

To ensure that the railing section can reach its moment capacity, the connection 

between the railing and the deck must have sufficient reinforcement to transmit the shear 

associated with flexure. The maximum shear force at the connection is equal to the 

compressive force applied to the railing section when the positive moment capacity is 

calculated. The positive moment capacity is calculated using the railing section and 

assuming that, at the level of the concrete deck below the railing, there is reinforcement 

equal to the reinforcement area existing in the effective deck width. The effective deck 

width can be computed according to Section 4.6.2.6 of the AASHTO LRFD Specification 

(2007). According to the specification, the effective width can be determined using 

Figure 4.6.2.6.2-2 (AASHTO, 2007), where b is equal to the distance from the edge of 

the concrete deck above the fractured girder to the interior top flange of the intact girder, 

and li is the length of railing between expansion joints. In the case that the railing is 
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continuous, li should be taken as the total length of the span. Under no circumstances can 

the effective width be taken as greater than b.  

 

 

Figure 5-7: Acting moments on the railing for different cases 

 

The assumption to include the reinforcement within the effective deck width is 

supported by the railing behavior observed in the full-scale bridge test conducted at 

FSEL. The railing failed by crushing of the concrete in a manner that is similar to the 

failure of an over-reinforced concrete section. It is suspected that as the deck deflected 

downward under increasing increments of load, catenary behavior of the concrete deck 

engaged more and more reinforcement over the width of the deck. Thus, the catenary 

behavior increased the tension in the reinforcing bars that were embedded over an 
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effective width, and the amount of reinforcing steel engaged in this response led to 

behavior representative of that corresponding to an over-reinforced section. The results of 

the additional tension in the deck reinforcement led to the crushing observed in the 

railing. The effective width of the concrete deck included in the rail strength calculation 

is intended to capture this behavior. However, the effective width obtained from Section 

4.6.2.6 of the AASHTO LRFD Specification (2007) is smaller than the observed one. 

Accordingly, the effective width is computed in such a way as to ensure a conservative 

solution. 

The external virtual work consists of the work done by the truck load and the dead 

load of the bridge. The truck load should be positioned at the location where it produces 

the largest positive bending moment. In the case of a simply supported bridge, the 

maximum positive bending moment can be achieved when the middle axle of an HS-20 

truck is located at the mid-span of the bridge. In the case of a continuous bridge, 

however, the location of the middle axle should coincide with the location of the highest 

positive moment. The location of highest positive moment can be obtained from the 

moment envelope diagram for a combination of dead load and moving truck load. 

Moreover, the distance between the exterior and the middle axles should be kept constant 

and equal to 14 ft. Regarding the position of the truck across the width of the bridge, it is 

suggested that the wheels on one side of the truck be positioned 2 ft away from the 

railing. Once the position of the truck is set, the work done by the truck load can be 

computed. This work is equal to the summation of each point load multiplied by the 

deflection of each location. The deflection of each location, however, is a function of the 

length a. The deflection of the wheel loads of an HS-20 truck load can be determined by 

using the ratio of congruent triangles (Equation 5-5). 

 

 δload = rload ·Δ/r (Equation 5-5) 
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In this equation, δload is the deflection at the load location, rload is the distance of the 

load location from the edge of the slab above the fracture, Δ is the virtual displacement, 

and r is the distance of a point on the yield line with the same angle β from the positive x-

axis as the load position (Figure 5-8). Having determined the coordinates of the truck 

wheels, rload can be computed using the Pythagorean Theorem. All the terms of Equation 

5-5 are known except for r. The length of r can be determined as follows: 

i. For a given angle β, the equation of the line passing through the origin and the point 

load can be defined. 

ii. Knowing the coordinates of the outer diagonal yield line endpoints (A and B, C and 

D), an equation of the line can be derived. 

iii. The x-coordinate of the intersection can be found by setting equal the y-coordinate 

of the two equations and then inserting the known x-coordinate into the one of the 

equations to obtain the y-coordinate. 

iv. Finally, the length r can be computed using the distance formula between the origin 

and the intersecting point. 
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Figure 5-8: Defining the deflection at the load location 

 

The work done by the dead load of the bridge should be included in the external 

virtual work calculation. Only the self-weight of the concrete deck and the railing inside 

the failure area should be included. As indicated previously, it is appropriate to use the 

Yield Line Model when the fractured girder is separated from the concrete deck. 

Consequently, the self-weight of the fractured girder is not included in the external virtual 

work calculation. The external work done by the railing is computed using (Equation 5-

6): 

 EWRAILING = ARailing·2·a·0.15·Δ/2 (Equation 5-6) 

where ARailing (ft
2
) is the cross-sectional area of the railing, a (ft) is the horizontal distance 

from the point A or D to the origin, and Δ is the virtual displacement. The factor 0.15 is 
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used to account for the assumed self-weight of reinforced concrete (150 lb/ft
3 

= 

0.15kips/ft
3
). 

In a similar way, the external work done by the concrete deck can be computed by 

Equation 5-7 and 5-8. Equation 5-6 is used to compute the work done by the middle 

triangle (i.e., BOC in Figure 5-5) 

 EW DECK MID-TRINGLE = 1/2 · l · h · t · 0.15 · Δ/3 (Equation 5-7) 

where l (ft) is the length of the yield line lying above the interior top flange of the intact 

girder (BC), h (ft) is the height of the triangle BOC and is equal to the distance from 

centerline of the interior flange of the intact girder to the edge of the flange, t (ft) is the 

thickness of the concrete deck, and Δ is the virtual displacement. Once again, the factor 

0.15 accounts for the self-weight of reinforced concrete, which was assumed to be 150 

lb/ft
3 

= 0.15kips/ft
3
. Additionally, the work done by the outer triangles (i.e., AOB and 

COD) can be approximated using Equation 5-8. 

 EW DECK OUT-TRINGLE = 1/2 · a · h · t · 0.15 · Δ/3 (Equation 5-8) 

where a (ft), as before, is the horizontal distance from point A or D to the origin and Δ is 

the virtual displacement. Equation 5-8 is accurate for a straight bridge; as the curvature 

and the length a increase, however, this expression overestimates the work done by the 

outer triangles because the areas of these triangles become smaller. An accurate 

expression for the work done by the outer triangles can be obtained if the term a in 

Equation 5-8 is replaced with lCD or lAB from Equation 5-4, and hi is calculated according 

to Equation 5-9. 
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iiiii YXh    (Equation 5-9) 

where Xi , Yi are the coordinates of point D, θi is the angle measured from the positive x-

axis to line OD,  and αi is the angle of the yield line DC obtained from Equation 5-3 

(Figure 5-9). The heights of the outer triangles are equal due to symmetry (i.e., hCOD= 

hAOB). Additional details of this implementation are provided in the examples that appear 

in the Appendix.  

 

 

Figure 5-9: Geometric parameters of Equation 5-8 

 

5.2.2 Yield Line Model analysis results of the FSEL bridge 

The Yield Line Model was successfully applied to the FSEL test bridge. Applying an 

HS-20 truck load to the bridge at the most severe location, the ultimate load was 

computed to be 3.91 × HS-20 Trucks or 281.9 kips for f
'
c=6.26 ksi, which was the 

measured strength of the deck. The ultimate load was computed to be 3.66 × HS-20 

Trucks or 263.84 kips for f
'
c=4.00 ksi, which was the specified design strength of the 
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deck. The total estimated capacity of the test bridge using an HS-20 truck loading is less 

than the actual load carried by the bridge—363.0 kips—for two reasons. First, the wheel 

loads of the truck used in the analysis produce a larger moment than that produced by the 

road base that was distributed over a portion of the deck during the test. Second, the 

positive moment capacity of the railing used in the analysis was smaller than the actual 

capacity due to the conservative assumption used to estimate the width of the deck 

participating with the railing. This approach was taken to obtain a conservative solution.  

The area of the tension reinforcement bars in the effective width appears to be greater 

than what was assumed for the analyses in order to produce the crushing failure observed 

in the test. 

5.3 SUMMARY 

The underestimation of the ultimate load by the Simplified Strip Model does not 

make it invalid. In fact, the Simplified Strip Model serves a different purpose than the 

Yield Line Model, and each simple analysis procedure can provide useful information. 

An engineer should first analyze a bridge for redundancy using the initial strength checks 

to indentify if the unsupported loads can be transferred to the intact girder. If failure of 

the shear studs is computed, the Yield Line Model should be used to estimate the ultimate 

load that the bridge can sustain.  

All the results presented above are in a good agreement with the test results of the 

FSEL test bridge, which indicates that the Yield Line Model successfully estimates the 

ultimate load that a bridge can sustain. Nonetheless, the Yield Line Model and the 

Simplified Strip Model should be compared with the finite analysis results that are 

currently ongoing [Kim (2010)]. Depending on the outcome of the comparison, future 

refinement of the simple models might be needed. 
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CHAPTER 6 

Conclusions and Recommendations 

6.1 PROJECT SUMMARY 

The twin box-girder bridge is a preferable type of bridge in Texas and it is usually 

used at flyover intersections. This type of bridge is aesthetically pleasing due to its 

slenderness and the shape of the girders. However, the AASHTO Bridge Design 

Specifications categorize the twin box-girder bridge as a fracture critical bridge. Because 

there are only two bottom flanges in tension, the AASHTO Specifications assume that a 

failure of a component in tension (bottom flange) will result in the collapse of the bridge 

or the inability of the bridge to perform its function. A fracture critical bridge is required 

to be bi-annually inspected. The cost of an inspection is very high, especially when 

consideration is given to the indirect costs incurred by displaced motorists who depend 

on the inspected bridge. The high cost of inspection is the main drawback of an otherwise 

efficient and aesthetically appealing design. 

Several observations of fracture critical member failures on in-service bridges have 

indicated, however, that the overall behavior of a fracture critical bridge is not always 

governed by the fracture of its critical members. These observations have made the 

bridge owners question the fracture critical provisions, asking for different inspection 

levels depending on the bridge characteristics.  

The Texas Department of Transportation and the Federal Highway Administration 

co-sponsored a research project at the Ferguson Structural Engineering Laboratory at The 

University of Texas at Austin. The main goal of the research program was to investigate 

the behavior of twin box girder fracture critical steel bridges and to develop methods for 

evaluating their redundancy level in the event that a fracture occurs in a critical member. 

The research project included the reconstruction of a full-size twin box girder bridge, 

which was used as a test specimen for three destructive tests. Laboratory experiments 

were performed to investigate the tensile capacity of several shear stud connection 
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configurations between the steel girder and the concrete deck. Several analyses were 

performed based on simple models and computer simulations. All the information 

gathered from the three full-size tests as well as the laboratory tests helped the calibration 

of the analysis models. 

 

6.2 FSEL BRIDGE BEHAVIOR DURING TESTS 

As described in earlier chapters, the performance of the FSEL test bridge was very 

good during all the tests. The test bridge had alternative load paths to transmit the load 

positioned above the fractured girder to the intact girder. Several different load paths 

provided a high level of redundancy to the bridge so that it could sustain very high loads 

while still having a full-depth fracture in one of its girders. For Test 2, when the bridge 

was dynamically tested with a full-depth fracture in one of its girders and a load of 75 

kips placed in the most critical location, the performance of the structure was excellent. 

The overall damage was limited, making it possible for a driver to safely drive over the 

bridge. When the test-bridge was statically tested in Test 3, it was able to sustain more 

than four times the design truck load before collapsing. 

The railing above the fractured girder played a significant role in the post-fracture 

behavior of the FSEL test bridge. As mentioned earlier in this thesis, the railing acted as 

an inverted beam and transferred a portion of the load, which was first carried by the 

fractured girder, back to the supports. When the expansion joint in the railing engaged, 

the downward deflection was arrested. During Test 3, when the railing above the fracture 

location reached its moment capacity, the test bridge started to deflect at a higher rate 

than it had prior to then until it eventually collapsed. The locations of the north and the 

south expansion joints were weak spots in the bridge sections, and shear failures occurred 

in the concrete deck at these locations.  
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The concrete deck acted as a shear diaphragm, and it played a major role in 

transferring loads away from the fracture location. A hinge line formed on the concrete 

deck as described in Chapter 5, which occurred due to the moment capacity being 

exceeded. The formation of the hinge line did not prevent the deck from continuing to 

transfer loads away from the fracture location.  

 

6.3 SIMPLIFIED MODELS 

Simplified analytical modeling methods to evaluate the redundancy level of a bridge 

are proposed in this thesis. Chapter 3 and Chapter 5, respectively, contain descriptions of 

the initial strength checks and the Simplified Strip Model, and the Yield Line Model. 

These simplified methods provide a quick and conservative estimation of the ultimate 

load that a twin box-girder bridge can sustain.  

The initial strength checks can be used to determine any possible failures and ensure 

that the unsupported load can be transferred away from the fracture girder. The 

Simplified Strip Model can be used by an engineer to determine whether or not deck 

failure or shear stud pullout has occurred and what is the extend of the damage. If the 

initial strength checks indicate a failure of shear studs, then the Yield Line Model should 

be used to estimate the ultimate load that a bridge could sustain. However, in the case of 

a hinge forming at the interior top flanges of both girders, then the Simplified Strip 

Model can be used to estimate the ultimate load.  

 

6.4 RECOMMENDATIONS 

The major goal of this research project was to determine methods for evaluating the 

redundancy level of fracture critical bridges, with an emphasis on twin box-girder 

bridges. All the tests performed during this research program provided significant 

information on the performance of the FSEL test bridge. Even if the test bridge is a 
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representative type of bridge that is widely used in Texas, the results of these tests cannot 

directly be extrapolated for all twin box-girder bridges. The FSEL test bridge consisted of 

a single supported span, while in practice these bridges are usually multi-span, 

continuous bridges. Continuous-span bridges have “built in” redundancy compared to 

simple-span structures and are expected to perform better than these less redundant 

structures. Therefore, the results of the FSEL bridge are more conservative than what is 

expected for a multi-span bridge. Analysis of multi-span bridges was limited in this 

study, and further investigation of multi-span structures is recommended.  

The type of railing used in the FSEL test bridge was a T501 concrete railing. This 

type of railing has a stocky concrete section that can act as an inverted beam in the event 

of a fracture. However, a large variety of traffic railings are used on existing bridges. If 

the contribution of the railing is taken into account, questions on the bridge behavior will 

be raised if a different type of railing is used. Both the simple models developed in this 

research indicate the importance of the railing in providing redundancy. A bridge with a 

continuous railing and a section similar to the T501 railing will deflect less under the 

same load than the same bridge with a discontinuous railing or with smaller railing 

section. Smaller deflections will result in less extensive failure predicted by the 

Simplified Strip Model than cases where larger deflections occur. It is important to note 

that the Yield Line Model indicates that almost one thrid of the internal work comes from 

the railing. Therefore, in the case of a railing with a smaller section, the ultimate load will 

be less than the ultimate load of a stocky railing section. Based on these observations, it is 

highly recommended that a continuous railing with a section similar to the T501 railing 

be used on fracture critical twin box girder bridges. 

Regarding the thickness of the concrete deck and the height of the shear studs, several 

recommendations are given. It is recommended that shear studs having a height long 

enough to pass the bottom reinforcement layer of steel be used. Laboratory tests [Sutton, 

(2007), Mouras (2008)] have shown that if the shear studs pass the bottom reinforcement, 

the redundancy of the connection is improved. Moreover, the laboratory tests indicate 
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that by increasing the length of the shear studs, their tensile capacity increases. However, 

if the shear studs have enough capacity to resist the event of the fracture, the concrete 

deck will reach its moment capacity, and a hinge line will form at the interior top flanges 

of the girders. It is more desirable to form of a hinge in the concrete deck than to have a 

shear stud failure. The hinge formation, compared to the shear stud failure, is more 

ductile. Furthermore, after the formation of a hinge, loads could still be transmitted away 

from the fracture. Equation 6-1 determines the minimum tensile capacity of the shear 

studs to form hinges in the concrete deck between the girders. A higher tensile capacity 

of the shear studs than that calculated by Equation 6-1 will not provide any additional 

benefit because the moment capacity of the concrete deck will govern. Conversely, the 

design of a thicker deck between the two girders may result in a shear stud pull out. It is 

highly recommended that the design be based on a balanced section in which the shear 

studs will fail just after the formation of hinges at both the interior top flanges. 

 Pmin = (Mn
+
 + Mn

-
)/s (Equation 6-1) 

where: Pmin = Minimum tensile capacity of shear stud group to form a hinge at the deck 

Mn
+
 = Positive moment capacity of the concrete deck 

Mn
-
 = Negative moment capacity of the concrete deck 

s = Distance between the two girders 

The FSEL test bridge had a very small horizontal curvature. In-service twin box-

girder bridges can be designed with a significantly higher horizontal curvature than that 

of the test bridge. The increase of the radius of curvature increases the torsion on the 

bridge, which must be resisted by the intact girder in the event of a fracture of a critical 

tension flange. Simple equations to compute the torque applied on the intact girder were 

given in Chapter 3. Moreover, the result of an increase in curvature on the behavior of a 

twin box-girder bridge is under investigation through parametric finite element analyses, 
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and it will be presented in the dissertation by Kim [Kim, (2010)]. In addition to the 

consequences of the horizontal curvature, the effects of several variables, like number of 

spans, type of railing, material properties and geometry of the bridge, are currently being 

investigated by Kim [Kim, (2010)]. 
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APPENDIX A 

Analysis of bridge components 

A.1 CALCULATION OF THE INTACT GIRDER’S MOMENT DIAGRAM  

The assumed elastic section was one-half of the bridge section. Details of the elastic 

section, such as dimensions, based on which all the calculations were performed as well 

as typical strain and stress gradients (e.g. Section N3), are shown in Figure A-1. 

 

 

Figure A-1: Elastic section of the intact girder used for the moment diagram calculation. 

 

Originally, the actual static strain values of Test 2 were used to calculate the forces 

that were applied at the section.  The calculated forces, which were applied at the section, 

were not balanced. Due to the fact that the measured strain values contained errors, the 

forces of the section were not in equilibrium. To resolve this problem, it was decided on 

to keep the bottom flange strain constant and equal to the measured value and to change 

the strain values of top deck so that the forces could be balanced. As it is illustrated in 

Figure A-2, the recorded and the calculated strain values were close to each other (εrecorded 

= -0.00017, εcalculated = - 0.00019), so the assumption was reasonable.  
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Figure A-2: Strain gradient of N1 section of the intact girder 

 

The values at the top surface of the railing were extrapolated from the other data 

points. The concrete strength was taken as 6.26 ksi based on lab tests. The structural steel 

for the webs and flanges of the steel box girders was assumed to be ASTM A572 Grade 

50 ksi based on TxDOT drawings.  

The forces applied on the elastic section, after calculating the appropriate strain 

values so that they would be balanced, were: 

CRailing=0.5·(εRailing Top+εRailing Bottom)·h·b·Ec=0.5·(-0.00059)·32·9.72·4560= -414.88 kips 

CDeck=0.5·(εDeck Top + εDeck Bottom)·h· b·Ec = 0.5·(-0.00019)·8·140·4560= -490.67 kips 

CReinforcement=As·(εReinf Top + εReinf Bottom)·Es = 2·7.23·(-0.00009)· 9000= -38.77 kips 
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CHaunch=2·0.5·(εHaunch Top+εHaunch Bott.)·h·b·Ec=2·0.5·(-0.00009)·2.86·12·4560= -13.31 kips 

CTop Flange=2·εTop Flange·h·b·Es=2·(-0.00003)·9.625·12·29000= -12.58 kips 

CWeb=2·0.5·As·εWeb·Es=0.99·(-0.00002)·29000= -0.56 kips 

TWeb=2·0.5·As·εWeb·Es=27.11·(0.00053)·29000= 418.75 kips 

TBottom Flange=As·εBottom Flange·Es=0.75·47·(0.00054)·29000= 552.02 kips 

Take moments about the bottom flange to calculate the moment of the specific 

section. 

M = CRailing · 81.88 + CDeck · 64.2 + CReinforcement · 65.13 + CHaunch · 59.18 + CTop Flange · 57.6 

+ CWeb · 56.29 - TWeb · 18.82 - TBottom Flange · 0.38 

M= 414.88 · 81.88 + 490.67 · 64.2 + 38.77 · 65.13 + 13.31 · 59.18 + 12.58 · 57.6              

+ 0.56 · 56.29 - 418.75 · 18.82 - 552.02 · 0.38 

M= 61454.68 kips-in. = 5121.22 kips-ft 
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Following, a chart with a summary of all the calculations of the moment diagram 

values is presented. 

Table A-1: Summary of calculations for the intact girder’s moment diagram 

N3 

  

Height of N.A. 54.97     Force (kips) 
Moment 

Arm z (in.) 

Total Height of Section 68.75   Railing -414.88 81.88 

Top 
Deck 

Top of Railing Strain -0.00045   Deck -490.67 64.20 

Top Surface Strain -0.00014 
 

Reinforcement -38.77 65.13 

Bottom Surface Strain -0.00006   Haunch -13.31 59.18 

Bottom of Haunch Strain -0.00003   Top Flange -12.58 57.60 

Reinforcement Strain -0.00009   Web- -0.56 56.29 

Steel 
Secti
on 

Top Flange Strain -0.00003   Web+ 418.75 18.82 

Top of Web Strain -0.00002   Bottom Flange 552.02 0.375 

Bottom of Web Strain 0.00053   ΣFx 0.00   

Bottom Flange Strain 0.00054   M (kips - in.) 61454.68 

    
  

M (kips - ft) 5121.22 

 
 
 
 

   

 
 

  N2 

  

Height of N.A. 54.97     Force (kips) 
Moment 

Arm z (in.) 

Total Height of Section 68.75   Railing -431.96 81.88 

Top 
Deck 

 
 

Top of Railing Strain -0.00047   Deck -510.87 64.20 

Top Surface Strain -0.00014   Reinforcement -40.37 65.13 

Bottom Surface Strain -0.00006   Haunch -13.86 59.18 

Bottom of Haunch Strain -0.00003   Top Flange -13.10 57.60 

Reinforcement Strain -0.00010   Web- -0.58 56.29 

Steel 
Secti
on 

Top Flange Strain -0.00003   Web+ 435.99 18.82 

Top of Web Strain -0.00002   Bottom Flange 574.74 0.375 

Bottom of Web Strain 0.00055   ΣFx 0.00   

Bottom Flange Strain 0.00056   M (kips - in.) 63984.85 

    
M (kips - ft) 5332.07 
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N1 

  

Height of N.A. 54.97     Force (kips) 
Moment 

Arm z (in.) 

Total Height of Section 68.75   Railing -574.85 81.88 

Top 
Deck 

Top of Railing Strain -0.00062   Deck -679.87 64.20 

Top Surface Strain -0.00019   Reinforcement -53.72 65.13 

Bottom Surface Strain -0.00008   Haunch -18.44 59.18 

Bottom of Haunch Strain -0.00004   Top Flange -17.43 57.60 

Reinforcement Strain -0.00013   Web- -0.77 56.29 

Steel 
Secti
on 

Top Flange Strain -0.00004   Web+ 580.22 18.82 

Top of Web Strain -0.00003   Bottom Flange 764.87 0.375 

Bottom of Web Strain 0.00074   ΣFx 0.00   

Bottom Flange Strain 0.00075   M (kips - in.) 85150.80 

    
M (kips - ft) 7095.90 

 
 
 
 

      S1 

  

Height of N.A. 54.97     Force (kips) 
Moment 

Arm z (in.) 

Total Height of Section 68.75   Railing -616.71 81.88 

Top 
Deck 

Top of Railing Strain -0.00067   Deck -729.38 64.20 

Top Surface Strain -0.00020   Reinforcement -57.63 65.13 

Bottom Surface Strain -0.00008   Haunch -19.78 59.18 

Bottom of Haunch Strain -0.00004   Top Flange -18.70 57.60 

Reinforcement Strain -0.00014   Web- -0.83 56.29 

Steel 
Secti
on 

Top Flange Strain -0.00004   Web+ 622.47 18.82 

Top of Web Strain -0.00003   Bottom Flange 820.57 0.375 

Bottom of Web Strain 0.00079   ΣFx 0.00   

Bottom Flange Strain 0.00080   M (kips - in.) 91352.00 

    
M (kips - ft) 7612.67 
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S2 

  

Height of N.A. 54.97     Force (kips) 
Moment 

Arm z (in.) 

Total Height of Section 68.75   Railing -514.07 81.88 

Top 
Deck 

Top of Railing Strain -0.00056   Deck -607.98 64.20 

Top Surface Strain -0.00017   Reinforcement -48.04 65.13 

Bottom Surface Strain -0.00007   Haunch -16.49 59.18 

Bottom of Haunch Strain -0.00004   Top Flange -15.59 57.60 

Reinforcement Strain -0.00011   Web- -0.69 56.29 

Steel 
Secti
on 

Top Flange Strain -0.00004   Web+ 518.87 18.82 

Top of Web Strain -0.00002   Bottom Flange 684.00 0.375 

Bottom of Web Strain 0.00066   ΣFx 0.00   

Bottom Flange Strain 0.00067   M (kips - in.) 76147.79 

    
M (kips - ft) 6345.65 

 
 
 
 

      S3 

  

Height of N.A. 54.97     Force (kips) 
Moment 

Arm z (in.) 

Total Height of Section 68.75   Railing -449.15 81.88 

Top 
Deck 

Top of Railing Strain -0.00049   Deck -531.21 64.20 

Top Surface Strain -0.00015   Reinforcement -41.98 65.13 

Bottom Surface Strain -0.00006   Haunch -14.41 59.18 

Bottom of Haunch Strain -0.00003   Top Flange -13.62 57.60 

Reinforcement Strain -0.00010   Web- -0.60 56.29 

Steel 
Secti
on 

Top Flange Strain -0.00003   Web+ 453.35 18.82 

Top of Web Strain -0.00002   Bottom Flange 597.62 0.375 

Bottom of Web Strain 0.00058   ΣFx 0.00   

Bottom Flange Strain 0.00058   M (kips - in.) 66531.75 

    
M (kips - ft) 5544.31 
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A.2 CALCULATION OF THE RAILING’S MOMENT DIAGRAM  

The elastic section used for the calculation of the moment diagram consists of the 

typical T501 traffic rail and a part of the concrete deck (Figure A-3).  

 

 

Figure A-3 Elastic section of the railing - strain & stress gradient 

 

 The static strain values were taken from the test data. Because only the top face of 

the railing was instrumented, it was decided to keep this value constant and calculate the 

strain value of the bottom reinforcement layer so that the forces applied to the section 

were balanced. The calculated strain values for the reinforcement layers seem reasonable 

and they do not diverge from any evidence that was observed after Test 2. The concrete 

strength was taken as 6.26 ksi based on lab tests. The reinforcement bars were tested and 

it was found that their strength was 60 ksi. 

The forces applied on the elastic section, after calculating the appropriate strain 

values so that they would be balanced, were: 

CRailing = 0.5·εRailing Top·h·b·Ec = 0.5·(-0.0000104)·7.71·7.50·4560 = - 1.37 kips 
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TTop Reinf. Layer= As2 · εs2 · Es = 3 · 0.2 · (0.0000359) · 29000 = 0.62 kips 

TBottom Reinf. Layer= As1 · εs2 · Es = 2 · 0.31 · (0.0000414) · 29000 = 0.75 kips 

 

Take moments about the bottom reinforcement layer to calculate the moment of the 

specific section. 

M = CRailing · 35.87 - TTop Reinf. Layer · 4.13 

M= 1.37 · 35.87 - 0.62 · 4.13 

M= 46.55 kips-in. = 3.88 kips-ft 
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A summary of all the calculations of the moment diagram values in tabular form is 

given below. 

Table A-2: Summary of calculations for the railing’s moment diagram 

N3 

  

Height of N.A. 32.29     
Force 
(kips) 

Moment 
Arm z (in.) 

Total Height of Section 40.00   Railing -1.37 35.87 

Top 
Deck 

Top of Railing Strain -0.0000104 
 

Deck 0.00 0.00 

Top Surface Strain 0.0000328 
 

Top Reinf. 0.62 4.13 

Top Reinf. Layer Strain 0.0000359 
 

Bottom Reinf. 0.75 0.00 

Bottom Reinf. Layer Strain 0.0000414 
 

ΣFx 0.00   

    
M (kips - in.) 46.55 

    
M (kips - ft) 3.88 

              N2 

  

Height of N.A. 32.29     
Force 
(kips) 

Moment 
Arm z (in.) 

Total Height of Section 40.00   Railing -5.23 35.87 

Top 
Deck 

Top of Railing Strain -0.0000397 
 

Deck 0.00 0.00 

Top Surface Strain 0.0001250 
 

Top Reinf. 2.38 4.13 

Top Reinf. Layer Strain 0.0001369 
 

Bottom Reinf. 2.84 0.00 

Bottom Reinf. Layer Strain 0.0001581 
 

ΣFx 0.00   

    
M (kips - in.) 177.63 

    
M (kips - ft) 14.80 

       N1 

  

Height of N.A. 32.29     
Force 
(kips) 

Moment 
Arm z (in.) 

Total Height of Section 40.00   Railing 
-

21.42 35.87 

Top 
Deck 

Top of Railing Strain -0.0001625 
 

Deck 0.00 0.00 

Top Surface Strain 0.0005124 
 

Top Reinf. 9.76 4.13 

Top Reinf. Layer Strain 0.0005612 
 

Bottom Reinf. 11.65 0.00 

Bottom Reinf. Layer Strain 0.0006482 
 

ΣFx 0.00   

    
M (kips - in.) 728.05 

    
M (kips - ft) 60.67 
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       S1 

  

Height of N.A. 32.29     
Force 
(kips) 

Moment 
Arm z (in.) 

Total Height of Section 40.00   Railing 
-

10.50 35.87 

Top 
Deck 

Top of Railing Strain -0.0000797 
 

Deck 0.00 0.00 

Top Surface Strain 0.0002512 
 

Top Reinf. 4.79 4.13 

Top Reinf. Layer Strain 0.0002751 
 

Bottom Reinf. 5.71 0.00 

Bottom Reinf. Layer Strain 0.0003178 
 

ΣFx 0.00   

    
M (kips - in.) 356.92 

    
M (kips - ft) 29.74 

 

 
 
 
 
 

 
 

 

 
 
 
 

 
 

 
 

 
 

S2 

  

Height of N.A. 32.29     
Force 
(kips) 

Moment 
Arm z (in.) 

Total Height of Section 40.00   Railing -6.80 35.87 

Top 
Deck 

Top of Railing Strain -5.16E-05 
 

Deck 0.00 0.00 

Top Surface Strain 0.0001628 
 

Top Reinf. 3.10 4.13 

Top Reinf. Layer Strain 0.0001783 
 

Bottom Reinf. 3.70 0.00 

Bottom Reinf. Layer Strain 0.0002059 
 

ΣFx 0.00   

    
M (kips - in.) 231.30 

    
M (kips - ft) 19.28 

       S3 

  

Height of N.A. 32.29     
Force 
(kips) 

Moment 
Arm z (in.) 

Total Height of Section 40.00   Railing -0.26 35.87 

Top 
Deck 

Top of Railing Strain -0.0000020 
 

Deck 0.00 0.00 

Top Surface Strain 0.0000063 
 

Top Reinf. 0.12 4.13 

Top Reinf. Layer Strain 0.0000069 
 

Bottom Reinf. 0.14 0.00 

Bottom Reinf. Layer Strain 0.0000079 
 

ΣFx 0.00   

    
M (kips - in.) 8.92 

    
M (kips - ft) 0.74 
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A.3 CALCULATION OF THE CONCRETE DECK’S MOMENT CAPACITY  

The following moment capacity calculations of the concrete deck were based on a 22 

in. wide transverse deck section as shown in the figure A-4. 

 

 

Figure A-4: Typical sections used for the moment capacity calculation 

 

Positive Moment Capacity 

The assumed strain and stress failure profile are shown in the figure below: 

 

 

Figure A-5: Strain and stress gradients at positive moment regions 
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According to ACI 318-08, it was assumed that the ultimate strain of concrete was 

0.003 in./in. and the bottom reinforcement has yielded prior to failure. The top 

reinforcement was always included in the calculations for more accurate results. Based 

on lab tests the concrete strength was taken as 6.26 ksi and the reinforcement strength as 

60 ksi.  

Let C = T: 

C = 0.85 · fc´ · β1 · c · b = 0.85 · 6.26 · 0.7 · 22 · c = 81.94 · c 

Note: β1 = 0.70 for 6.26 ksi concrete. 

εs, bottom = 0.003 · (6.4375 - c) / c 

εs, top = 0.003 · (2.3125 - c) / c 

Tbottom = As,bottom · fy = 1.137 · 60 = 68.22 kips 

Ttop = As,top · εs, top · Es = 1.137 · 29,0000 · εs,top = 32,973 · εs,top 

81.94 · c = 68.22 + 32,973 · εs,top 

81.94 · c = 68.22 + 32,973 · 0.003 · (2.3125 - c) / c 

Iterate until the neutral axis depth was found. Solution: c = 1.494 in. 

εs, bottom = 0.00993 > Yield strain (= 0.00207 for 60 ksi) 

εs, top = 0.001644 < Yield strain (= 0.00207 for 60 ksi) 

C = 122.42 kips 

Tbottom = 68.22 kips 

Ttop = 54.20 kips 
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Take moments about the NA to solve for nominal moment capacity 

Mn
+
 = C · (c - β1 · c / 2) + Ttop · (2.3125 - c) + Tbottom · (6.4375 - c) 

Mn
+
 = 122.42 · (1.494 - 0.7 · 1.494/2) + 54.2 · (2.3125 – 1.494) + 68.22 · (6.4375 – 

1.494) 

Mn
+
 = 500.49 kips-in. = 41.71 kips-ft 

 

Negative Moment Capacity 

The assumed strain and stress failure profile are shown in the figure below: 

 

 

Figure A-6: Strain and stress gradients at negative moment regions 

 

 

According to ACI 318-08, it was assumed that the ultimate strain of concrete was 

0.003 in./in. and the top reinforcement has yielded prior to failure. The bottom 

reinforcement was always included in the calculations for more accurate results. Based 

on lab tests the concrete strength was taken as 6.26 ksi and the reinforcement strength as 

60 ksi.  
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Top deck area 

Let C = T: 

C = 0.85 · fc´ · β1 · c · b = 0.85 · 6.26 · 0.7 · 22 · c = 81.94 · c 

Note: β1 = 0.70 for 6.26 ksi concrete. 

εs, bottom = 0.003 · (1.5625 - c) / c 

εs, top = 0.003 · (5.6875 - c) / c 

Tbottom = As,bottom · εs, bottom · Es = 1.137 · 29,0000 · εs,bottom = 32,973 · εs,bottom 

Ttop = As,top · fy = 1.137 · 60 = 68.22 kips  

81.94 · c = 68.22 + 32,973 · εs,bottom 

81.94 · c = 68.22 + 32,973 · 0.003 · (1.5625 - c) / c 

Iterate until the neutral axis depth was found. Solution: c = 1.199 in. 

εs, bottom = 0.00091 < Yield strain (= 0.00207 for 60 ksi) 

εs, top = 0.01123 > Yield strain (= 0.00207 for 60 ksi) 

C = 98.23 kips 

Tbottom = 30.01 kips 

Ttop = 68.22 kips 

Take moments about the NA to solve for nominal moment capacity 

Mn
-
 = C · (c - β1 · c / 2) + Ttop · (5.6875 - c) + Tbottom · (1.5625 - c) 
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Mn
-
 = 98.23 · (1.199 - 0.7 · 1.199/2) + 68.22 · (5.6875 - 1.199) + 30.01 · (1.5625 - 1.199) 

Mn
-
 = 393.67 kips-in. = 32.81 kips-ft 

 

Haunch area 

Let C = T: 

C = 0.85 · fc´ · β1 · c · b = 0.85 · 6.26 · 0.7 · 22 · c = 81.94 · c 

Note: β1 = 0.70 for 6.26 ksi concrete. 

εs, bottom = 0.003 · (5.3625 - c) / c 

εs, top = 0.003 · (9.4875 - c) / c 

Tbottom = As,bottom · εs, bottom · Es = 1.137 · 29,0000 · εs,bottom = 32,973 · εs,bottom 

Ttop = As,top · fy = 1.137 · 60 = 68.22 kips  

81.94 · c = 68.22 + 32,973 · εs,bottom 

81.94 · c = 68.22 + 32,973 · 0.003 · (5.3625 - c) / c 

Iterate until the neutral axis depth was found. Solution: c = 2.3639 in. 

εs, bottom = 0.005403 > Yield strain (= 0.00207 for 60 ksi) 

εs, top = 0.01123 > Yield strain (= 0.00207 for 60 ksi) 

So, the assumption that the bottom reinforcement was not yielding was wrong. Transform 

the equilibrium equation and solve for c. 

81.94 · c = 68.22 + 68.22 
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Solution: c = 1.665 in. 

C = 136.44 kips 

Tbottom = 68.22 kips 

Ttop = 68.22 kips 

Take moments about the NA to solve for nominal moment capacity 

Mn
-
 = C · (c - β1 · c / 2) + Ttop · (9.4875 - c) + Tbottom · (5.3625 - c) 

Mn
-
 = 136.44 · (1.665 - 0.7·1.665/2) + 68.22 · (9.4875 - 1.665) + 30.01 · (5.3625 - 1.665) 

Mn
-
 = 933.55 kips-in. = 77.80 kips-ft 
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APPENDIX B 

Analysis of the FSEL Test Bridge using the Strip and Yield Line Models 

B.1 CALCULATION OF THE TRANSMITTED LOAD TO THE INTACT GIRDER  

The analysis assumed that half of the entire weight of the bridge and the entire live 

load on the bridge needed to be resisted by the intact girder in the event of a fracture. 

These loads were calculated below: 

Weight of one steel box girder:  

Wgirder = 1.15 · (109 in
2
/144 ft

2
/in

2
) · (0.490 kips/ft

3
) = 0.427 kip/ft  

Notes: This was the weight of one girder. Cross-sectional area of one girder was 109 in
2
. 

Density of steel was taken as 490 lb/ft
3
. To account for internal diaphragms, stiffeners, 

etc., the weight of the steel girder was multiplied by a factor of 1.15. 

Concrete deck: 

Wdeck = (280 · 8 / 144 ft
2
) · (0.150 kip/ft

3
) = 2.33 kip/ft 

Notes: Width of concrete deck was 23 ft-4 in. = 280 in. Density of concrete was taken as 

150 lb/ft
3
. Deck thickness was 8 in. 

T501 Railing 

Wrailings = 2 · (311.75/144 ft
2
) · (0.150 kip/ft

3
) = 0.65 kip/ft 

Notes: Multiplied by 2 to account for two rails. Cross-sectional area of one rail was 

calculated as 311.75 in
2
 

Simulated Truck 

Wtruck = 76 kips 
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Load to be transmitted 

F = (Wgirder + Wdeck/2 + Wrailings/2) · L + Wtruck 

F = (0.427 + 2.33/2 + 0.65/2) · 120 + 76 = 306.04 kips 

F = 306.04 kips  

 

B.2 CALCULATION OF MAXIMUM MOMENT ON THE BRIDGE 

Mid-span moment due to dead load 

MDL = (2 · Wgirder + Wdeck + Wrailings) · L
2
/8 = (2 · 0.427 + 2.33 + 0.65) · 120

2
/8 

MDL = 7,063.2 kip-ft 

Moment due to truck load 

The position of the 76-kip truck load, the shear diagram and the moment diagram are 

shown in Figure B-1. The maximum moment was located at the mid-span of the bridge 

and it was equal to Mmax = 9,048.6 kip-ft 
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Figure B-1: Truck load location - Shear and moment diagram due to truck load 

 

B.3 ANALYSIS OF COMPOSITE SECTION 

The plastic moment capacity of the intact girder was calculated to determine if it had 

sufficient capacity to sustain the total live and dead load on the bridge. The composite 

section based on which all the calculations were performed was shown in Figure B-2. 

Based on lab test, it was found that fyw = 60 ksi for the webs and fybf = 53 ksi for the 

bottom flange. 
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Figure B-2: Composite section [Sutton,(2007)] 

 

Find the plastic neutral axis by setting T = C: 

T = As · fy = 47 · 0.75 · 53 + (2 · 58.754 · 0.5 + 2 · 12 · 0.625) · 60 = 6293.25 kips 

Cc = 0.85 · fc’ · ts · beff = 0.85 · 6.26 · 8 · 140 = 5959.52 kips 

Since T > C then the plastic neutral axis was in the girder. 

Cs = (As · fy – Cc) / 2 = (6293.25 – 5959.52) / 2 = 166.87 kips 

Using this equation, the compressive force needed to be developed in the steel section 

in order to achieve equilibrium (C = T), could be determined. 

Ctfl = 2 · ttfl · btfl · fytf = 2 · 0.625 · 12 · 60 = 900 kips 

The top flanges could resist 900 kips in compression which was more than required to 

obtained equilibrium. As a result the PNA fell x = 166.87 / (2·12·60) = 0.116 in. inside 

the top flange as shown in B-3.  
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Figure B-3: Plastic neutral axis location 

 

So: 

Cc = 5959.52 kips 

 Ctfl = 166.87 kips,  

Ttfl = 900 – 166.87 = 733.13 kips  

Tweb = Aweb · fyw = 2 · 0.5 · 58.754 · 60 = 3525.24 kips 

Tbottom flange = Abottom flange · fy = 47 · 0.75 · 53 = 1868.25 kips 

By taking moments about the PNA, the nominal plastic moment capacity was 

calculated: 

Mbottom flange = Tbottom flange · (3/8 + 57 – 0.116) = 106,974.13 kip-in. 

Mweb = Tweb · 57 / 2 = 100,469.34 kip-in. 

MT tfl = Ttfl · (0.625 – 0.116) / 2 = 186.58 kip-in. 

MC tfl = Ctfl · 0.116 / 2 = 9.68 kip-in. 

MC concrete = Cc · (4 + 3 + 0.116) = 42,407.94 kip-in. 

Note: The 3-in. term added in the moment arm accounted for the average haunch height 

and offsets the concrete deck 3 in. above the top flange of the girder. 
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Thus, MP = 106,974.13 + 100,469.34 + 186.58 + 9.68 + 42,407.94  

MP = 250,047.67 kip-in. = 20,837.31 kip-ft 

Earlier, Mmax was found to be 9,048.6 kip-ft. The plastic moment capacity of the 

intact girder was adequate to sustain the dead load of the bridge plus the truck load. 

 

B.4 ANALYSIS OF CONCRETE DECK 

The bending and shear capacity of the concrete deck were checked to ensure that they 

were adequate to resist the moment and the shear produced by the unsupported load of 

the fractured girder. These capacities were based on a 1-ft wide transverse deck section as 

shown in the Figure B-4. 

 

 

Figure B-4: Typical one foot wide section of the concrete deck 

 

Positive Moment Capacity 

The assumed strain and stress failure profile are shown in the figure below: 
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Figure B-5: Strain and stress gradients at positive moment regions 

 

According to ACI 318-08, it was assumed that the ultimate strain of concrete was 

0.003 in./in. and the bottom reinforcement had yielded prior to failure. The top 

reinforcement was always included in the calculations for more accurate results. Based 

on tests of the material the concrete strength was taken as 6.26 ksi and the reinforcement 

strength as 60 ksi.  

Let C = T:   

C = 0.85 · fc´ · β1 · c · b = 0.85 · 6.26 · 0.7 · 12 · c = 44.70 · c  

Note: β1 = 0.70 for 6.26 ksi concrete. 

εs, bottom = 0.003 · (6.4375 - c) / c 

εs, top = 0.003 · (2.3125 - c) / c 

Tbottom = As,bottom · fy = 0.62 · 60 = 37.2 kips 

Ttop = As,top · εs, top · Es = 0.62 · 29,0000 · εs,top = 17,980 · εs,top 

44.70 · c = 37.2 + 17,980 · εs,top 

44.70 · c = 37.2 + 17,980 · 0.003 · (2.3125 - c) / c 



141 

 

Iterate until the neutral axis depth was found. Solution: c = 1.494 in. 

εs, bottom = 0.00993 > Yield strain (= 0.00207 for 60 ksi) 

εs, top = 0.001644 < Yield strain (= 0.00207 for 60 ksi) 

C = 66.78 kips, Tbottom = 37.2 kips, Ttop = 29.55 kips 

Take moments about the NA to solve for nominal moment capacity 

Mn
+
 = C · (c - β1 · c / 2) + Ttop · (2.3125 - c) + Tbottom · (6.4375 - c) 

Mn
+
 = 66.78 · (1.494 - 0.7 · 1.494/2) + 29.55 · (2.3125 – 1.494) + 37.2 · (6.4375 – 1.494) 

Mn
+
 = 272.93 kips-in. = 22.74 kips-ft 

 

Negative Moment Capacity 

The assumed strain and stress failure profile are shown in the figure below: 

 

 

Figure B-6: Strain and stress gradients at negative moment regions 
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According to ACI 318-08, it was assumed that the ultimate strain of concrete was 

0.003 in./in. and the top reinforcement had yielded prior to failure. The bottom 

reinforcement was always included in the calculations for more accurate results. Based 

on lab tests the concrete strength was 6.26 ksi and the reinforcement strength as 60 ksi.  

Let C = T: 

C = 0.85 · fc´ · β1 · c · b = 0.85 · 6.26 · 0.7 · 12 · c = 44.70 · c 

Note: β1 = 0.70 for 6.26 ksi concrete. 

εs, bottom = 0.003 · (1.5625 - c) / c 

εs, top = 0.003 · (5.6875 - c) / c 

Tbottom = As,bottom · εs, bottom · Es = 0.62 · 29,0000 · εs,bottom = 17,980 · εs,bottom 

Ttop = As,top · fy = 0.62 · 60 = 37.2 kips  

44.70 · c = 37.2 + 17,980 · εs,bottom 

44.70 · c = 37.2 + 17,980 · 0.003 · (1.5625 - c) / c 

Iterate until the neutral axis depth was found. Solution: c = 1.199 in. 

εs, bottom = 0.00091 < Yield strain (= 0.00207 for 60 ksi) 

εs, top = 0.01123 > Yield strain (= 0.00207 for 60 ksi) 

C = 53.60 kips 

Tbottom = 16.35 kips 

Ttop = 37.2 kips 

Take moments about the NA to solve for nominal moment capacity 

Mn
-
 = C · (c - β1 · c / 2) + Ttop · (5.6875 - c) + Tbottom · (1.5625 - c) 

Mn
-
 = 53.60 · (1.199 - 0.7 · 1.199/2) + 37.2 · (5.6875 - 1.199) + 16.35 · (1.5625 - 1.199) 

Mn
-
 = 214.69 kips-in. = 17.89 kips-ft 
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Bending Capacity Check 

The deflected shape of the concrete deck and the bending moment diagram, if it was 

assumed that the shear studs have enough tensile capacity, was shown in Figure B-7: 

 

 

Figure B-7: Deflected shape and moment diagram before any failure of shear studs 

 

V = (Mn
+
 + Mn

-
)/s = (22.74 kip-ft + 17.89 kip-ft)/5.5 ft = 7.39 kips per foot of deck 

Note: The spacing, s, is equal to the distance between the mid-width of the fractured 

girder’s interior top flange and the edge of the interior top flange of the intact girder (5.5 

ft). 

The shear capacity is calculated using the ACI equation for shear shown below, 

which neglects the contribution of the reinforcement. The capacity is based on a 1-ft wide 

transverse deck section. The depth used in this equation is the depth to the centroid of the 

tension reinforcement (6.4375 in.). 

Vc = 2 · cf   · b · d = 2 · 6260  · 12 · 6.4375 = 12.22 kips 
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Thus, the shear capacity of the deck is controlled by the shear of the plastic deck 

mechanism (7.39 kips/ft). Therefore, the total length required to transfer the 306.04-kip 

force is: 

lM = 306.04 / 7.39 = 41.41 ft 

41.41 / 120 = 34.51 % of the span length 

 

B.5 SHEAR STUD CHECK 

In order to determine the tensile strength of the shear stud group, the guidelines given 

by Mouras (2008) are followed. The shear stud connection in the FSEL bridge consists of 

a group of three 5-in. tall shear studs spaced transversely. The haunch along the length of 

the bridge is 3 in. By using Equation B-1 and B-2 given below, the tensile capacity of the 

shear studs group is calculated to be 15.02 kips throughout the bridge.  

 Nb = kc · cf   · hh
1.5

                                                             Equation B-1 (ACI 318-08) 

 
Ncbg = 

NCO

NC

A

A
 · ψg,N ·  ψec,N · ψed,N · ψc,N · Nb        Equation B-2 (modified ACI 318-08) 

where: 

 Nb = concrete cone breakout strength of a single isolated stud in a continuous 

piece of cracked concrete (15.19 kips) 

kc = 24 for cast-in-place shear studs 

fc´ = concrete compressive strength (6260 psi) 
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hh = modified height of shear stud in concrete (hh = hef - dh = 4.625-3=1.625 in. < 

12/3=4 → hh =4 in.) 

hef = effective height of shear stud in concrete, which is equal to the length of stud 

less the height of the stud head (heff =5-0.375 = 4.625in.) 

dh= haunch height (3 in.) 

ca,min = distance between outer stud and the edge of flange (ca,min = 1.5 in.) 

Ncbg = design concrete breakout strength of a stud or group of studs (33.47 kips) 

ANc = projected concrete cone failure area of a stud group (ANc = 3 hef  wh = 166.5 

in
2
) 

Note: ANc = 3 hef  wh  because haunch is confined over the full height of the 

projected cone failure area. 

ANco = projected concrete cone failure area of a single stud in continuous concrete 

(ANco = 9hh
2
 = 144 in

2
) 

Ψg,N = group effect modification factor for studs on a bridge girder (Ψg,N = 0.90 

for 3 studs spaced transversely) 

ψec,N = eccentric load modification factor (ψec,N = 1) 

ψed,N = edge distance modification factor (ψed,N = 0.7+0.3 ca,min / (1.5 hef) = 0.76) 

ψc,N = cracked concrete modification factor (ψc,N = 1.25 for cast-in studs) 

Using Equation 3-2, a determination as to whether the shear studs pull out or a hinge is 

formed in the concrete deck can be made. A strip width equal to the shear stud spacing of 

22 inches is used to calculate the tension in the stud group. 
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Ncbg =T = 15.02 kips, M2/b + V = 22.74 · (22/12) / 6 + 7.39 · (22/12) = 20.50 kips 

Because T < M2/b + V, the shear studs pull out, which is consistent with test observations. 

 

B.6 SHEAR CHECK OF THE COMPOSITE SECTION AT THE SUPPORTS DUE TO TORSION 

AND BENDING 

The entire weight of the bridge and the live load were applied to the intact girder. The 

shear, which was developed at the end of the span, due to this loading was calculated 

below. 

V= VDL + VTRUCK = (2 · 0.427 + 2.33 + 0.65) · 120 / 2 +41  

V= 271.04 kips  

The unsupported load, which is first carried by the fractured girder, has to be 

transferred to the intact girder. The eccentricity between the chord of the intact girder 

bearings and the center of gravity (CG) of each load leads to a torque that is applied to 

the intact girder in addition to all the transferred loads. Due to the large horizontal 

curvature of the bridge (R = 1365.39 ft), the eccentricities of each load are assumed to be 

equal to the distance between the CG of each load and the centerline of the intact girder 

bearings. Table B-1 summarizes all the eccentricities. 
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Table B-1: Eccentricities of loads 

 Live or Dead Load Eccentricity 

 
 

(ft) 

1 Fractured Girder (FG) 12 

2 Railing above FG 17.17 

3 Deck above FG 11.83 

4 Intact Girder (IG) 0.00 

5 Railing above IG 5.17 

6 Deck above IG 0.17 

7 Truck 11.25 

 

Thus, the torques due to each load are equal to: 

tFG = 51.24 · 12 = 614.88 kip·ft 

tRFG = 39 · 17.17 = 669.63 kip·ft 

tDFG = 139.8 · 11.83 = 1,653.83 kip·ft 

tIG = 51.24 · 0 = 0 kip·ft 

tRIG = 39 · 5.17 = 201.63 kip·ft 

tDIG = 139.8 · 0.17 = 23.77 kip·ft 

tTRUCK = 76 · 11.25 = 855 kip-ft  

Assuming that half of the calculated torque is applied to each end of the intact girder, the 

torque developed at each end section is equal to: 

T = (614.88 + 669.63 + 1,653.83 - 201.63 - 23.77 + 855) / 2 = 1,784 kip-ft 

In all the above calculations for the applied torque, the curvature of the bridge is 

neglected due to the large radius of curvature of the test bridge. In order to include the 
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effect of the horizontal curvature, Equations 3-5 through 3-19 need to be used. In the case 

of the FSEL bridge: 

1. RINT = 1359.34 ft , LINT = 119.48 ft, φ = 0.0879 

2. RFG = 1371.2 ft, θ0FG = 0 rad, θ1FG = 0.0879 rads, FG  = 0.04395 rads 

3. RIG = 1359.34 ft, θ0IG = 0 rad, θ1IG = 0.0879 rads, IG  = 0.04395 rads 

4. RTRUCK = 1370.48 ft, θ0TRUCK = 0.0204 rad, θ1TRUCK = 0.03385  rads, TRUCK = 

0.027 rads 

The center of gravity of each component is found by inserting all the above values 

into Equation 3-18. 

 
ftDFG 76.1370

0879.096.12.1371

)04395.0sin()04395.00879.0sin(96.12.1371
2





  

 
ftDIG 90.1358

0879.096.134.1359

)04395.0sin()04395.00879.0sin(96.134.1359
2





  

 
ftDTRUCK 47.1370

)0204.003385.0(72.248.1370

)027.00204.0sin()027.003385.0sin(72.248.1370
2







 

By using Equation 3-19, the eccentricity of each component can be found as follows: 

eFG = 1370.76 – 1359.34 · cos(119.48/(2 · 1359.34)) = 12.73 ft 

eIG = 1358.90 – 1359.34 · cos(119.48/(2 · 1359.34)) = 0.87 ft 

eTRUCK = 1370.47 – 1359.34 · cos(119.48/(2 · 1359.34)) = 11.12 ft 

The calculated eccentricities are in a very good agreement with the assumed ones (eFG 

= 12.73 ft ~12 ft, eIG = 0.87 ft ~ 0 ft, eTRUCK = 11.12 ft ~ 11.25 ft). As a result, if the 



149 

 

bridge under consideration has a large radius of curvature, the eccentricities can be 

measured from the centerline of the intact girder. 

To compute the shear flow of the closed cross-section, Equation 3-20 is used. 

q = T / (2 · A) = 1,838.76 / (2 · 3850.36/144) = 34.38 kips/ft = 2.78 kips/in 

The shear stress due to torsion at every component of the composite section was 

calculated as: 

τCONC. DECK = q / t CONC. DECK = 2. 78 / 8 = 0.34 ksi 

τWEB = q / tWEB = 2. 78 / 0.5 = 5.56 ksi 

τBOTT. FLANGE = q / t BOTT. FLANGE = 2. 78 / 0.75 = 3.71 ksi 

The flexural shear was assumed to be carried by the webs of the composite section, 

since the contribution of the bottom flange and the concrete deck was small. The flexural 

shear stress at the webs of the composite section was calculated as: 

τFlexural WEB = V / (2 · hWEB · tWEB · cos(14°)) = 271.04 / (2 · 58.754 · 0.5 · 0.97) = 4.76 ksi 

Note: The factor 2 accounted for the fact that the composite sections consisted of two 

webs, which shared the total flexural shear. The cos(14°) accounted for the fact that the 

webs were not vertical and due to their inclination the shear which was developed was 

higher. 

The shear stress, which was developed at the concrete deck due to torsion, was equal 

to 0.34 ksi. According to ACI 318-08, the shear capacity of the reinforced concrete 

section is,  

VS = At ·fyt·b·cotθ/s 
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Thus,  

VTORSION = q·b = 2.78·72 = 200.16 kips ≤ VS = At ·fyt·b·cotθ/s= 0.62·60·72/6 = 446.4 kips 

 The shear stresses in the steel girder are checked according to the AASHTO 

Specifications (2007). The shear stress in the webs of the end panel should be limited to 

either the shear-yielding or shear-buckling resistance. The nominal shear stress capacity 

of the web panel (τn) is computed as the shear-buckling capacity to the shear yield 

strength ratio (C) multiplied by the plastic shear stress (τp) (τn=C·τp). The plastic shear 

stress is equal to 0.58fyw. The ratio C is determined as follows:  

If 
yww f

Ek

t

D
12.1 then C=1.0 

If 
ywwyw f

Ek

t

D

f

Ek
40.112.1  then 

yww f

Ek

tD
C

12.1
  

If 
yww f

Ek

t

D
40.1 then 
















yww
f

Ek

tD
C

2
)(

57.1
 

For the FSEL test bridge, D = 58.75 in., tw =0.5 in., E = 29,000 ksi, fyw =60 ksi. The 

factor k is calculated as  

2

0

5
5











D
d

k  

where d0 is the spacing from the support to the first stiffener adjacent to the support (144 

in.). AASHTO limits the factor d0/D to 1.5 for end panels. In the case of the FSEL test 

bridge, this limit is violated because d0/D=2.45>1.5. Due to this violation, the ratio is set 

to its actual value (i.e., d0/D=2.45). Moreover, it is important to mention that the ratio of 



151 

 

d0/D=2.45 provides a lower nominal shear stress than d0/D=1.5. By inserting the value of 

d0/D into the equation above, k is calculated to be 5.83. Because  

32.7440.1114
5.0

57


yww f

Ek

t

D

  

32.0
)(

57.1
2

















yww
f

Ek

tD
C .  

Having all the variables defined, the nominal shear stress (τn) is equal to τn = 

0.32·0.58· fyw = 11.14 ksi. 

The total shear stress in the webs includes contributions from the flexural shear stress 

and the torsional shear stress. As shown in Figure B-8, the shear stresses are added and 

subtracted in the east and west web, respectively. The east web controls because the shear 

from flexure and torsion add to each other. The total shear stress that develops in the east 

web is calculated to be τTOTAL = τWEB + τFlexural WEB = 5.56 + 4.76 = 10.32 ksi, which is less 

than the nominal shear stress capacity (τn = 11.14 ksi).  
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Figure B-8: Flexural and torsional shear stresses on the composite section 

 

The end diaphragm, which connects both girders, needs to be checked to ensure that it 

has adequate capacity to resist the torque applied to the intact girder. The force couples at 

the bearings of the two girders, which are produced by the torque applied on the intact 

girder, causes shearing of the end diaphragm. Thus, the forces acting on each side of the 

end diaphragm can be calculated as follows: 

VED = T / lb = 1,784 k-ft / 12 ft = 148.67 kips, where T is the torque applied to the 

intact girder, and lb is the distance between the two bearings. 

The nominal shear strength of the end diaphragm can be computed according to 

AASHTO Sec. 6.10.9.2.   

Vn = C·VP, where VP = 0.58·Fyw·D·tw = 0.58·60·57·0.5 = 991.8 kips  

and C is calculated as 
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, where k = 5. 

Thus, the shear strength of the end diaphragm (Vn = 0.29·991.8 = 287.62 kips) is 

adequate to resist the applied shearing force (VED = 148.67 kips). 

Summarizing the calculations, it is found that all the components of the section have 

adequate capacities to resist the applied load, except for the shear studs. The plastic 

mechanism in the deck between the girders cannot be formed due to the low tensile 

strength of the shear studs. As a result, a yield line analysis needs to be performed to 

determine the ultimate load that this bridge can sustain. 

 

B.7 ANALYSIS OF FSEL BRIDGE USING THE SIMPLIFIED STRIP MODEL  

In Chapter 3, the Simplified Strip Model was described. The deflection of each 

support of all strips was known at any iteration based on the assumed deflected shape.  

By inserting these deflections in the slope deflection equations, the moment diagram of 

the strip was calculated. From the moment diagram, the reactions of the strip, which 

represent the top flanges, could be calculated. Having defined the moment and the 

reactions of every strip, they were checked against the moment capacity of the concrete 

deck and the tensile capacity of the shear studs in each strip. In the event of the moment 

or the tensile reaction of a support had exceeded the nominal capacity, a failure would 

occur as described in Chapter 3. After this point the strip model was changed according 

to the failure. Table B-2 shows a sample of iteration. 
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Table B-2: A sample iteration of the Simplified Strip Model 

Three span Continuous Beam 

 

Intact Girder 

(in) 

Fractured 

Girder (in) 
Units in kips-in Units in kips 

Strip 

center 

(in) 

West East West East Ma 
Mb 

(haunch) 

Mb 

(deck) 
Mc Md Ra Rb Rc Rd 

-682 -0.26 -0.29 -0.30 -0.42 0.0 75.0 54.6 -169.1 0.0 1.04 -4.43 5.74 -2.35 

-660 -0.42 -0.46 -0.47 -0.66 0.0 118.3 86.2 -267.0 0.0 1.64 -7.00 9.06 -3.71 

-638 -0.57 -0.63 -0.64 -0.91 0.0 161.7 117.9 -364.9 0.0 2.25 -9.56 12.38 -5.07 

-616 -0.72 -0.80 -0.81 -1.15 0.0 205.1 149.5 -462.7 0.0 2.85 -12.13 15.70 -6.43 

-594 -0.88 -0.97 -0.98 -1.39 0.0 248.5 181.1 -560.6 0.0 3.45 -14.69 19.03 -7.79 

-572 -1.02 -1.14 -1.16 -1.62 0.0 297.0 219.1 -637.4 0.0 4.12 -17.10 21.83 -8.85 

-550 -1.14 -1.33 -1.35 -1.80 0.0 368.1 285.8 -619.3 0.0 5.11 -18.83 22.31 -8.60 

-528 -1.25 -1.51 -1.54 -1.97 0.0 439.3 352.6 -601.1 0.0 6.10 -20.55 22.80 -8.35 

-506 -1.36 -1.70 -1.74 -2.14 0.0 510.4 419.3 -582.9 0.0 7.09 -22.27 23.28 -8.10 

-484 -1.48 -1.88 -1.93 -2.32 0.0 581.6 486.0 -564.8 0.0 8.08 -24.00 23.77 -7.84 

-462 -1.59 -2.07 -2.13 -2.49 0.0 652.7 552.8 -546.6 0.0 9.07 -25.72 24.25 -7.59 

-440 -1.71 -2.25 -2.32 -2.67 0.0 723.8 619.5 -528.4 0.0 10.05 -27.45 24.73 -7.34 

-418 -1.82 -2.39 -2.53 -2.85 0.0 645.7 559.0 -394.7 0.0 8.97 -23.42 19.93 -5.48 

-396 -1.93 -2.51 -2.75 -3.04 0.0 482.2 425.8 -194.9 0.0 6.70 -16.10 12.11 -2.71 

-374 -2.03 -2.63 -2.96 -3.23 0.0 318.7 292.6 5.0 0.0 4.43 -8.78 4.29 0.07 

-352 -2.14 -2.74 -3.18 -3.42 0.0 155.2 159.4 204.8 0.0 2.16 -1.47 -3.53 2.84 

-330 -2.25 -2.86 -3.40 -3.61 0.0 -8.3 26.1 404.6 0.0 -0.11 5.85 -11.35 5.62 

-308 -2.35 -2.97 -3.61 -3.80 0.0 173.4 166.2 
 

0.0 2.41 -3.61 
 

1.20 

-286 -2.46 -3.09 -3.83 -3.99 0.0 150.7 144.4 
 

0.0 2.09 -3.14 
 

1.05 
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-264 -2.52 -3.17 -4.05 -4.18 0.0 128.0 122.6 
 

0.0 1.78 -2.67 
 

0.89 

-242 -2.58 -3.26 -4.26 -4.37 0.0 105.3 100.9 
 

0.0 1.46 -2.19 
 

0.73 

-220 -2.64 -3.34 -4.48 -4.56 0.0 82.6 79.1 
 

0.0 1.15 -1.72 
 

0.57 

-198 -2.70 -3.43 -4.70 -4.75 0.0 59.9 57.4 
 

0.0 0.83 -1.25 
 

0.42 

-176 -2.76 -3.52 -4.91 -4.93 0.0 37.2 35.6 
 

0.0 0.52 -0.77 
 

0.26 

-154 -2.82 -3.60 -5.13 -5.12 0.0 14.4 13.8 
 

0.0 0.20 -0.30 
 

0.10 

-132 -2.85 -3.62 -5.36 -5.35 0.0 -71.9 -68.9 
 

0.0 -1.00 1.50 
 

-0.50 

-110 -2.85 -3.60 -5.59 -5.60 0.0 -211.3 -202.5 
 

0.0 -2.93 4.40 
 

-1.47 

-88 -2.85 -3.57 -5.82 -5.85 0.0 -350.7 -336.1 
 

0.0 -4.87 7.31 
 

-2.44 

-66 -2.85 -3.54 -6.05 -6.10 0.0 -490.1 -469.7 
 

0.0 -4.87 7.31 
 

-3.40 

-44 -2.85 -3.51 -6.29 -6.35 0.0 -629.5 -603.2 
 

0.0 -4.87 7.31 
 

-4.37 

-22 -2.85 -3.48 -6.52 -6.60 0.0 -768.9 -736.8 
 

0.0 -4.87 7.31 
 

-5.34 

0 -2.85 -3.45 -6.75 -6.85 0.0 -908.2 -870.4 
 

0.0 -4.87 7.31 
 

-6.31 

22 -2.77 -3.40 -6.46 -6.56 0.0 -789.0 -756.2 
 

0.0 -4.87 7.31 
 

-5.48 

44 -2.70 -3.35 -6.18 -6.27 0.0 -669.8 -641.9 
 

0.0 -4.87 7.31 
 

-4.65 

66 -2.62 -3.29 -5.89 -5.97 0.0 -550.6 -527.7 
 

0.0 -4.87 7.31 
 

-3.82 

88 -2.54 -3.24 -5.60 -5.68 0.0 -431.4 -413.4 
 

0.0 -4.87 7.31 
 

-3.00 

110 -2.47 -3.19 -5.31 -5.39 0.0 -312.2 -299.2 
 

0.0 -4.34 6.50 
 

-2.17 

132 -2.39 -3.14 -5.03 -5.10 0.0 -193.0 -185.0 
 

0.0 -2.68 4.02 
 

-1.34 

154 -2.32 -3.06 -4.77 -4.84 0.0 -128.3 -122.9 
 

0.0 -1.78 2.67 
 

-0.89 

176 -2.26 -2.95 -4.56 -4.63 0.0 -128.9 -123.5 
 

0.0 -1.79 2.69 
 

-0.90 

198 -2.20 -2.83 -4.35 -4.41 0.0 -129.5 -124.1 
 

0.0 -1.80 2.70 
 

-0.90 

220 -2.14 -2.72 -4.14 -4.20 0.0 -130.2 -124.7 
 

0.0 -1.81 2.71 
 

-0.90 

242 -2.08 -2.61 -3.93 -3.98 0.0 -130.8 -125.3 
 

0.0 -1.82 2.72 
 

-0.91 

264 -2.02 -2.49 -3.72 -3.77 0.0 -131.4 -125.9 
 

0.0 -1.83 2.74 
 

-0.91 

286 -1.96 -2.38 -3.51 -3.55 0.0 -132.1 -126.5 
 

0.0 -1.83 2.75 
 

-0.92 

308 -1.85 -2.27 -3.31 -3.35 0.0 -95.4 -91.4 
 

0.0 -1.33 1.99 
 

-0.66 
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330 -1.75 -2.17 -3.10 -3.15 0.0 -55.0 -52.8 
 

0.0 -0.76 1.15 
 

-0.38 

352 -1.64 -2.06 -2.90 -2.95 0.0 -14.7 -14.1 
 

0.0 -0.20 0.31 
 

-0.10 

374 -1.53 -1.96 -2.70 -2.75 0.0 25.7 24.6 
 

0.0 0.36 -0.54 
 

0.18 

396 -1.43 -1.85 -2.49 -2.55 0.0 66.1 63.3 
 

0.0 0.92 -1.38 
 

0.46 

418 -1.32 -1.75 -2.29 -2.35 0.0 106.4 102.0 
 

0.0 1.48 -2.22 
 

0.74 

440 -1.21 -1.63 -2.09 -2.16 0.0 -172.5 -114.4 524.8 0.0 -2.40 12.08 -16.97 7.29 

462 -1.08 -1.49 -1.89 -1.99 0.0 -83.7 -43.6 396.6 0.0 -1.16 7.83 -12.18 5.51 

484 -0.96 -1.36 -1.70 -1.82 0.0 5.1 27.1 268.4 0.0 0.07 3.59 -7.39 3.73 

506 -0.84 -1.22 -1.50 -1.65 0.0 93.9 97.8 140.3 0.0 1.30 -0.66 -2.59 1.95 

528 -0.72 -1.09 -1.31 -1.48 0.0 182.8 168.5 12.1 0.0 2.54 -4.91 2.20 0.17 

550 -0.59 -0.95 -1.11 -1.31 0.0 271.6 239.3 -116.1 0.0 3.77 -9.16 7.00 -1.61 

572 -0.47 -0.81 -0.92 -1.14 0.0 360.4 310.0 -244.2 0.0 5.01 -13.40 11.79 -3.39 

594 -0.39 -0.69 -0.77 -0.97 0.0 329.4 282.5 -234.1 0.0 4.58 -12.40 11.08 -3.25 

616 -0.33 -0.57 -0.64 -0.80 0.0 271.9 233.2 -193.2 0.0 3.78 -10.24 9.14 -2.68 

638 -0.26 -0.45 -0.50 -0.63 0.0 214.4 183.8 -152.3 0.0 2.98 -8.07 7.21 -2.12 

660 -0.19 -0.33 -0.37 -0.46 0.0 156.9 134.5 -111.5 0.0 2.18 -5.91 5.28 -1.55 

682 -0.12 -0.21 -0.23 -0.29 0.0 99.4 85.2 -70.6 0.0 1.38 -3.74 3.34 -0.98 
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The empty cells of Table B-2 indicated a shear stud failure. The cells, which were 

shaded with green, show a hinge formation at the interior top flange of the intact girder. 

The hinge length was equal to eight times the width of a strip, since it was found that the 

moment at the interior top flange of the intact girder exceeded the nominal moment 

capacity of the concrete deck at eight strips.  The hinge formation, following the pull out 

of the shear studs at the interior top flange of the fractured girder, resulted in a 

mechanism of the strip beam. For this reason the reactions of the top flange of the intact 

girder for these eight strips became constant. The analysis of the Simplified Strip model 

indicated that the bridge had adequate capacity to sustain the design truck load in the 

event of a fracture occurred at the centerline of one of its girders. The Yield Line Model 

was used to estimate the ultimate load that the FSEL bridge could sustain.  

 

B.8 ANALYSIS OF FSEL BRIDGE USING THE YIELD LINE MODEL 

Following the procedure of the Yield Line Model described in Chapter 5 the ultimate 

load was estimated. The unit moment capacity of a 1-ft strip concrete deck was calculated 

in a similar way as the moment capacity of the 22-in wide strip, which was described in 

Appendix A. Table B-3 summarizes the basic parameters of the FSEL bridge.  
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Table B-3: Basic parameters of the FSEL bridge 

Span Length 

L 120.00 ft 

Outer Horizontal Curvature 

R 1377.00 ft 

Distance of the deck's outer edge from  

the intact girder's interior top flange 

b 14.17 ft 

Moment Capacity of the Deck 

mnT 17.62 kip-ft 

mnL 10.27 kip-ft 

mpT 22.74 kip-ft 

mpL 14.76 kip-ft 

Moment Capacity of the Railing 

Mn 416.27 kip-ft 

 

Following the procedure described in Chapter 5, Table B-4 can be constructed. All 

the variables presented in this table are defined as follows:  

1. a is equal to the horizontal distance from point A or D to the origin.  

2. θi (radians) is the angle measured from the positive x-axis to the radial line that 

connects the origin with points D, C, or B (line OD, OC, OB in Figure 5-9).  

3. Xi, Yi are the coordinates of points A, B, C, and D.  

4. l is the length of each yield line, and it is calculated by inserting the end point 

coordinates into the distance formula (Equation 5-4).  

5. α is the angle of each yield line with the horizontal axis (Equation 5-3) 

6. The moment capacity (mb) of each hinge line is calculated according to Equation 5-2.  
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7. hi is the height of DOC, COB, or BOA triangle. 

8. θrotation is the angle of rotation of each plane (DOC, COB, and BOA) with respect to 

the horizontal for yield lines along the perimeter; for diagonal yield lines, θrotation is 

the angle of rotation between two adjacent planes (e.g., DOC with COB, and COB 

with BOA) 

9. The last factors (dIW, IWHinge, IWRailing, IWTOTAL) are, respectively, the internal work 

(IW) of each hinge line, the summation of the yield lines IW, the IW of the railing, 

and the total IW. 

 

Table B-4: Internal work calculation for FSEL bridge 

a (ft) 
 

θi (rad) Χ Υ l α mb h θrotation dIW IWHinge 

41 

P
e

ri
m

e
te

r 0.015 41.0 0.6 
      

116.71 

 
0.611 20.2 14.2 24.8 0.58 14.5 22.9 0.044 15.72 IWRailing 

 
2.531 -20.2 14.2 40.5 0.00 16.6 14.2 0.071 47.50 52.54 

 
3.127 -41.0 0.6 24.8 2.56 14.5 22.9 0.044 15.72 IWTOTAL 

 

D
ia

go
n

al
s 

   
24.7 0.61 18.4 

 
0.0415 18.88 169.25 

    
24.7 0.61 18.4 

 
0.0415 18.88 

 

 

As mentioned previously, the length a and the magnitude of the truck load are 

mutually dependent. Accordingly, one of these variables should be fixed in order to 

obtain the other one. It is recommended that the live load magnitude corresponding to the 

number of trucks be selected first; with this value set, the length a for the given load 

magnitude can be obtained. A good starting value is 2×HS-20 trucks. If a valid solution 

for the length a is computed, the given truck load is a possible failure loading. In 

subsequent iterations, the truck load should be decreased until a valid solution for a no 
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longer exists. The minimum truck load is the last one that gave a physically admissible 

solution for the length a. In contrast, if the initially chosen truck load does not provide a 

physically admissible solution for the length a, then the truck load needs to be increased 

in subsequent iterations.  

Once the length a has been computed, all the variables associated with the Yield Line 

Model can be calculated. After several iterations, the minimum wheel multiplier was 

computed to be equal to 3.66. As a result, the front wheel and middle/rear wheel loads are 

equal to 14.64 kips and 58.56 kips, respectively. Table B-5 summarizes the external work 

calculation for the minimum truck load multiplier of 3.66. 

   

Table B-5: External work calculation of the truck load 

Tr
u

ck
 L

o
ad

 

Truck Load 

  P Χpoint Load Ypoint Load rLOAD r δi EW 

Front Wheel 14.66 14 3.42 14.41 31.41 0.54 7.93 

Front Wheel 14.66 14 9.42 16.87 24.89 0.32 4.72 

Middle Wheel 58.63 0 3.42 3.42 14.17 0.76 44.48 

Middle Wheel 58.63 0 9.42 9.42 14.17 0.34 19.65 

Rear Wheel 58.63 -14 3.42 14.41 31.41 0.54 31.73 

Rear Wheel 58.63 -14 9.42 16.87 24.89 0.32 18.89 

    
EWTRUCK 127.41 

    
EWDL 41.84 

    
EWTOTAL - IWTOTAL 0.00 

 

The Yield Line Model indicated that the ultimate load capacity of the FSEL bridge 

was 3.66×HS-20 Trucks or 263.52 kips, which is smaller than the actual load of 363.75 

kips that the bridge carried during the test. As previously mentioned, the difference 

between the estimated and actual load capacity is due to two reasons. First, the point 
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loads used in the analysis produce a larger moment than the distributed load used in the 

test because of the way in which the road base was distributed and positioned on the 

bridge. Second, the positive moment capacity of the railing used for estimating the bridge 

capacity is smaller than the observed one because of the assumptions made in defining 

the effective width of the concrete deck that contributes to the railing response. These 

assumptions were made to ensure a conservative estimate of the overall capacity of a 

bridge following the fracture of one of its girders.  

The initial strength checks for the bridge, which were performed earlier, should be 

recalculated for the truck load of 3.66 × HS-20 (263.52 kips). As before, the moment at 

the mid-span of the intact girder produced by this increased truck load is found to be 

13,944 kip-ft, which is less than the plastic moment capacity of the intact girder section. 

MP = 250,047.67 kip-in. = 20,837.31 kip-ft> 13,944 kip-ft 

The force needed to be transferred is found to be: 

F = (0.427 + 2.33/2 + 0.65/2) · 120 + 263.52 = 493.56 kips 

F = 493.56 kips  

The length of the bridge needed to transfer the load F based on the flexural capacity of 

the bridge is: 

lM = 493.56 / 7.39 = 66.79 ft 

66.79 / 120 = 55.66 % of the span length 

The flexural shear at the end support is found to be: 

V= VDL + VTRUCK = (2 · 0.427 + 2.33 + 0.65) · 120 / 2 +142  
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V= 372 kips  

The torques due to each load are equal to: 

tFG = 51.24 · 12 = 614.88 kips·ft 

tRFG = 39 · 17.17 = 669.63 kips·ft 

tDFG = 139.8 · 11.83 = 1,653.83 kips·ft 

tIG = 51.24 · 0 = 0 kips·ft 

tRIG = 39 · 5.17 = 201.63 kips·ft 

tDIG = 139.8 · 0.17 = 23.77 kips·ft 

tTRUCK = 263.52 · 11.25 = 2,964.6 kip-ft  

Assuming that half of the calculated torque is applied to each end of the intact girder, the 

torque developed at the end section is equal to: 

T = (614.88 + 669.63 + 1,653.83 - 201.63 - 23.77 + 2,964.6) / 2 = 2,838.77 kip-ft 

Knowing the applied torque at the end support, the shear flow of the end section is 

calculated to be: 

q = T / (2 · A) = 2,838.77 / (2 · 3850.36/144) = 53.08 kips/ft = 4.42 kips/in 

The shear stresses in the concrete deck, webs, and bottom flange are computed by 

following the same procedure as before. 

       τCONC. DECK = q / t CONC. DECK = 4.42 / 8 = 0.55 ksi 

       τWEB = q / tWEB = 4.42 / 0.5 = 8.84 ksi 
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       τBOTT. FLANGE = q / t BOTT. FLANGE = 4.42 / 0.75 = 5.89 ksi 

       τFlexural WEB = V / (2 · hWEB · tWEB · cos(14°)) = 372 / (2 · 58.754 · 0.5 · 0.97) = 6.53 ksi 

The shear stress, which develops in the concrete deck due to torsion, is equal to 0.55 

ksi. According to ACI 318-08, the shear capacity of a reinforced concrete section is VS = 

At ·fyt·b·cotθ/s. As a result,  

VTORSION = q·b = 4.42·72 = 318.24 kips ≤ VS = At ·fyt·b·cotθ/s= 0.62·60·72/6 = 

446.4 kips 

The shear stress in the webs is a combination of the flexural and the torsional shear 

stresses. As shown in Figure B-8, the shear stresses add together in the east web, and they 

must be subtracted in the west web. The east web controls in this case. The total shear 

stress that develops in the east web is calculated to be:  

       τTOTAL = τWEB+τFlexural WEB = 8.84+6.53 = 15.37 ksi which is bigger than τn =11.14 ksi. 

Regarding the end diaphragm, the shearing forces at each edge of the end diaphragm are 

equal to: 

       VED = T / lb = 2,838.77 / 12 = 236.56 kips 

where T is the torque applied on the intact girder, and lb is the distance between the two 

bearings. Thus, the shear strength of the end diaphragm (Vn = 0.29·991.8 = 287.62 kips) 

is adequate to resist the applied shearing force (VED = 236.56 kips). 

Summarizing the calculations, it is found that the web stresses of the end section 

exceed the nominal stress before the collapse of the bridge. This result indicates that the 

webs would buckle under the applied load. Buckling of the webs, however, was not 

observed in the test. The difference between the predicted response and the observed 

behavior stems from some of the assumptions made in the development of the simplified 



164 

 

analysis procedure to compute the response of a twin steel box-girder bridge following 

the fracture of one of its girders. The buckling capacity of the webs in shear is based on 

simply supported boundary conditions. The actual boundary conditions in a box girder 

may approach a fixed condition. Moreover, in experimental studies of composite girders, 

the webs of end panels were able to reach their tension field capacity. In the calculations 

performed for this example, the buckling capacity of the girder webs is low due to the 

large stiffener spacing in the last panels, which exceed the AASHTO maximum spacing 

requirements. Based upon the web buckling capacity computed using the AAHTO 

specifications, however, the estimated bridge capacity would be 1.48 HS-20 trucks 

(106.56 kips). The variation in the results computed with the simplified modeling 

approach suggests that, in certain cases, it may be desirable to perform detailed finite 

element analyses to compute the stresses in critical components. 

 

. 
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APPENDIX C 

Analysis of the Woodway Bridge (Span 11) using the simple models 

C.1 INTRODUCTION 

This example focuses on span 11 of the Woodway exit ramp on IH 610/Katy 

Freeway. This bridge is simply supported and straight (i.e., R=∞), and its total is 199.5 ft. 

Figure C-1 shows the elevation view of Woodway Bridge Span 11 and other general 

information. The top and bottom flange thickness changed along the span of the bridge. 

Table C-1 summarizes all the dimensions of both flanges along the span of the bridge. 

Only three steel sections were used along the length of the span. The Transition sections 

occurred due to different cutoff points for the top and bottom flanges. Figure C-2 and C-3 

present the typical cross-section of the bridge and steel girder respectively. A typical 

SSTR section was used as railing. Since the bridge drawings did not provide information 

for the expansion joints, it was assumed that there were 0.75 in. wide expansion joints 

every 30 ft. 

 

Table C-1: General information of bottom and top flange 

Type of Section 
Length of application  

measured from south 
Bottom Flange Top Flange 

  (ft) tBF (in) bBF (in) tTF (in) bBF (in) 

End Section 0-52 1.50 44.5 1.25 18 

Transition Section 52-60 2.00 44.5 1.25 18 

Middle Section 60-139.5 2.00 44.5 1.75 18 

Transition Section 139.5-147.5 2.00 44.5 1.25 18 

End Section 147.5-199.5 1.50 44.5 1.25 18 
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Figure C-1: Elevation view of Woodway Bridge Span 11 

 

Figure C-2: Typical cross-section of the Woodway Bridge Span 11 
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Figure C-3: Typical cross-section of the steel girder of the Woodway Bridge Span 11 

 

C.2 CALCULATION OF THE TRANSMITTED LOAD TO THE INTACT GIRDER  

It was assumed that half of the entire weight of the bridge and the entire live load on 

the bridge was needed to be resisted from the intact girder at even of a fracture occurred. 

These loads were calculated below: 

Weight of one steel box girder:  

Wgirder = 1.15 · (244.72/144 ft
2
) · (0.490 kips/ft

3
) = 0.958 kip/ft (End Section) 

Wgirder = 1.15 · (266.95/144 ft
2
) · (0.490 kips/ft

3
) = 1.044 kip/ft (Transition Section) 

Wgirder = 1.15 · (284.97/144 ft
2
) · (0.490 kips/ft

3
) = 1.116 kip/ft (Middle Section) 
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Notes: This was the weight of one girder. Cross-sectional areas of End, Transition, and 

Middle section were 244.72 in
2
, 266.95 in

2
 and 284.97 in

2
 respectively. Density of steel 

was taken as 490 lb/ft
3
. To account for internal diaphragms, stiffeners, etc., the weight of 

the steel girder was multiplied by a factor of 1.15. 

Concrete deck: 

Wdeck = (317 · 8 / 144 ft
2
) · (0.150 kip/ft

3
) = 2.642 kip/ft 

Notes: Width of concrete deck was 26 ft-5 in. = 317 in. Density of concrete was taken as 

150 lb/ft
3
. Deck thickness was 8 in. 

SSTR Railing 

Wrailings = 2 · (312/144 ft
2
) · (0.150 kip/ft

3
) = 0.65 kip/ft 

Notes: Multiplied by 2 to account for two rails. Cross-sectional area of one rail was 

calculated to be 312 in
2
 

Simulated Truck (HS-20) 

Wtruck = 2 · 72 kips = 144 kips (with a load factor of 2) 

Load to be transmitted 

F = Σ(Wgirder i · Li) + (Wdeck/2 + Wrailings/2) · L + Wtruck 

F = (0.958·104 + 1.044·16 + 1.116·79.5) + (2.642 + 0.65)·199.5/2 + 144 = 677.4 kips 

F = 677.4 kips  
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C.3 CALCULATION OF MAXIMUM MOMENT ON THE BRIDGE 

Moment due to dead load 

The moment at the mid-span was calculated to be MDL = 27,102.23 kip-ft. Moreover, 

it was found that MDL(52) and MDL(60) were 20,783.66 kip-ft and 22,720.33 kip-ft 

respectively. 

Moment due to truck load 

As before, the middle axle of the 144-kip truck load is positioned at the centerline of 

the bridge. The maximum moment at the mid-span of the bridge due to both the dead 

load and the truck load is calculated to be Mmax=33,724 kip-ft. By superimposing the 

moment diagrams for these loads, the moments at the flange transitions are 

M(52)=24,703 kip-ft and M(60)=27,242 kip-ft. 

 

C.4 ANALYSIS OF COMPOSITE SECTION 

The plastic moment capacity of the intact girder was calculated so to be checked if 

the intact girder had enough flexural capacity to sustain the whole load applied on the 

bridge and the dead load. All the three different composite sections described above 

would be checked. The specified minimum yield strength of fy = 50 ksi was used in the 

calculations. 

Middle Section 

Find the plastic neutral axis by setting T = C: 

T = As · fy = (44.5 · 2 + 2 · 88.644 · 0.75 + 2 · 18 · 1.75) · 50 = 14,248.3 kips 

Cc = 0.85 · fc’ · ts · beff = 0.85 · 4 · 8 · 158.5 = 4,311.2 kips 
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Since T > C then the plastic neutral axis was in the girder. 

Cs = (As · fy – Cc) / 2 = (14,248.3 – 4,311.2) / 2 = 4,968.55 kips 

Using this equation, the compressive force needed to be developed in the steel section 

in order to achieve equilibrium (C = T), was determined. 

Ctfl = 2 · ttfl · btfl · fy = 2 · 1.75 · 18 · 50 = 3150 kips 

The top flanges could resist 3150 kips in compression which was less than required to 

obtained equilibrium. As a result the PNA fell in the web. Assume that x was the distance 

of the neutral axis from the bottom of the top flange (Figure C-4), then the depth of the 

neutral axis in the webs could be determined as a function of the depth: 

x = (4,968.55 - 3150) / (2 · 0.75 · (17/16)
0.5

 · 50) = 23.52 in. 

Note: The (17/16)
0.5

 factor was based on the slope of the web. 

 

 

Figure C-4: Plastic neutral axis location 

 

So: 

Cc = 4,311.2 kips 
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Ctfl = 3150 kips 

Cweb = 1818.55 kips 

Tweb = Aweb · fy = 2 · 0.75 · (86-23.52) · (17/16)
0.5

 · 50 = 4830.22 kips 

Tbottom flange = Abottom flange · fy = 44.5 · 2 · 50 = 4450 kips 

By taking moments about the PNA, the nominal plastic moment capacity was 

calculated: 

Mbottom flange = Tbottom flange · (1 + 86 – 23.52) = 282,486 kip-in. 

Mweb = Cweb · 23.52/2 + Tweb · (86-23.52) / 2 = 172,282.22 kip-in. 

MC tfl = Ctfl · (1.75/2 + 23.52) = 76,844.25 kip-in. 

MC concrete = Cc · (4 + 2 + 23.52) = 127,266.62 kip-in. 

Note: The 2-in. term added in the moment arm accounted for distance of the bottom of 

the concrete deck from the bottom of the top flange. 

Thus, MP = 282,486 + 172,282.22 + 76,844.25 + 127,266.62  

MP Middle Section = 658,879.09 kip-in. = 54,906kip-ft 

Earlier, Mmax was found to be 33,724 kip-ft. The plastic moment capacity had more 

than enough capacity to sustain the whole dead load of the bridge plus the live truck load. 

Following the same procedure, the plastic moment capacity of the Transition and End 

section were calculated and found to be larger than the maximum moment which would 

be applied to these sections if a fracture of the outer girder occurred. 
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MP Transition Section = 633,734kip-in. = 52,811kip-ft > M (60) = 27,242 kip-ft 

MP End Section = 564,757kip-in. = 47063kip-ft > M (52) = 24,703 kip-ft 

 

C.5 ANALYSIS OF CONCRETE DECK  

As before, the bending and shear capacity of the concrete deck were checked to 

ensure that they were adequate to resist the moment and the shear produced by the 

unsupported load of the fractured girder. These capacities were based on a 1-ft wide 

transverse deck section as shown in the Figure C-5. 

 

 

Figure C-5: Actual and modified 1-ft wide section of the concrete deck in the transverse 

direction 

 

Positive Moment Capacity 

The assumed strain and stress failure profile are shown in the figure below: 
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Figure C-6: Strain and stress gradients at positive moment regions 

 

According to ACI 318-08, it was assumed that the ultimate strain of concrete was 

0.003 in./in. and the bottom reinforcement had yielded prior to failure. The top 

reinforcement was always included in the calculations for more accurate results. The 

concrete strength was taken as 4 ksi and the reinforcement strength as 60 ksi, their 

nominal strength specified in the bridge plans.  

Let C = T: 

C = 0.85 · fc´ · β1 · c · b = 0.85 · 4 · 0.85 · 12 · c = 34.68 · c 

Note: β1 = 0.85 for 4 ksi concrete. 

εs, bottom = 0.003 · (6.4375 - c) / c 

εs, top = 0.003 · (2.3125 - c) / c 

Tbottom = As,bottom · fy = 2 · 0.372 · 60 = 44.64 kips 

Ttop = As,top · εs, top · Es = 2 · 0.372 · 29,0000 · εs,top = 21,576 · εs,top 

34.68 · c = 44.64 + 21,576 · εs,top 
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34.68 · c = 44.64 + 21,576 · 0.003 · (2.3125 - c) / c 

Iterate until the neutral axis depth was found. Solution: c = 1.808 in. 

εs, bottom = 0.00768 > Yield strain (= 0.00207 for 60 ksi) 

εs, top = 0.000837 < Yield strain (= 0.00207 for 60 ksi) 

C = 80.82 kips 

Tbottom = 44.64 kips 

Ttop = 18.06 kips 

Take moments about the NA to solve for nominal moment capacity 

Mn
+
 = C · (c - β1 · c / 2) + Ttop · (2.3125 - c) + Tbottom · (6.4375 - c) 

Mn
+
 = 80.82·(1.808 - 0.85·1.808/2) + 18.06·(2.3125 – 1.808) + 44.64·(6.4375 - 1.808) 

Mn
+
 = 299kip-in. = 24.98 kip-ft 

 

Negative Moment Capacity 

The assumed strain and stress failure profile are shown in the figure below: 
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Figure C-7: Strain and stress gradients at negative moment regions 

 

According to ACI 318-08, it was assumed that the ultimate strain of concrete was 

0.003 in./in. and the top reinforcement had yielded prior to failure. The bottom 

reinforcement was always included in the calculations for more accurate results. The 

concrete strength was taken as 4 ksi and the reinforcement strength as 60 ksi.  

Let C = T: 

C = 0.85 · fc´ · β1 · c · b = 0.85 · 4 · 0.85 · 12 · c = 34.68 · c 

Note: β1 = 0.85 for 4 ksi concrete. 

εs, bottom = 0.003 · (1.5625 - c) / c 

εs, top = 0.003 · (5.6875 - c) / c 

Tbottom = As,bottom · εs, bottom · Es = 2 · 0.372 · 29,0000 · εs,bottom = 21,576 · εs,bottom 

Ttop = As,top · fy = 2 · 0.372 · 60 = 44.64 kips  

34.68 · c = 44.64 + 21,576 · εs,bottom 

34.68 · c = 44.64 + 21,576 · 0.003 · (1.5625 - c) / c 

Iterate until the neutral axis depth was found. Solution: c = 1.443 in. 

εs, bottom = 0.000248 < Yield strain (= 0.00207 for 60 ksi) 
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εs, top = 0.008824 > Yield strain (= 0.00207 for 60 ksi) 

C = 50.04 kips 

Tbottom = 5.35 kips 

Ttop = 44.64 kips 

Take moments about the NA to solve for nominal moment capacity 

Mn
-
 = C · (c - β1 · c / 2) + Ttop · (5.6875 - c) + Tbottom · (1.5625 - c) 

Mn
-
 = 50.04 · (1.443 - 0.85 · 1.808/2) + 44.64 · (5.6875 - 1.808) + 5.35 · (1.5625 - 1.808) 

Mn
-
 = 205kip-in. = 17.13 kip-ft 

 

Bending Capacity Check 

The deflected shape of the concrete deck and the bending moment diagram, if it 

assumed that the shear studs have enough tensile capacity, is shown in Figure C-8: 

 

 

Figure C-8: Deflected shape and moment diagram before any failure of shear studs 
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V = (Mn
+
 + Mn

-
)/s = (24.98 kip-ft + 17.13 kip-ft)/6.17 ft = 6.83 kips 

Note: The spacing, s, is equal to the distance between the mid-width of the fractured 

girder’s interior top flange and the edge of the interior top flange of the intact girder (6 

ft–2 in.).  

The shear capacity us calculated using the ACI 3108-08 equation for shear shown 

below. The capacity is again based on a 1-ft wide transverse deck section. The depth used 

in this equation is the depth to the centroid of the tension reinforcement (6.4375 in.). 

Vc = 2 · cf   · b · d = 2 · 4000  · 12 · 6.4375 = 9.77 kips 

Thus, the shear associated with the plastic deck mechanism controls (6.83 kips/ft), 

and the total length required to transfer the 677.4-kip force is: 

lM = 677.4 / 6.83 = 99.18 ft 

99.18 / 199.5 = 49.71 % of the span length 

 

C.6 SHEAR STUD CHECK 

As in Appendix B, the tensile strength of a shear stud group is determined based on 

the guidelines recommended by Mouras (2008). The shear stud connections used in span 

11 of the Woodway Bridge consist of a group of three 6-in tall shear studs spaced 

transversely. The haunch differs along the length of the bridge from 0.25 in. to 0.5 in.  By 

using the modified ACI 318-08 equations presented in Appendix B (and shown again 

below for convenience), the tensile capacity of the shear stud group is calculated to be 

19.06 kips throughout the bridge.  



178 

 

 Nb = kc · cf   · hh
1.5

 Equation B-1 (ACI 318-08) 

 
Ncbg = 

NCO

NC

A

A
 · ψg,N ·  ψec,N · ψed,N · ψc,N · Nb Equation B-2 (modified ACI 318-08) 

where: 

 Nb = concrete cone breakout strength of a single isolated stud in a continuous piece of 

cracked concrete (22.31 kips) 

kc = 24 for cast-in-place shear studs 

fc´ = specified concrete compressive strength (4000 psi) 

hh = modified height of shear stud in concrete                                                               

(hh=hef - dh = 5.625-0.5=5.125 in. < 18/3=6 → hh =6 in.) 

hef = effective height of shear stud in concrete, which is equal to the length of stud less 

the height of the stud head (heff =6-0.375 = 5.625in.) 

dh= haunch height (0.5 in.) 

ca,min = distance between outer stud and the edge of flange (ca,min = 3 in.) 

Ncbg = design concrete breakout strength of a stud or group of studs (19.06 kips) 

ANc = projected concrete cone failure area of a stud group (ANc = 3 hef  wh = 303.75 in
2
) 

Note: ANc = 3 hef  wh  because haunch confined full height projected cone area. 
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ANco = projected concrete cone failure area of a single stud in continuous concrete 

(ANco = 9hh
2
 = 324 in

2
) 

Ψg,N = group effect modification factor for studs on a bridge girder (Ψg,N = 0.90 for 3 

studs spaced transversely) 

ψec,N = eccentric load modification factor (ψec,N = 1) 

ψed,N = edge distance modification factor (ψed,N = 0.7+0.3 ca,min / (1.5 hef) = 0.81) 

ψc,N = cracked concrete modification factor (ψc,N = 1.25 for cast-in studs) 

The calculated tensile capacity of the group of studs is 19.06 kips. Using Equation 3-

2, it can be determined whether or not the shear studs will pull out or if a hinge will be 

formed in the concrete deck. A strip width equal to the shear stud spacing of 21 inches is 

used to calculate the tension in the stud group. 

T= M2/b + V = 24.98 · (21/12) / 7 + 6.83 · (21/12) = 18.2 kips< 19.06 kips 

Because the shear stud capacity exceeds the tension generated by the deck 

mechanism, the shear studs do not pull out, and, as a result, hinges form in the concrete 

deck. 

 

C.7 SHEAR CHECK OF THE COMPOSITE SECTION AT THE SUPPORTS DUE TO TORSION 

AND BENDING 

Once again, it was assumed that the entire weight of the bridge and live load were 

applied to the intact girder. The shear, which was developed at the end of the span, due to 

this loading was calculated below. 
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V=VDL+VTRUCK=2·(0.958·104 + 1.044·16 + 1.116·79.5)/2+(2.642+0.65)·199.5/2+75.4  

V= 608.84 kips  

The unsupported load, which is first carried by the fractured girder, now has to be 

transferred to the intact girder. The eccentricity between the chord of the intact girder 

bearings and the center of gravity (CG) leads to a torque that is applied to the intact 

girder in addition to all the transferred loads. Due to the fact that this bridge is straight 

(i.e., R=∞), the eccentricities of each load are equal to the distance between the CG of 

each load and the centerline of the intact girder. Table C-2 summarizes all the 

eccentricities. 

 

Table C-2: Eccentricities of loads 

 Live or Dead Load Eccentricity 

 
 

(ft) 

1 Fractured Girder (FG) 13.92 

2 Railing above FG 19.83 

3 Deck above FG 13.56 

4 Intact Girder (IG) 0.00 

5 Railing above IG 5.92 

6 Deck above IG 0.35 

7 Truck 11.17 

 

Thus, the torques due to each load are equal to: 

tFG = 205.06 · 13.92 = 2,854.41 kips·ft 

tRFG = 64.84 · 19.83 = 1,285.78 kips·ft 

tDFG = 263.54 · 13.56 = 3,573.60 kips·ft 
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tIG = 205.06 · 0 = 0 kips·ft 

tRIG = 64.84 · 5.92 = 383.85 kips·ft 

tDIG = 263.54 · 0.35 = 92.24 kips·ft 

tTRUCK = 144 · 11.17 = 1,608.48 kips·ft 

Therefore, the torque developed in the composite section at the support is equal to: 

T = (2,854.41 + 1,285.78 + 3,573.60 - 383.85 - 92.24 + 1,608.48) / 2 = 4,423.10 kip-ft 

To compute the shear flow of the closed section, Equation 3-20 is used.  

q = T / (2 · A) = 4,423.10 / (2 · 5,923.68/144) = 53.76 kips/ft = 4.48 kips/in 

The shear stress due to torsion for every component of the composite section is calculated 

below: 

τCONC. DECK = q / t CONC. DECK = 4.48 / 8 = 0.56 ksi 

τWEB = q / tWEB = 4.48 / 0.75 = 5.97 ksi 

τBOTT. FLANGE = q / t BOTT. FLANGE = 4.48 / 1.25 = 3.58 ksi 

The flexural shear is assumed to be carried by the webs of the composite section 

because the contribution of the bottom flange and the concrete deck is small. The flexural 

shear stress in the webs of the composite section is calculated: 

  τFlexural WEB = V / (2 · hWEB · tWEB· cos(14°)) = 608.84 / (2 · 88.644 · 0.75· 0.97) = 4.72 ksi 
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Note: The factor 2 accounts for the fact that the composite section consist of two webs, 

which share the total flexural shear. The cos(14°) accounts for the fact that the webs are 

not vertical. 

The shear stress that is developed in the concrete deck due to torsion is equal to 0.56 

ksi. According to ACI 318-08, the shear capacity of a reinforced concrete section is: 

VS = At ·fyt·b·cotθ/s 

As a result,  

VTORSION = q·b = 4.48·84 = 376.32 kips ≤ VS = At ·fyt·b·cotθ/s= 0.62·60·84/5 = 624.96 kips 

The shear stresses in the steel girder are checked according to the AASHTO 

Specifications. The shear stress in the webs of the end panel should be limited to either 

the shear-yielding or shear-buckling resistance. The nominal shear stress resistance of the 

web panel (τn) is computed as the product of the shear-buckling resistance to the shear 

yield strength ratio (C) and the plastic shear stress (τp) (i.e., τn=C·τp). The plastic shear 

stress is equal to 0.58fyw. The ratio C is determined as shown below:  

If 
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For span 11 of the Woodway Bridge D = 88.64 in., tw =0.75 in., E = 29,000 ksi, 

fyw = 50 ksi. The buckling coefficient k is calculated as  
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where d0 is the spacing from the support to the first stiffener adjacent to the support (132 

in.). AASHTO limits the factor d0/D for end panels to 1.5. In the case of span 11 of the 

Woodway Bridge, d0/D=1.49<1.5, so d0/D=1.49. By inserting the value of d0/D in the 

equation for k, this value is calculated to be 7.25. 

Because 78.9040.119.118
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Having all the variables defined, the nominal shear stress (τn) is equal to 

τn = 0.47·0.58·  fyw = 13.63 ksi. 

The shear stress in the webs is a combination of the flexural and torsional shear 

stresses. As shown in Figure C-9Figure , the shear stresses are added and subtracted in 

the east and west web, respectively. Accordingly, the east web controls because the shear 

from flexure and torsion add. The total shear stress that is developed in the east web is 

calculated to be τTOTAL = τWEB + τFlexural WEB = 5.97 + 4.72 = 10.27 ksi, which is less than 

τn =13.63 ksi. Summarizing the calculations, it is found that all the components of the 

section have adequate capacities to sustain the applied load. 
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Figure C-9: Flexural and torsional shear stresses on the composite section 

 

The end diaphragm, which connects both girders, needs to be checked to ensure that it 

can adequately resist the torque applied to the intact girder. The torque applied on the 

intact girder is equilibrated by a force couple acting at the bearings of the two girders. 

This force couple causes shearing of the end diaphragm. The forces acting on each side of 

the end diaphragm can be calculated as follows: 

VED = T / lb = 4,423.10 / 13.92 = 317.75 kips, where T is the torque applied on the 

intact girder and lb is the distance between the two bearings. The nominal shear strength 

of the end diaphragm can be computed according to AASHTO Sec. 6.10.9.2:   

Vn = C·VP 

where VP  = 0.58·Fyw·D·tw= 0.58·50·86·0.75 = 1870.5 kips, and C is calculated as: 
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where k = 5. 
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Thus, the shear strength of the end diaphragm (Vn = 0.35·1870.5 = 654.68 kips) is 

adequate to resist the applied shearing force (VED = 317.75 kips). 

Summarizing the calculations, it is found that all the components of the section have 

adequate capacities to resist the applied load. However, because the analysis indicates 

that overall bridge capacity is controlled by the formation of a plastic hinge line above 

both interior top flanges, the ultimate load is estimated from the initial checks and not 

from the Yield Line Model. Following the same procedure as described above, the initial 

checks determine the ultimate truck load that this bridge can sustain in the event of a 

fracture. After several iterations, it is found that the ultimate truck load is 5.52×HS-20 

(397.12 kips). The buckling shear stress in the webs of the end section controls the 

maximum truck load that can be sustained. The moment at the mid-span of the intact 

girder produced by the dead load and this 395.94 kip truck load is: 

MP Middle Section = 54,906kip-ft > Mmax = 44,824 kip-ft 

MP Transition Section = 52,811kip-ft > M (60) = 34,776 kip-ft 

MP End Section = 47,063kip-ft > M (52) = 31,229 kip-ft 

The force needed to be transferred is found to be: 

F = (0.958·104 + 1.044·16 + 1.116·79.5) + (2.642+0.65)·199.5 / 2+397.12 = 930.56 kips 

F = 930.56 kips  

The length of the bridge needed to transfer the load F based on the flexural capacity of 

the bridge is: 

lM = 930.56 / 6.83 = 136.25 ft 

136.25 / 199.5 = 68.29 % of the span length 
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The flexural shear at the end support is found to be: 

V=VDL+VTRUCK=2·(0.958·104+1.044·16+1.116·79.5)/2 + (2.642+0.65)·199.5/2 + 207.85 

V= 741.28 kips  

The torque due to each load are equal to: 

tFG = 205.06 · 13.92 = 2,854.44 kips·ft 

tRFG = 64.84 · 19.83 = 1,285.78 kips·ft 

tDFG = 263.54 · 13.56 = 3,573.60 kips·ft 

tIG = 205.06 · 0 = 0 kips·ft 

tRIG = 64.84 · 5.92 = 383.85 kips·ft 

tDIG = 263.54 · 0.35 = 92.24 kips·ft 

tTRUCK = 397.12 · 11.17 = 4,435.78 kips·ft 

Therefore, the torque developed in the composite section at the support is equal to: 

T = (2,854.44 + 1,285.78 + 3,573.60 - 383.85 - 92.24 + 4, 435.78) / 2 = 5,836.75 kip-ft 

Knowing the applied torque at the end support, the shear flow of the end section is 

calculated as: 

q = T / (2 · A) = 5,836.75 / (2 · 5923.68/144) = 70.94 kips/ft = 5.91 kips/in 

The shear stresses in the concrete deck, webs and bottom flange are computed by 

following the same procedure as before: 
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  τCONC. DECK = q / t CONC. DECK = 5. 91 / 8 = 0.74 ksi 

  τWEB = q / tWEB = 5. 91 / 0.75 = 7.88 ksi 

  τBOTT. FLANGE = q / t BOTT. FLANGE = 5. 91 / 1.25 = 4.73 ksi 

  τFlexural WEB = V / (2 · hWEB · tWEB· cos(14°)) = 741.28 / (2 · 88.644 · 0.75· 0.97) = 5.75 ksi 

The shear stress, which is developed in the concrete deck due to torsion, is equal to 

0.74 ksi. According to ACI 318-08, the shear capacity of a reinforced concrete section is: 

 VS = At ·fyt·b·cotθ/s.  

As a result,  

 VTORSION = q·b = 5.91·84 = 496.60 kips ≤ VS = At ·fyt·b·cotθ/s= 0.62·60·84/5 = 624.96 kips 

As indicated previously, the total shear stress in the webs is a combination of the 

flexural and torsional shear stresses (Figure C-9), and the east web controls because the 

shear from flexure and torsion add. The total shear stress that is developed in the east web 

is calculated to be:  

τTOTAL = τWEB+τFlexural WEB = 7.88+5.75 = 13.63 ksi which is equal to τn =13.63 ksi. 

As before, the forces acting on each side of the end diaphragm can be calculated as 

follows: VED = T / lb = 5,836.75 / 13.92 = 419.31 kips, where T is the torque applied to the 

intact girder and lb is the distance between the two bearings. Thus, the shear strength in 

the end diaphragm (Vn = 0.35·1870.5 = 654.68 kips) is adequate to resist the applied 

shearing force (VED = 419.31 kips). Summarizing the calculations, it was found that the 

shear stresses developed in the webs of the end section limit the ultimate load to 

5.52×HS-20 Trucks (397.12 kips). 
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APPENDIX D 

Analysis of the Woodway Bridge (span 17 & 18) using the simple models 

D.1 INTRODUCTION 

This example focuses on spans 17 and 18 of the Woodway exit ramp on IH 610/Katy 

Freeway, which actually is a two span continuous bridge. The length of each span is 128 

ft. The radius of curvature is 3,813.72 ft for span 17 and 1,903.86 ft for span 18. Figure 

D-1shows the elevation view of spans 17 and 18 of the Woodway Bridge and other 

general information. The top and bottom flange thickness changes along the span of the 

bridge. Table D-1 summarizes all the dimensions of both flanges along the span of the 

bridge. Only three steel sections are used along the length of the span. The “Transition” 

sections occur due to different cutoff points for the top and bottom flanges. Figures D-2 

and D-3 present the typical cross-section of the bridge and steel girder, respectively. 

  

Table D-1: General information of bottom and top flange 

Span 
Type of 

Section 

Length of application  

measured from south 
Bottom Flange Top Flange 

 
 

(ft) tBF (in.) 
bBF 

(in.) 

tTF 

(in.) 

bBF 

(in.) 

1 (17) End 0-80 7/8 62 0.75 14 

1 (17) Transition 80-112 1 3/8 62 1 20 

1 (17) Pier 112-128 1 3/8 62 2 20 

2 (18) Pier 128-144 1 3/8 62 2 20 

2 (18) Transition 144-176 1 3/8 62 1 20 

2 (18) End 176-256 7/8 62 0.75 14 
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Figure D-1: Elevation view of Woodway Bridge Span 17 & 18 
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Figure D-2: Typical cross-section of the Woodway Bridge Span 17 & 18 

 

 

Figure D-3: Typical cross-section of the Woodway Bridge Span 17 & 18 steel girder 
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D.2 CALCULATION OF THE TRANSMITTED LOAD TO THE INTACT GIRDER  

It was assumed that half of the entire weight of the bridge and the entire live load on 

the bridge needed to be resisted from the intact girder at the event of a fracture occurred. 

These loads were calculated below: 

Weight of one steel box girder:  

Wgirder = 1.15 · (144.83/144 ft
2
) · (0.490 kips/ft

3
) = 0.567 kip/ft (End Section) 

Wgirder = 1.15 · (194.83/144 ft
2
) · (0.490 kips/ft

3
) = 0.763 kip/ft (Transitioning Section) 

Wgirder = 1.15 · (234.83/144 ft
2
) · (0.490 kips/ft

3
) = 0.919 kip/ft (Middle Section) 

 

Notes: This was the weight of one girder. Cross-sectional areas of End, Transitioning and 

Middle section were 144.83 in
2
, 194.83 in

2
 and 234.83 in

2
 respectively. Density of steel 

was taken as 490 lb/ft
3
. To account for internal diaphragms, stiffeners, etc., the weight of 

the steel girder was multiplied by a factor of 1.15. 

Concrete deck: 

Wdeck = (317 · 8 / 144 ft
2
) · (0.150 kip/ft

3
) = 2.642 kip/ft 

Notes: Width of concrete deck was 26 ft-5 in. = 317 in. Density of concrete was taken as 

150 lb/ft
3
. Deck thickness was 8 in. 

SSTR Railing 

Wrailings = 2 · (312/144 ft
2
) · (0.150 kip/ft

3
) = 0.65 kip/ft 

Notes: Multiplied by 2 to account for two rails. Cross-sectional area of one rail was 

calculated to be 312 in
2
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Simulated Truck (HS-20) 

Wtruck = 2 · 72 kips = 144 kips (with a load factor of 2) 

Load to be transmitted 

F = Σ(Wgirder i · Li) + (Wdeck/2 + Wrailings/2) · L + Wtruck 

F = (0.567 · 80 + 0.763 · 32 + 0.919 · 16) + (2.642 + 0.65) · 128/2 + 144 = 439.17 kips 

F = 439.17 kips  

 

D.3 CALCULATION OF MAXIMUM MOMENT ON THE BRIDGE 

Spans 17 and 18 of the Woodway Bridge were analyzed in SAP 2009 in order to 

indentify the location of the maximum positive bending moment. This location is where 

the fracture would take place. The bridge was analyzed using one moving HS-20 truck; 

thus, the fracture location results from the most critical location of the truck. Due to 

symmetrical geometry, the moment diagram envelope of the dead load and one moving 

load is symmetrical about the interior support. Figure D-4 illustrates the first half of the 

moment diagram envelope (Span 17). It is found that the maximum positive moment 

occurs at 50 ft from the south end of span 17, and its magnitude is 8448.42 kip-ft. The 

maximum negative moment at the inner pier is -11125.61 kip-ft. 
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Figure D-4: Moment envelope of dead and one truck load on spans 17 and 18 of the 

Woodway Bridge 

 

D.4 ANALYSIS OF COMPOSITE SECTION 

The plastic moment capacity of the intact girder is calculated to determine if the intact 

girder has sufficient flexural capacity to sustain the entire truck and dead load applied to 

the bridge. The positive plastic moment capacities of the End section as well as the 

negative moment capacity of the Pier section are checked. Based on TxDOT minimum 

requirements, fy = 50 ksi is used for the components of the steel girder. 

Positive Plastic Moment Capacity of End Section: 

Find the plastic neutral axis by setting T = C: 
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T = As · fy = (62 · 7/8 + 2 · 55.66 · 5/8 + 2 · 14 · 3/4) · 50 = 7,241.25 kips 

Cc = 0.85 · fc’ · ts · beff = 0.85 · 4 · 8 · 158.5 = 4,311.2 kips 

Because T > C, the plastic neutral axis (PNA) is in the girder. 

Cs = (As · fy – Cc) / 2 = (7,241.25 - 4,311.2) / 2 = 1,465.03 kips 

Using this equation, the compressive force needed to be developed in the steel section 

for equilibrium (C = T) can be determined. 

Ctfl = 2 · ttfl · btfl · fy = 2 · 3/4 · 14 · 50 = 1,050 kips 

The top flanges can resist 1,050 kips in compression, which is less than what is 

needed to obtain equilibrium. As a result, the PNA falls in the web. Assuming that x is 

the distance from the neutral axis to the bottom of the top flange (Figure D-5), the depth 

of the neutral axis can be found: 

x = (1,465.03 - 1,050) / (2 · 5/8 · (17/16)
0.5

 · 50) = 6.44 in. 

Note: The (17/16)
0.5

 factor is based on the slope of the web. 

 

 

Figure D-5: Plastic neutral axis location 
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Thus: 

Cc = 4,311.2 kips 

Ctfl = 1,050 kips 

 Cweb = 415.03 kips 

Tweb = Aweb · fy = 2 · 5/8 · (54-6.44) · (17/16)
0.5

 · 50 = 3,063.98 kips 

Tbottom flange = Abottom flange · fy = 62 · 7/8 · 50 = 2,712.5 kips 

By taking moments about the PNA, the nominal plastic moment capacity can be 

calculated: 

Mbottom flange = Tbottom flange · (7/16 + 54 - 6.44) = 130,193.22 kip-in. 

Mweb = Cweb · 6.44/2 + Tweb · (54 - 6.44) / 2 = 74,197.84 kip-in. 

MC tfl = Ctfl · (3/8 + 6.44) = 7,155.75 kip-in. 

MC concrete = Cc · (8/2 + 4 + 6.44) = 62,253.73 kip-in. 

Note: The 4-in. term added in the moment arm accounts for distance from the bottom of 

the concrete deck to the bottom of the top flange. 

Therefore, MP = 130,193.22 + 74,197.84 + 7,155.75 + 62,253.73  

MP End Section = 273,800.54 kip-in. = 22,816.71 kip-ft 

Previously, M
+

max was found to be 8,562.79 kip-ft. Therefore, the positive plastic moment 

capacity is sufficient to sustain the entire dead load of the bridge plus the truck live load. 
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Negative Plastic Moment Capacity of Pier Section: 

According to AASHTO Sec. 6.11.8.2.2, the bottom flange at the pier should be 

checked for combined shear and compression as follows: 

The slenderness ratio for the compression flange λf = bfc / tfc = 57.75 / 1.375 = 42 

For Fyc= 50 ksi, fv=3.23 ksi, E = 29,000 ksi, k = 4 and ks = 5.34 
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In order to compute the moment capacity of the pier section, the elastic section 

modulus of the composite cross section must be calculated. Because the contribution of 

concrete is negligible in the negative moment region, only the area of the reinforcing bars 

and the steel girder section is included in the calculation of the elastic section modulus. 

By using AutoCAD 2010, the moment of inertia of the pier section, neglecting the 

concrete portion, is calculated to be: 

I = 154,035.85 in
4
 = 7.43 ft

4
 

Similarly, the distance from the extreme compressive fiber to the neutral axis is found to 

be: 

 yb = 28.96 in = 2.41 ft 

As a result, the elastic section modulus can be computed as the ratio of I / yb  

S = I / yb = 5,318.92 in
3
 = 3.08 ft

3
 

According to the shear–axial stress interaction equation (AASHTO Sec. 6.11.8.2.2), 

the allowable stress in the bottom flange is equal to 47.58 ksi. The product of the 

allowable stress and the elastic section modulus for the bottom flange gives the moment 

capacity of the pier section. Thus, 

MPier Section = 253,074.21 kip-in. = 21,089.52 kip-ft 

Previously, M
-
max was found to be -11125.61 kip-ft. Thus, the negative moment 

capacity is sufficient to sustain the entire dead load of the bridge plus the truck live load. 
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D.5 ANALYSIS OF CONCRETE DECK 

As before, the bending and shear capacity of the concrete deck were checked to 

ensure that they were adequate to resist the moment and the shear produced by the 

unsupported load of the fractured girder. These capacities were based on a 1-ft wide 

transverse deck section as shown in the Figure D-6. 

 

 

Figure D-6: Actual and modified 1-ft wide section of the concrete deck in the transverse 

direction 

 

Positive Moment Capacity 

The assumed strain and stress failure profile are shown in the figure below: 
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Figure D-7: Strain and stress gradients at positive moment regions 

According to ACI 318-08, it was assumed that the ultimate strain of concrete was 

0.003 in./in. and the bottom reinforcement had yielded prior to failure. The top 

reinforcement was always included in the calculations for more accurate results. The 

concrete strength was taken as 4 ksi and the reinforcement strength as 60 ksi. 

Let C = T: 

C = 0.85 · fc´ · β1 · c · b = 0.85 · 4 · 0.85 · 12 · c = 34.68 · c 

Note: β1 = 0.85 for 4 ksi concrete. 

εs, bottom = 0.003 · (6.4375 - c) / c 

εs, top = 0.003 · (2.3125 - c) / c 

Tbottom = As,bottom · fy = 2 · 0.372 · 60 = 44.64 kips 

Ttop = As,top · εs, top · Es = 2 · 0.372 · 29,0000 · εs,top = 21,576 · εs,top 

34.68 · c = 44.64 + 21,576 · εs,top 

34.68 · c = 44.64 + 21,576 · 0.003 · (2.3125 - c) / c 

Iterate until the neutral axis depth was found. Solution: c = 1.808 in. 

εs, bottom = 0.00768 > Yield strain (= 0.00207 for 60 ksi) 

εs, top = 0.000837 < Yield strain (= 0.00207 for 60 ksi) 
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C = 80.82 kips 

Tbottom = 44.64 kips 

Ttop = 18.06 kips 

Take moments about the NA to solve for nominal moment capacity 

Mn
+
 = C · (c - β1 · c / 2) + Ttop · (2.3125 - c) + Tbottom · (6.4375 - c) 

Mn
+
 = 80.82·(1.808 - 0.85·1.808/2) + 18.06·(2.3125 – 1.808) + 44.64·(6.4375 - 1.808) 

Mn
+
 = 299.79 kips-in. = 24.98 kips-ft 

Negative Moment Capacity 

The assumed strain and stress failure profile are shown in the figure below: 

 

 

Figure D-8: Strain and stress gradients at negative moment regions 

 

According to ACI 318-08, it was assumed that the ultimate strain of concrete was 

0.003 in./in. and the top reinforcement had yielded prior to failure. The bottom 

reinforcement was always included in the calculations for more accurate results. The 

concrete strength was taken as 4 ksi and the reinforcement strength as 60 ksi.  
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Let C = T: 

C = 0.85 · fc´ · β1 · c · b = 0.85 · 4 · 0.85 · 12 · c = 34.68 · c 

Note: β1 = 0.85 for 4 ksi concrete. 

εs, bottom = 0.003 · (1.5625 - c) / c 

εs, top = 0.003 · (5.6875 - c) / c 

Tbottom = As,bottom · εs, bottom · Es = 2 · 0.372 · 29,0000 · εs,bottom = 21,576 · εs,bottom 

Ttop = As,top · fy = 2 · 0.372 · 60 = 44.64 kips  

34.68 · c = 44.64 + 21,576 · εs,bottom 

34.68 · c = 44.64 + 21,576 · 0.003 · (1.5625 - c) / c 

Iterate until the neutral axis depth was found. Solution: c = 1.443 in. 

εs, bottom = 0.000248 < Yield strain (= 0.00207 for 60 ksi) 

εs, top = 0.008824 > Yield strain (= 0.00207 for 60 ksi) 

C = 50.04 kips 

Tbottom = 5.35 kips 

Ttop = 44.64 kips 

Take moments about the NA to solve for nominal moment capacity 

Mn
-
 = C · (c - β1 · c / 2) + Ttop · (5.6875 - c) + Tbottom · (1.5625 - c) 

Mn
-
 = 50.04 · (1.443 - 0.85 · 1.808/2) + 44.64 · (5.6875 - 1.808) + 5.35 · (1.5625 - 1.808) 

Mn
-
 = 205.62 kips-in. = 17.13 kips-ft 
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Bending Capacity Check 

The deflected shape of the concrete deck and the bending moment diagram, if it 

assumed that the shear studs have enough tensile capacity, is shown in Figure D-9: 

 

 

Figure D-9: Deflected shape and moment diagram before any failure of shear studs 

 

V = (Mn
+
 + Mn

-
)/s = (24.98 kip-ft + 17.13 kip-ft)/6.17 ft = 6.82 kips 

Note: The spacing, s, is equal to the distance between the mid-width of the fractured 

girder’s interior top flange and the edge of the interior top flange of the intact girder (6ft 

2in.).  

The shear capacity is calculated using the ACI 318-08 equation for shear shown 

below. The capacity is based on a 1-ft wide transverse deck section. The depth used in 

this equation is the depth to the centroid of the tension reinforcement (6.4375 in.). 

Vc = 2 · 
cf   · b · d = 2 · 4000  · 12 · 6.4375 = 9.77 kips 
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Thus the maximum shear capacity of the deck is equal to the shear associated with the 

plastic deck mechanism (6.82 kips/ft). Therefore, the total length required to transfer the 

439.17-kip force is: 

lM = 439.17/ 6.82 = 64.39 ft 

64.72 / 128 = 50.30 % of the span length 

 

D.6 SHEAR STUD CHECK 

In order to determine the tensile strength of a shear stud group, the guidelines 

recommended by Mouras (2008) are followed. The shear stud connections used in spans 

17 and 18 of the Woodway Bridge consist of a group of three 6-in tall shear studs spaced 

transversely. The haunch differs along the length of the bridge from 3.25 in. to 2 in.  By 

using the modified ACI 318-08 equations presented in Appendix B (and shown again 

below for convenience), the tensile capacity of the shear stud group is calculated to be 

16.8 kips throughout the bridge.  

 Nb = kc · cf   · hh
1.5

 Equation B-1 (ACI 318-08) 

 
Ncbg = 

NCO

NC

A

A
 · ψg,N ·  ψec,N · ψed,N · ψc,N · Nb Equation B-2 (modified ACI 318-08) 

where: 

 Nb = concrete cone breakout strength of a single isolated stud in a continuous 

piece of cracked concrete (15.32 kips) 
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kc = 24 for cast-in-place shear studs 

fc´ = specified concrete compressive strength (4000 psi) 

hh = modified height of shear stud in concrete (hh = hef - dh = 5.625-3.25 =2.375 

in. < 14/3=4.67 in. → hh =4.67 in.) 

hef = effective height of shear stud in concrete, which is equal to the length of stud 

less the height of the stud head (heff =6-0.375 = 5.625in.) 

dh= haunch height (3.25 in.) 

ca,min = distance between outer stud and the edge of flange (ca,min = 3 in.) 

Ncbg = design concrete breakout strength of a stud or group of studs (16.8 kips) 

ANc = projected concrete cone failure area of a stud group (ANc = 3 hef  wh = 236.25 

in
2
) 

Note: ANc = 3 hef  wh  because haunch confined full height projected cone 

area. 

ANco = projected concrete cone failure area of a single stud in continuous concrete 

(ANco = 9hh
2
 = 196.28 in

2
) 

Ψg,N = group effect modification factor for studs on a bridge girder (Ψg,N = 0.90 

for 3 studs spaced transversely) 

ψec,N = eccentric load modification factor (ψec,N = 1) 

ψed,N = edge distance modification factor (ψed,N = 0.7+0.3 ca,min / (1.5 hef) = 0.81) 

ψc,N = cracked concrete modification factor (ψc,N = 1.25 for cast-in studs) 
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The calculated tensile capacity of the group of studs is 16.8 kips. Using Equation 3-2, 

the controlling failure mechanism (i.e., pull out of the shear studs or formation of a 

plastic hinge in the concrete deck) can be determined. A strip width equal to the shear 

stud spacing of 12 inches is used to calculate the tension in the stud group. 

T = 16.8 kips, M2/b + V = 24.98 · (12/12) / 7 + 6.82 · (12/12) = 10.39 kips 

Because T > M2/b + V (i.e., shear stud capacity exceeds the tension generated by the deck 

mechanism), the shear studs do not pull out; as a result, hinges form in the concrete deck. 

 

D.7 SHEAR CHECK OF THE COMPOSITE SECTION AT THE SUPPORTS DUE TO TORSION 

AND BENDING 

As stated previously, it is assumed that the entire weight of the bridge and live load 

are applied to the intact girder. The shear at the abutments and at the interior pier of the 

bridge are 335.69 kips and 514.75 kips, respectively. 

The unsupported load, which is first carried by the fractured girder, has to be 

transferred to the intact girder. In addition to all the transferred loads, a torque is applied 

to the intact girder due to the eccentricity between the chord of the intact girder bearings 

and the center of gravity (CG) of each load. The eccentricities of each load can be 

computed using Equation 3-5 through Equation 3-19. This bridge has the following 

geometric characteristics: 

1. RINT = 1,896.9 ft , LINT = 127 ft, φ = 0.06695 rad 

2. RFG = 1,910.82 ft , θ0FG = 0 rad, θ1FG = 0.0084 rad, θ2FG = 0.0251 rad, θ3FG = 0.067 

rad, FG  = 0.0303 rads 

3. RRFG = 1,917.07 ft , θ0FG = 0 rad, θ1FG = 0.067 rad, FG  = 0.0335 rad 
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4. RDFG = 1,910.72 ft , θ0FG = 0 rad, θ1FG = 0.067 rad, FG  = 0.0335 rad 

5. RIG = 1,896.9 ft , θ0IG = 0 rad, θ1IG = 0.0084 rad, θ2IG = 0.0251 rad, θ3IG = 0.067 rad, 

IG  = 0.0303 rad 

6. RRIG = 1,890.65 ft , θ0FG = 0 rad, θ1FG = 0.067 rad, FG  = 0.0335 rad 

7. RDIG = 1, 897  ft , θ0FG = 0 rad, θ1FG = 0.067 rad, FG  = 0.0335 rad 

8. RTRUCK = 1,911 ft, θ0TRUCK = 0.0335 rad, θ1TRUCK = 0.0482 rad, TRUCK = 0.04085 rad 

The center of gravity of each component is found by inserting the above values in 

Equation 3-18. 

ftDFG 45.1910
 

ftDRFG 71.1916
 

ftDDFG 36.1910
 

ftDIG 53.1896
 

ftDRIG 30.1890
 

ftDDIG 65.1896  

ftDTRUCK 98.1910  

By using Equation 3-19, the eccentricity of each component can be found as follows: 
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eFG = 1,910.45 - 1,890.65 · cos(0.06691/2) = 14.61 ft  

eRFG = 1,916.71 - 1,890.65 · cos(0.06691/2) = 20.87 ft 

eDFG = 1,910.36 - 1,890.65 · cos(0.06691/2) = 14.52 ft 

eIG = 1,896.53 - 1,890.65 · cos(0.06691/2) = 0.69 ft 

eRIG = 1,890.3 - 1,890.65 · cos(0.06691/2) = -5.54 ft 

eDIG = 1,896.65 - 1,890.65 · cos(0.06691/2) = 0.81 ft 

eTRUCK = 1,910.98 - 1,890.65 · cos(0.06691/2) = 15.14 ft 

As a result, the torques due to each load are computed to be: 

tFG = 84.48 · 14.61 = 1,234.25 kips·ft 

tRFG = 41.6 · 20.87 = 868.19 kips·ft 

tDFG = 169.09 · 14.52 = 2,455.19 kips·ft 

tIG = 84.48 · 0.69 = 58.29 kips·ft 

tRIG = 41.6 · -5.54 = -230.46 kips·ft 

tDIG = 169.09 · 0.81 = 136.96 kips·ft 

tTRUCK = 144 · 15.14 = 2,180.16 kips·ft 

Therefore, the torque developed in the composite section at the support is equal to: 

T=(1,234.25+868.19+2,455.19+58.29 -230.46+136.96+2,180.16) / 2 = 3,351.29 kip-ft 

To compute the shear flow of the closed section, Equation 3-20 is used.  
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q = T / (2 · A) = 3,351.29 / (2 · 4,534.07/144) = 53.22 kips/ft = 4.44 kips/in 

The shear stress due to torsion in every component of the composite section is 

calculated as: 

τCONC. DECK = q / t CONC. DECK = 4.44 / 8 = 0.56 ksi 

τWEB = q / tWEB = 4.44 / 0.625 = 7.1 ksi 

τBOTT. FLANGE = q / t BOTT. FLANGE = 4.44 / 1.375 = 3.23 ksi 

The flexural shear is assumed to be carried by the webs of the composite section 

because the contribution of the bottom flange and the concrete deck is small. The flexural 

shear stress in the webs of the composite section is calculated below:  

    τFlexural WEB Abutm. = V1 / (2·hWEB·tWEB·cos(14°)) = 335.69 / (2·55.656·5/8·0.97) = 4.97 ksi 

    τFlexural WEB Pier = V2 / (2·hWEB·tWEB·cos(14°)) = 514.75 / (2·55.656·5/8·0.97) = 7.63 ksi 

Note: The factor 2 accounts for the fact that the composite sections consist of two webs, 

which share the total flexural shear. The cos(14°) accounts for the fact that the webs are 

inclined. 

The shear stress that develops in the concrete deck due to torsion is equal to 0.56 ksi. 

According to ACI 318-08, the shear capacity of a reinforced concrete section is: 

 VS = At ·fyt·b·cotθ/s.  

Consequently,  

 VTORSION = q·b = 4.44·84 = 372.96 kips ≤ VS = At ·fyt·b·cotθ/s= 0.62·60·84/5 = 624.96 kips 

The shear stresses in the steel girder are checked according to the AASHTO 

Specifications. The shear stress in the webs of the end panel should be limited to either 
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the shear-yielding or shear-buckling resistance. The nominal shear stress resistance of the 

web panel (τn) is computed as the product of the shear-buckling resistance to the shear 

yield strength ratio (C) times the plastic shear stress (τp) (i.e., τn=C·τp). The plastic shear 

stress is equal to 0.58fyw. The ratio C is determined as below:  

If 
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For spans 17 and 18 of the Woodway Bridge, D = 55.66 in., tw =5/8 in., E = 29,000 

ksi, fyw =50 ksi. The factor k is calculated as  

2
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d
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where d0 is the spacing from the support to the first stiffener adjacent to the support (128 

in.). AASHTO limits the factor d0/D for end panels to 1.5. The end panel of the bridge 

considered in this example is located at the end of the girder, and d0/D=2.30>1.5; thus, 

d0/D=2.30. By inserting the value of d0/D in the equation for k, this value is calculated to 

be 5.95. 

Because  24.8240.106.89
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Having all the variables defined, the nominal shear stress (τn) is computed to be 

τn = 0.68·0.58·fyw = 19.72 ksi. 

The total shear stress in the webs is due to a combination of the flexural and torsional 

shear stresses. As shown in Figure D-10, the shear stresses are added and subtracted in 

the east and west web, respectively. The east web controls because the shear from flexure 

and torsion add. The total shear stress that develops in the end panel of the east web is 

calculated to be τTOTAL = τWEB + τFlexural WEB = 7.1 + 7.63 = 14.73 ksi at the abutment and 

τTOTAL = τWEB + τFlexural WEB = 7.1 + 4.97 = 12.07 ksi at the interior pier. Both values are 

less than τn =19.72 ksi based on AASHTO Specifications. Summarizing the calculations, 

it is found that all the components of the section have adequate capacities to sustain the 

applied load. 

 

 

Figure D-10: Flexural and torsional shear stresses on the composite section 
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The end diaphragm, which connects both girders, must be checked to ensure that it 

has adequate capacity to resist the torque applied to the intact girder. This torque is 

equilibrated through the reaction forces acting at the bearings, and these reaction forces 

cause shearing in the end diaphragm. The forces acting on each side of the end diaphragm 

can be calculated as follows: 

VED = T / lb = 3,351.29 / 13.92 = 240.75 kips, where T is the torque applied on the 

intact girder and lb is the distance between the two bearings. The nominal shear strength 

of the end diaphragm can be computed according to AASHTO Sec. 6.10.9.2.   

Vn = C·VP, where VP = 0.58·Fyw·D·tw = 0.58·50·52.38·0.75=1139.27 kips, k=5, and C is 

calculated as: 

 86.0
12.1


yww f

Ek

tD
C

  

because 

 39.7540.184.69
75.0

38.52
31.6012.1 

ywwyw f

Ek

t

D

f

Ek

 

Thus, the shear strength of the end diaphragm (Vn = 0.86·1139.27 = 979.77 kips) is 

adequate to resist the applied shearing force (VED = 240.75 kips). 

Because the analysis presented above indicates that the capacity of this bridge is 

controlled by the formation of a plastic hinge line above both interior top flanges, the 

ultimate load is estimated from the initial checks and not from the Yield Line Model. 

Following the same procedure as described in the example of Appendix C, the initial 

checks determine the ultimate truck load that this bridge will sustain in the event of a 

fracture. After several iterations, it is found that the ultimate truck load is 4.30×HS-20 
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(309.6 kips). The buckling shear stress in the webs of the end section controls the 

maximum truck load that this bridge can sustain. The moment at the mid-span of the 

intact girder produced by the dead load and this 309.6-kip truck load is: 

MP End Section = 22,816.71 kip-ft > M
+

max = 12,211 kip-ft 

The bottom flange at the pier section needs to be checked for torsion and bending. 

According to AASHTO Sec. 6.11.8.2.2, the slenderness ratio for the compression flange 

is 

λf = bfc / tfc = 57.75 / 1.375 = 42 

For Fyc= 50 ksi, fv=4.43 ksi, E = 29,000 ksi, k = 4 and ks = 5.34 
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As before, the moment capacity of the pier section is equal to the product of the 

elastic section modulus and the allowable stress. The elastic section modulus remains 

constant and is equal to:   

S = I / yb = 5,318.92 in
3
 = 3.08 ft

3
 

According to AASHTO Sec. 6.11.8.2.2, the allowable stress in the bottom flange is equal 

to 47.31 ksi. Thus, the moment capacity of the pier section is equal to: 

MPier Section = 251,638.10 kip-in. = 20,969.84 kip-ft > M
-
max = 13,107 kip-ft  

Thus, the negative plastic moment capacity has sufficient capacity to sustain the entire 

dead load of the bridge plus the truck live load. 

The force needed to be transferred is found to be: 

 F = (0.567 · 80 + 0.763 · 32 + 0.919 · 16) + (2.642 + 0.65) · 128/2 + 309.6 = 604.77 kips 

F = 604.77 kips  

The length of the bridge needed to transfer the load F based on the flexural capacity of 

the bridge is: 

lM = 604.77 / 6.82 = 88.68 ft 

88.68  / 128 = 69.28 % of the span length 
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The flexural shear at the abutment and the interior support is found to be: 

VAbutm = VDL + VTRUCK = 214.63 + 260.27, VAbutm = 474.9 kips 

VPier = VDL + VTRUCK = 377.14 + 295.86, VPier = 673 kips  

The torques associated with each load are: 

tFG = 84.48 · 14.61 = 1,234.25 kips·ft 

tRFG = 41.6 · 20.87 = 868.19 kips·ft 

tDFG = 169.09 · 14.52 = 2,455.19 kips·ft 

tIG = 84.48 · 0.69 = 58.29 kips·ft 

tRIG = 41.6 · -5.54 = -230.46 kips·ft 

tDIG = 169.09 · 0.81 = 136.96 kips·ft 

tTRUCK = 309.6 · 15.14 = 4,687.34 kips·ft 

Therefore, the torque developed in the composite section at the support is equal to: 

T = (1,234.25+868.19+2,455.19+58.29 - 230.46+136.96+4,687.34) / 2 = 4,604.88 kip-ft 

To compute the shear flow of the closed section, Equation 3-20 is used.  

q = T / (2 · A) = 4,604.88 / (2 · 4,534.07/144) = 73.12 kips/ft = 6.09 kips/in 

The shear stresses in the concrete deck, webs, and bottom flange are computed by 

following the same procedure as before: 

τCONC. DECK = q / t CONC. DECK = 6.09 / 8 = 0.76 ksi 
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τWEB = q / tWEB = 6.09 / 0.625 = 9.74 ksi 

τBOTT. FLANGE = q / t BOTT. FLANGE = 6.09 / 1.375 = 4.43 ksi 

τFlexuralWEB Abutm. = VAbutm / (2·hWEB·tWEB·cos(14°)) = 474.9 / (2·55.656·5/8·0.97) = 7.04 

ksi 

τFlexuralWEB Pier = VPier / (2·hWEB·tWEB·cos(14°)) = 673 / (2·55.656·5/8·0.97) = 9.98 ksi 

The shear stress that develops in the concrete deck due to torsion is equal to 0.76 ksi. 

According to ACI 318-08, the shear capacity of a reinforced concrete section is: 

 VS = At ·fyt·b·cotθ/s.  

Thus,  

 VTORSION = q·b = 6.09·84 = 511.56 kips ≤ VS = At ·fyt·b·cotθ/s= 0.62·60·84/5 = 624.96 kips 

As stated previously, the shear stress in the webs is a combination of the flexural and 

torsional shear stress, and the response of the east web controls because the shear from 

flexure and torsion add. The total shear stress that develops in the east web is calculated 

to be:  

τTOTAL Abutm = τWEB+ τFlexuralWEB Abutm = 9.74 + 7.04 = 16.78 ksi < τn =23.49 ksi. 

τTOTAL Pier = τWEB+ τFlexuralWEB Pier = 9.74 + 9.98 = 19.72 ksi = τn =19.72 ksi. 

The end diaphragm, which connects both girders, has adequate capacity to resist the 

torque applied to the intact girder.  

VED = T / lb = 4,604.88 / 13.92 = 330.81 kips, where T is the torque applied on the 

intact girder and lb is the distance between the two bearings. Thus, the shear strength of 

the end diaphragm (Vn = 0.86·1139.27 = 979.77 kips) is adequate to resist the applied 
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shearing force (VED = 330.81 kips). Finally, it is found that the ultimate load is equal to 

4.30×HS-20 Trucks (309.6 kips). 
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APPENDIX E 

Instrumentation  

E.1 GLOSSARY OF INSTRUMENTATION GAGES 

 

Table E-1: Glossary of instrumentation codes 

Code Description 

N4, N3.5, … S4   Location of the gage according to the defined sections 

WG   West Girder (Intact Girder) 

WG1   West Girder (Western Edge of Bottom Flange) 

WG2   West Girder (Eastern Edge of Bottom Flange) 

RA, RB, RC   1st, 2nd and 3rd Component of the Rosette 

OND   Outside North Diaphragm 

IND   Inside North Diaphragm 

OSD   Outside South Diaphragm 

ISD   Inside South Diaphragm 

EG   East Girder (Fractured Girder) 

EG1   East Girder (Western Edge of Bottom Flange) 

EG2   East Girder (Eastern Edge of Bottom Flange) 

NCL or SCL   Just North or South of the CL 

IEW   Inside East Web 

OEW   Outside East Web 

IWW   Inside West Web 

OWW  Outside West Web 

IBF   Inside Bottom Flange 

OBF   Outside Bottom Flange  

IF  Interior Top Flange of the Fractured Girder 

TF   Exterior Top Flange of the Fractured Girder 

ITF or InteriorTF   Interior Top Flange of the Fractured Girder 

LP   Linear Potentiometer 

SD   South Diaphragm 

SP   String Potentiometer 

TD   Top Deck 

TC1   Transverse Concrete Gage (Western one) 
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TC5   Transverse Concrete Gage (Eastern one) 

LC   Longitudinal Concrete Gage  

ER   East Railing 

WR   West Railing 

MH   Middle Height of the Railing for sections N2, N1, S1, S2 

MH  6 in. from Top Surface of the Railing for sections NCL, SCL 

MH2  12 in. from Top Surface of the Railing for sections NCL, SCL 

 

 

 

Table E-2: Typical gage models 

Gage Type Manufacturer Model # 
Gage 

Length 

Bolt / Shear Stud TML/Texas Measurements BTM-6C 6 mm 

Uni-axial steel Vishay CEA-06-250UN-350/P2 0.25 in. 

Rosette steel Vishay CEA-06-250UR-350/P2 0.25 kn. 

Uni-axial concrete TML/Texas Measurements PL-60-120-11-3LT 60 mm 
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Figure E-1: Reinforcing bar foil gage locations 
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Figure E-2: Shear stud foil gage locations 
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E.2 FULL-SCALE TEST 2 

 

 

Figure E-3: Intact girder rosette orientation Full-Scale Test 2 and 3 

 

 

Figure E-4: End diaphragm rosette orientation Full-Scale Test 2 and 3 
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Figure E-5: Typical concrete deck gage locations Full-Scale Test 2 and 3 

 

Table E-3: Index of instrumentation channels Full-Scale Test 2 

Index Gage Name Description 

0 FR1 Foil Rebar Strain Gage 

1 FR2 Foil Rebar Strain Gage 

2 FR3 Foil Rebar Strain Gage 

3 FR4 Foil Rebar Strain Gage 

4 FR5 Foil Rebar Strain Gage 

5 FR6 Foil Rebar Strain Gage 

6 FR7 Foil Rebar Strain Gage 

7 FR8 Foil Rebar Strain Gage 

8 FR9 Foil Rebar Strain Gage 
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9 FR10 Foil Rebar Strain Gage 

10 FR11 Foil Rebar Strain Gage 

11 FR12 Foil Rebar Strain Gage 

12 FR13 Foil Rebar Strain Gage 

13 FR14 Foil Rebar Strain Gage 

14 FR15 Foil Rebar Strain Gage 

15 FR16 Foil Rebar Strain Gage 

16 FR17 Foil Rebar Strain Gage 

17 FR18 Foil Rebar Strain Gage 

18 FR19 Foil Rebar Strain Gage 

19 FR20 Foil Rebar Strain Gage 

20 FR21 Foil Rebar Strain Gage 

21 FR22 Foil Rebar Strain Gage 

22 FS1 Shear Stud Strain Gage 

23 FS2 Shear Stud Strain Gage 

24 FS3 Shear Stud Strain Gage 

25 FS4 Shear Stud Strain Gage 

26 FS5 Shear Stud Strain Gage 

27 FS6 Shear Stud Strain Gage 

28 FS14 Shear Stud Strain Gage 

29 FS9 Shear Stud Strain Gage 

30 FS10 Shear Stud Strain Gage 

31 FS11 Shear Stud Strain Gage 

32 FS12 Shear Stud Strain Gage 

33 FS15 Shear Stud Strain Gage 

34 FS7 Shear Stud Strain Gage 

35 WG-S1-IEW-RA 
West Girder-Section S1-Inside East Web- 

Component A of the Rosette 

36 WG-S1-IEW-RB 
West Girder-Section S1-Inside East Web- 

Component B of the Rosette 

37 WG-S1-IEW-RC 
West Girder-Section S1-Inside East Web- 

Component C of the Rosette 

38 WG-S1-IBF-RA 
West Girder-Section S1-Inside Bottom Flange- 

Component A of the Rosette 

39 FS13 Shear Stud Strain Gage 

40 WG-S1-IBF-RB 
West Girder-Section S1-Inside Bottom Flange- 

Component B of the Rosette 

41 WG-S1-IBF-RC 
West Girder-Section S1-Inside Bottom Flange- 

Component C of the Rosette 
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42 WG-S1-IWW-RA 
West Girder-Section S1-Inside West Web- 

Component A of the Rosette 

43 WG-S1-IWW-RB 
West Girder-Section S1-Inside West Web- 

Component B of the Rosette 

44 WG-S1-IWW-RC 
West Girder-Section S1-Inside West Web- 

Component C of the Rosette 

45 WG-S1-OEW-RA 
West Girder-Section S1-Outside East Web- 

Component A of the Rosette 

46 WG-S1-OEW-RB 
West Girder-Section S1-Outside East Web- 

Component B of the Rosette 

47 WG-S1-OEW-RC 
West Girder-Section S1-Outside East Web- 

Component C of the Rosette 

48 WG-S1-OBF-RA 
West Girder-Section S1-Outside Bottom Flange- 

Component A of the Rosette 

49 WG-S1-OBF-RB 
West Girder-Section S1-Outside Bottom Flange- 

Component B of the Rosette 

50 WG-S1-OBF-RC 
West Girder-Section S1-Outside Bottom Flange- 

Component C of the Rosette 

51 WG-S1-OWW-RA 
West Girder-Section S1-Outside West Web- 

Component A of the Rosette 

52 WG-S1-OWW-RB 
West Girder-Section S1-Outside West Web- 

Component B of the Rosette 

53 WG-S1-OWW-RC 
West Girder-Section S1-Outside West Web- 

Component C of the Rosette 

54 WG-N1-IEW-RA 
West Girder-Section N1-Inside East Web- 

Component A of the Rosette 

55 WG-N1-IEW-RB 
West Girder-Section N1-Inside East Web- 

Component B of the Rosette 

56 WG-N1-IEW-RC 
West Girder-Section N1-Inside East Web- 

Component C of the Rosette 

57 WG-N1-IBF-RA 
West Girder-Section N1-Inside Bottom Flange- 

Component A of the Rosette 

58 WG-N1-IBF-RB 
West Girder-Section N1-Inside Bottom Flange- 

Component B of the Rosette 

59 WG-N1-IBF-RC 
West Girder-Section N1-Inside Bottom Flange- 

Component C of the Rosette 

60 WG-N1-IWW-RA 
West Girder-Section N1-Inside West Web- 

Component A of the Rosette 

61 WG-N1-IWW-RB 
West Girder-Section N1-Inside West Web- 

Component B of the Rosette 

62 GO TO 172 
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63 WG-N1-OEW-RA 
West Girder-Section N1-Outside East Web- 

Component A of the Rosette 

64 WG-N1-OEW-RB 
West Girder-Section N1-Outside East Web- 

Component B of the Rosette 

65 WG-N1-OEW-RC 
West Girder-Section N1-Outside East Web- 

Component C of the Rosette 

66 WG-N1-OBF-RA 
West Girder-Section N1-Outside Bottom Flange- 

Component A of the Rosette 

67 WG-N1-OBF-RB 
West Girder-Section N1-Outside Bottom Flange- 

Component B of the Rosette 

68 WG-N1-OBF-RC 
West Girder-Section N1-Outside Bottom Flange- 

Component C of the Rosette 

69 WG-N1-OWW-RA 
West Girder-Section N1-Outside West Web- 

Component A of the Rosette 

70 WG-N1-OWW-RB 
West Girder-Section N1-Outside West Web- 

Component B of the Rosette 

71 WG-N1-OWW-RC 
West Girder-Section N1-Outside West Web- 

Component C of the Rosette 

72 OND-RA 
Outside North Diaphragm-Component A of the 

Rosette 

73 OND-RB Outside North Diaphragm-Component B of the Rosette 

74 OND-RC Outside North Diaphragm-Component C of the Rosette 

75 IND-RA Inside North Diaphragm-Component A of the Rosette 

76 IND-RB Inside North Diaphragm-Component B of the Rosette 

77 IND-RC Inside North Diaphragm-Component C of the Rosette 

78 OSD-RA 
Outside South Diaphragm-Component A of the 

Rosette 

79 OSD-RB Outside South Diaphragm-Component B of the Rosette 

80 OSD-RC Outside South Diaphragm-Component C of the Rosette 

81 ISD-RA Inside South Diaphragm-Component A of the Rosette 

82 ISD-RB Inside South Diaphragm-Component B of the Rosette 

83 ISD-RC Inside South Diaphragm-Component C of the Rosette 

84 EG-N3-OBF-F 
East Girder-Section N3-Outside Bottom Flange- Foil 

Gage 

85 EG-N3-IBF-F 
East Girder-Section N3-Inside Bottom Flange- Foil 

Gage 

86 WG-N3-OEW-RA 
West Girder-Section N3-Outside East Web- 

Component A of the Rosette 

87 WG-N3-OEW-RB 
West Girder-Section N3-Outside East Web- 

Component B of the Rosette 
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88 WG-N3-OEW-RC 
West Girder-Section N3-Outside East Web- 

Component C of the Rosette 

89 WG-N3-OBF-RA 
West Girder-Section N3-Outside Bottom Flange- 

Component A of the Rosette 

90 WG-N3-OBF-RB 
West Girder-Section N3-Outside Bottom Flange- 

Component B of the Rosette 

91 WG-N3-OBF-RC 
West Girder-Section N3-Outside Bottom Flange- 

Component C of the Rosette 

92 WG-N3-OWW-RA 
West Girder-Section N3-Outside West Web- 

Component A of the Rosette 

93 WG-N3-OWW-RB 
West Girder-Section N3-Outside West Web- 

Component B of the Rosette 

94 WG-N3-OWW-RC 
West Girder-Section N3-Outside West Web- 

Component C of the Rosette 

95 WG-N3-IEW-RA 
West Girder-Section N3-Inside East Web- 

Component A of the Rosette 

96 WG-N3-IEW-RB 
West Girder-Section N3-Inside East Web- 

Component B of the Rosette 

97 WG-N3-IEW-RC 
West Girder-Section N3-Inside East Web- 

Component C of the Rosette 

98 WG-N3-IBF-RA 
West Girder-Section N3-Inside Bottom Flange- 

Component A of the Rosette 

99 WG-N3-IBF-RB 
West Girder-Section N3-Inside Bottom Flange- 

Component B of the Rosette 

100 WG-N3-IBF-RC 
West Girder-Section N3-Inside Bottom Flange- 

Component C of the Rosette 

101 WG-N3-IWW-RA 
West Girder-Section N3-Inside West Web- 

Component A of the Rosette 

102 WG-N3-IWW-RB 
West Girder-Section N3-Inside West Web- 

Component B of the Rosette 

103 WG-N3-IWW-RC 
West Girder-Section N3-Inside West Web- 

Component C of the Rosette 

104 EG-N2-OBF-F 
East Girder-Section N2-Outside Bottom Flange- Foil 

Gage 

105 EG-N2-IBF-F 
East Girder-Section N2-Inside Bottom Flange- Foil 

Gage 

106 WG-N2-OEW-RA 
West Girder-Section N2-Outside East Web- 

Component A of the Rosette 

107 WG-N2-OEW-RB 
West Girder-Section N2-Outside East Web- 

Component B of the Rosette 

108 WG-N2-OEW-RC West Girder-Section N2-Outside East Web- 
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Component C of the Rosette 

109 WG-N2-OBF-RA 
West Girder-Section N2-Outside Bottom Flange- 

Component A of the Rosette 

110 WG-N2-OBF-RB 
West Girder-Section N2-Outside Bottom Flange- 

Component B of the Rosette 

111 WG-N2-OBF-RC 
West Girder-Section N2-Outside Bottom Flange- 

Component C of the Rosette 

112 WG-N2-OWW-RA 
West Girder-Section N2-Outside West Web- 

Component A of the Rosette 

113 WG-N2-OWW-RB 
West Girder-Section N2-Outside West Web- 

Component B of the Rosette 

114 WG-N2-OWW-RC 
West Girder-Section N2-Outside West Web- 

Component C of the Rosette 

115 WG-N2-IEW-RA 
West Girder-Section N2-Inside East Web- 

Component A of the Rosette 

116 WG-N2-IEW-RB 
West Girder-Section N2-Inside East Web- 

Component B of the Rosette 

117 WG-N2-IEW-RC 
West Girder-Section N2-Inside East Web- 

Component C of the Rosette 

118 WG-N2-IBF-RA 
West Girder-Section N2-Inside Bottom Flange- 

Component A of the Rosette 

119 WG-N2-IBF-RB 
West Girder-Section N2-Inside Bottom Flange- 

Component B of the Rosette 

120 WG-N2-IBF-RC 
West Girder-Section N2-Inside Bottom Flange- 

Component C of the Rosette 

121 WG-N2-IWW-RA 
West Girder-Section N2-Inside West Web- 

Component A of the Rosette 

122 WG-N2-IWW-RB 
West Girder-Section N2-Inside West Web- 

Component B of the Rosette 

123 WG-N2-IWW-RC 
West Girder-Section N2-Inside West Web- 

Component C of the Rosette 

124 EG-N1-OBF-F 
East Girder-Section N1-Outside Bottom Flange- Foil 

Gage 

125 EG-N1-IBF-F 
East Girder-Section N1-Inside Bottom Flange- Foil 

Gage 

126 EG-S1-OBF-F 
East Girder-Section S2-Outside Bottom Flange- Foil 

Gage 

127 EG-S1-IBF-F 
East Girder-Section S2-Inside Bottom Flange- Foil 

Gage 

128 EG-S2-OBF-F 
East Girder-Section S2-Outside Bottom Flange- Foil 

Gage 
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129 EG-S2-IBF-F 
East Girder-Section S2-Inside Bottom Flange- Foil 

Gage 

130 WG-S2-OEW-RA 
West Girder-Section S2-Outside East Web- 

Component A of the Rosette 

131 WG-S2-OEW-RB 
West Girder-Section S2-Outside East Web- 

Component B of the Rosette 

132 WG-S2-OEW-RC 
West Girder-Section S2-Outside East Web- 

Component C of the Rosette 

133 WG-S2-OBF-RA 
West Girder-Section S2-Outside Bottom Flange- 

Component A of the Rosette 

134 WG-S2-OBF-RB 
West Girder-Section S2-Outside Bottom Flange- 

Component B of the Rosette 

135 WG-S2-OBF-RC 
West Girder-Section S2-Outside Bottom Flange- 

Component C of the Rosette 

136 WG-S2-OWW-RA 
West Girder-Section S2-Outside West Web- 

Component A of the Rosette 

137 WG-S2-OWW-RB 
West Girder-Section S2-Outside West Web- 

Component B of the Rosette 

138 WG-S2-OWW-RC 
West Girder-Section S2-Outside West Web- 

Component C of the Rosette 

139 WG-S2-IEW-RA 
West Girder-Section S2-Inside East Web- 

Component A of the Rosette 

140 WG-S2-IEW-RB 
West Girder-Section S2-Inside East Web- 

Component B of the Rosette 

141 WG-S2-IEW-RC 
West Girder-Section S2-Inside East Web- 

Component C of the Rosette 

142 WG-S2-IBF-RA 
West Girder-Section S2-Inside Bottom Flange- 

Component A of the Rosette 

143 WG-S2-IBF-RB 
West Girder-Section S2-Inside Bottom Flange- 

Component B of the Rosette 

144 WG-S2-IBF-RC 
West Girder-Section S2-Inside Bottom Flange- 

Component C of the Rosette 

145 WG-S2-IWW-RA 
West Girder-Section S2-Inside West Web- 

Component A of the Rosette 

146 WG-S2-IWW-RB 
West Girder-Section S2-Inside West Web- 

Component B of the Rosette 

147 WG-S2-IWW-RC 
West Girder-Section S2-Inside West Web- 

Component C of the Rosette 

148 EG-S3-OBF-F 
East Girder-Section S3-Outside Bottom Flange- Foil 

Gage 

149 EG-S3-IBF-F East Girder-Section S3-Inside Bottom Flange- Foil 
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Gage 

150 WG-S3-OEW-RA 
West Girder-Section S3-Outside East Web- 

Component A of the Rosette 

151 WG-S3-OEW-RB 
West Girder-Section S3-Outside East Web- 

Component B of the Rosette 

152 WG-S3-OEW-RC 
West Girder-Section S3-Outside East Web- 

Component C of the Rosette 

153 WG-S3-OBF-RA 
West Girder-Section S3-Outside Bottom Flange- 

Component A of the Rosette 

154 WG-S3-OBF-RB 
West Girder-Section S3-Outside Bottom Flange- 

Component B of the Rosette 

155 WG-S3-OBF-RC 
West Girder-Section S3-Outside Bottom Flange- 

Component C of the Rosette 

156 WG-S3-OWW-RA 
West Girder-Section S3-Outside West Web- 

Component A of the Rosette 

157 WG-S3-OWW-RB 
West Girder-Section S3-Outside West Web- 

Component B of the Rosette 

158 WG-S3-OWW-RC 
West Girder-Section S3-Outside West Web- 

Component C of the Rosette 

159 WG-S3-IEW-RA 
West Girder-Section S3-Inside East Web- 

Component A of the Rosette 

160 WG-S3-IEW-RB 
West Girder-Section S3-Inside East Web- 

Component B of the Rosette 

161 WG-S3-IEW-RC 
West Girder-Section S3-Inside East Web- 

Component C of the Rosette 

162 WG-S3-IBF-RA 
West Girder-Section S3-Inside Bottom Flange- 

Component A of the Rosette 

163 WG-S3-IBF-RB 
West Girder-Section S3-Inside Bottom Flange- 

Component B of the Rosette 

164 WG-S3-IBF-RC 
West Girder-Section S3-Inside Bottom Flange- 

Component C of the Rosette 

165 WG-S3-IWW-RA 
West Girder-Section S3-Inside West Web- 

Component A of the Rosette 

166 WG-S3-IWW-RB 
West Girder-Section S3-Inside West Web- 

Component B of the Rosette 

167 WG-S3-IWW-RC 
West Girder-Section S3-Inside West Web- 

Component C of the Rosette 

168 CD-F1 
Inner Center Diaphragm of the Intact Girder- 

Foil Strain Gage 

169 CD-F2 
Inner Center Diaphragm of the Intact Girder- 

Foil Strain Gage 
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170 CD-F3 
Inner Center Diaphragm of the Intact Girder- 

Foil Strain Gage 

171 CD-F4 
Inner Center Diaphragm of the Intact Girder- 

Foil Strain Gage 

172 WG-N1-IWW-RC 
West Girder-Section N1-Inside West Web- 

Component C of the Rosette 

173 TD-N3-TC2 Top Deck-Section N3-Transverse Concrete Gage 

174 TD-N3-TC3 Top Deck-Section N3-Transverse Concrete Gage 

175 TD-N3-TC4 Top Deck-Section N3-Transverse Concrete Gage 

176 TD-N3-TC5 Top Deck-Section N3-Transverse Concrete Gage 

177 TD-N2-TC1 Top Deck-Section N2-Transverse Concrete Gage 

178 TD-N2-TC2 Top Deck-Section N2-Transverse Concrete Gage 

179 TD-N2-TC3 Top Deck-Section N2-Transverse Concrete Gage 

180 TD-N2-TC4 Top Deck-Section N2-Transverse Concrete Gage 

181 TD-N2-TC5 Top Deck-Section N2-Transverse Concrete Gage 

182 TD-N1.5-TC1 Top Deck-Section N1.5-Transverse Concrete Gage 

183 TD-N1.5-TC2 Top Deck-Section N1.5-Transverse Concrete Gage 

184 TD-N1.5-TC3 Top Deck-Section N1.5-Transverse Concrete Gage 

185 TD-N1.5-TC4 Top Deck-Section N1.5-Transverse Concrete Gage 

186 TD-N1.5-TC5 Top Deck-Section N1.5-Transverse Concrete Gage 

187 TD-N1-TC1 Top Deck-Section N1-Transverse Concrete Gage 

188 TD-N1-TC2 Top Deck-Section N1-Transverse Concrete Gage 

189 TD-N1-TC3 Top Deck-Section N1-Transverse Concrete Gage 

190 TD-N1-TC4 Top Deck-Section N1-Transverse Concrete Gage 

191 TD-N1-TC5 Top Deck-Section N1-Transverse Concrete Gage 

192 TD-S1-TC1 Top Deck-Section S1-Transverse Concrete Gage 

193 TD-S1-TC2 Top Deck-Section S1-Transverse Concrete Gage 

194 TD-S1-TC3 Top Deck-Section S1-Transverse Concrete Gage 

195 TD-S1-TC4 Top Deck-Section S1-Transverse Concrete Gage 

196 TD-S1-TC5 Top Deck-Section S1-Transverse Concrete Gage 

197 TD-S1.5-TC1 Top Deck-Section S1.5-Transverse Concrete Gage 

198 TD-S1.5-TC2 Top Deck-Section S1.5-Transverse Concrete Gage 

199 TD-S1.5-TC3 Top Deck-Section S1.5-Transverse Concrete Gage 

200 TD-S1.5-TC4 Top Deck-Section S1.5-Transverse Concrete Gage 

201 TD-S1.5-TC5 Top Deck-Section S1.5-Transverse Concrete Gage 

202 TD-S2-TC1 Top Deck-Section S2-Transverse Concrete Gage 

203 TD-S2-TC2 Top Deck-Section S2-Transverse Concrete Gage 

204 TD-S2-TC3 Top Deck-Section S2-Transverse Concrete Gage 
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205 TD-S2-TC4 Top Deck-Section S2-Transverse Concrete Gage 

206 TD-S2-TC5 Top Deck-Section S2-Transverse Concrete Gage 

207 TD-S3-TC1 Top Deck-Section S3-Transverse Concrete Gage 

208 TD-S3-TC2 Top Deck-Section S3-Transverse Concrete Gage 

209 TD-S3-TC3 Top Deck-Section S3-Transverse Concrete Gage 

210 TD-S3-TC4 Top Deck-Section S3-Transverse Concrete Gage 

211 TD-S3-TC5 Top Deck-Section S3-Transverse Concrete Gage 

212 TD-N2-LC1 Top Deck-Section N2-Longitudinal Concrete Gage 

213 TD-N2-LC2 Top Deck-Section N2-Longitudinal Concrete Gage 

214 TD-N1.5-LC1 Top Deck-Section N1.5-Longitudinal Concrete Gage 

215 TD-N1-LC0 Top Deck-Section N1-Longitudinal Concrete Gage 

216 TD-N1-LC1 Top Deck-Section N1-Longitudinal Concrete Gage 

217 TD-N1-LC2 Top Deck-Section N1-Longitudinal Concrete Gage 

218 TD-S1-LC0 Top Deck-Section S1-Longitudinal Concrete Gage 

219 TD-S1-LC1 Top Deck-Section S1-Longitudinal Concrete Gage 

220 TD-S1-LC2 Top Deck-Section S1-Longitudinal Concrete Gage 

221 TD-S1.5-LC1 Top Deck-Section S1.5-Longitudinal Concrete Gage 

222 TD-S2-LC1 Top Deck-Section S2-Longitudinal Concrete Gage 

223 TD-S2-LC2 Top Deck-Section S2-Longitudinal Concrete Gage 

224 ER-N3 East Railing-Section N3 

225 ER-N2 East Railing-Section N2 

226 ER-N1 East Railing-Section N1 

227 ER-S1 East Railing-Section S1 

228 ER-S2 East Railing-Section S2 

229 ER-S3 East Railing-Section S3 

230 LP-N3 Linear Potentiometer-Section N3 

231 LP-N2 Linear Potentiometer-Section N2 

232 LP-N1 Linear Potentiometer-Section N1 

233 LP-CL Linear Potentiometer-Section CL 

234 LP-CL1 Linear Potentiometer-Across the fracture (West) 

235 LP-CL2 Linear Potentiometer-Across the fracture (East) 

236 LP-S1 Linear Potentiometer-Section S1 

237 LP-S2 Linear Potentiometer-Section S2 

238 LP-S3 Linear Potentiometer-Section S3 

239 LP-SD1 
Linear Potentiometer-South Diaphragm  

Exterior Tip of Bottom Flange (FG) 

240 LP-SD2 
Linear Potentiometer-South Diaphragm  

Interior Tip of Bottom Flange (FG) 
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241 LP-SD3 
Linear Potentiometer-South Diaphragm  

Interior Tip of Bottom Flange (IG) 

242 LP-SD4 
Linear Potentiometer-South Diaphragm  

Exterior Tip of Bottom Flange (IG) 

243 SP-CL 
String Potentiometer-Mid-Width of  

Bottom Flange at CL of the Fracture Girder 
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E.3 FULL-SCALE TEST 3 

 

 

Figure E-6: String potentiometer locations between girder bottom flanges and ground 

Full-Scale Test 3 
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Table E-4: Index of instrumentation channels Full-Scale Test 3 

National Instruments System 

Index Gage Name Description 

0 FR1 Foil Rebar Strain Gage 

1 FR2 Foil Rebar Strain Gage 

2 FR3 Foil Rebar Strain Gage 

3 FR4 Foil Rebar Strain Gage 

4 FR5 Foil Rebar Strain Gage 

5 FR6 Foil Rebar Strain Gage 

6 FR7 Foil Rebar Strain Gage 

7 FR8 Foil Rebar Strain Gage 

8 FR9 Foil Rebar Strain Gage 

9 FR10 Foil Rebar Strain Gage 

10 FR11 Foil Rebar Strain Gage 

11 FR12 Foil Rebar Strain Gage 

12 FR13 Foil Rebar Strain Gage 

13 FR14 Foil Rebar Strain Gage 

14 FR15 Foil Rebar Strain Gage 

15 FR16 Foil Rebar Strain Gage 

16 FR17 Foil Rebar Strain Gage 

17 FR19 Foil Rebar Strain Gage 

18 FR20 Foil Rebar Strain Gage 

19 FR21 Foil Rebar Strain Gage 

20 FR22 Foil Rebar Strain Gage 

21 FS1 Shear Stud Strain Gage 

22 FS2 Shear Stud Strain Gage 

23 FS13 Shear Stud Strain Gage 

24 FS3 Shear Stud Strain Gage 

25 FS4 Shear Stud Strain Gage 

26 FS5 Shear Stud Strain Gage 

27 FS6 Shear Stud Strain Gage 

28 FS14 Shear Stud Strain Gage 

29 
WG-S1-IEW-RA 

West Girder-Section S1-Inside East Web- 

Component A of the Rosette 

30 
WG-S1-IEW-RB 

West Girder-Section S1-Inside East Web- 

Component B of the Rosette 

31 
WG-S1-IEW-RC 

West Girder-Section S1-Inside East Web- 

Component C of the Rosette 

32 WG-S1-IBF-RA 
West Girder-Section S1-Inside Bottom Flange- 

Component A of the Rosette 
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33 WG-S1-IBF-RB 
West Girder-Section S1-Inside Bottom Flange- 

Component B of the Rosette 

34 WG-S1-IBF-RC 
West Girder-Section S1-Inside Bottom Flange- 

Component C of the Rosette 

35 WG-S1-IWW-RA 
West Girder-Section S1-Inside West Web- 

Component A of the Rosette 

36 WG-S1-IWW-RB 
West Girder-Section S1-Inside West Web- 

Component B of the Rosette 

37 WG-S1-IWW-RC 
West Girder-Section S1-Inside West Web- 

Component C of the Rosette 

38 EG-N3-TF-F 
East Girder-Section N3-Exterior Top Flange- Foil 

Gage 

39 EG-N2-TF-F 
East Girder-Section N2-Exterior Top Flange- Foil 

Gage 

40 
EG-N1-TF-F 

East Girder-Section N1-Exterior Top Flange- Foil 

Gage 

41 
EG-S2-InteriorTF-F 

East Girder-Section S2-Interior Top Flange- Foil 

Gage 

42 
EG-S4-InteriorTF-F 

East Girder-Section S4-Interior Top Flange- Foil 

Gage 

43 
WG-CL-IBF-F 

West Girder-Section CL-Inside Bottom Flange-Foil 

Gage 

44 
WG-CL-OBF-F 

West Girder-Section CL-Outside Bottom Flange-Foil 

Gage 

45 
WG-S1-OEW-RA 

West Girder-Section S1-Outside East Web- 

Component A of the Rosette 

46 
WG-S1-OEW-RB 

West Girder-Section S1-Outside East Web- 

Component B of the Rosette 

47 
WG-S1-OEW-RC 

West Girder-Section S1-Outside East Web- 

Component C of the Rosette 

48 WG-S1-OBF-RA 
West Girder-Section S1-Outside Bottom Flange- 

Component A of the Rosette 

49 WG-S1-OBF-RB 
West Girder-Section S1-Outside Bottom Flange- 

Component B of the Rosette 

50 WG-S1-OBF-RC 
West Girder-Section S1-Outside Bottom Flange- 

Component C of the Rosette 

51 WG-S1-OWW-RA 
West Girder-Section S1-Outside West Web- 

Component A of the Rosette 

52 WG-S1-OWW-RB 
West Girder-Section S1-Outside West Web- 

Component B of the Rosette 

53 WG-S1-OWW-RC West Girder-Section S1-Outside West Web- 
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Component C of the Rosette 

54 WG-N1-IEW-RA 
West Girder-Section N1-Inside East Web- 

Component A of the Rosette 

55 WG-N1-IEW-RB 
West Girder-Section N1-Inside East Web- 

Component B of the Rosette 

56 
WG-N1-IEW-RC 

West Girder-Section N1-Inside East Web- 

Component C of the Rosette 

57 
WG-N1-IBF-RA 

West Girder-Section N1-Inside Bottom Flange- 

Component A of the Rosette 

58 
WG-N1-IBF-RB 

West Girder-Section N1-Inside Bottom Flange- 

Component B of the Rosette 

59 
WG-N1-IBF-RC 

West Girder-Section N1-Inside Bottom Flange- 

Component C of the Rosette 

60 
WG-N1-IWW-RA 

West Girder-Section N1-Inside West Web- 

Component A of the Rosette 

61 
WG-N1-IWW-RB 

West Girder-Section N1-Inside West Web- 

Component B of the Rosette 

62 
WG-N1-IWW-RC 

West Girder-Section N1-Inside West Web- 

Component C of the Rosette 

63 
WG-N1-OEW-RA 

West Girder-Section N1-Outside East Web- 

Component A of the Rosette 

64 WG-N1-OEW-RB 
West Girder-Section N1-Outside East Web- 

Component B of the Rosette 

65 WG-N1-OEW-RC 
West Girder-Section N1-Outside East Web- 

Component C of the Rosette 

66 WG-N1-OBF-RA 
West Girder-Section N1-Outside Bottom Flange- 

Component A of the Rosette 

67 WG-N1-OBF-RB 
West Girder-Section N1-Outside Bottom Flange- 

Component B of the Rosette 

68 WG-N1-OBF-RC 
West Girder-Section N1-Outside Bottom Flange- 

Component C of the Rosette 

69 WG-N1-OWW-RA 
West Girder-Section N1-Outside West Web- 

Component A of the Rosette 

70 WG-N1-OWW-RB 
West Girder-Section N1-Outside West Web- 

Component B of the Rosette 

71 WG-N1-OWW-RC 
West Girder-Section N1-Outside West Web- 

Component C of the Rosette 

72 
OND-RA 

Outside North Diaphragm-Component A of the 

Rosette 

73 
OND-RB 

Outside North Diaphragm-Component B of the 

Rosette 
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74 
OND-RC 

Outside North Diaphragm-Component C of the 

Rosette 

75 IND-RA Inside North Diaphragm-Component A of the Rosette 

76 IND-RB Inside North Diaphragm-Component B of the Rosette 

77 IND-RC Inside North Diaphragm-Component C of the Rosette 

78 
OSD-RA 

Outside South Diaphragm-Component A of the 

Rosette 

79 
OSD-RB 

Outside South Diaphragm-Component B of the 

Rosette 

80 OSD-RC 
Outside South Diaphragm-Component C of the 

Rosette 

81 ISD-RA Inside South Diaphragm-Component A of the Rosette 

82 ISD-RB Inside South Diaphragm-Component B of the Rosette 

83 ISD-RC Inside South Diaphragm-Component C of the Rosette 

84 EG-N3-OBF-F 
East Girder-Section N3-Outside Bottom Flange- Foil 

Gage 

85 EG-N3-IBF-F 
East Girder-Section N3-Inside Bottom Flange- Foil 

Gage 

86 WG-N3-OEW-RA 
West Girder-Section N3-Outside East Web- 

Component A of the Rosette 

87 WG-N3-OEW-RB 
West Girder-Section N3-Outside East Web- 

Component B of the Rosette 

88 
WG-N3-OEW-RC 

West Girder-Section N3-Outside East Web- 

Component C of the Rosette 

89 
WG-N3-OBF-RA 

West Girder-Section N3-Outside Bottom Flange- 

Component A of the Rosette 

90 
WG-N3-OBF-RB 

West Girder-Section N3-Outside Bottom Flange- 

Component B of the Rosette 

91 
WG-N3-OBF-RC 

West Girder-Section N3-Outside Bottom Flange- 

Component C of the Rosette 

92 
WG-N3-OWW-RA 

West Girder-Section N3-Outside West Web- 

Component A of the Rosette 

93 
WG-N3-OWW-RB 

West Girder-Section N3-Outside West Web- 

Component B of the Rosette 

94 
WG-N3-OWW-RC 

West Girder-Section N3-Outside West Web- 

Component C of the Rosette 

95 
WG-N3-IEW-RA 

West Girder-Section N3-Inside East Web- 

Component A of the Rosette 

96 WG-N3-IEW-RB 
West Girder-Section N3-Inside East Web- 

Component B of the Rosette 
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97 WG-N3-IEW-RC 
West Girder-Section N3-Inside East Web- 

Component C of the Rosette 

98 WG-N3-IBF-RA 
West Girder-Section N3-Inside Bottom Flange- 

Component A of the Rosette 

99 WG-N3-IBF-RB 
West Girder-Section N3-Inside Bottom Flange- 

Component B of the Rosette 

100 WG-N3-IBF-RC 
West Girder-Section N3-Inside Bottom Flange- 

Component C of the Rosette 

101 WG-N3-IWW-RA 
West Girder-Section N3-Inside West Web- 

Component A of the Rosette 

102 WG-N3-IWW-RB 
West Girder-Section N3-Inside West Web- 

Component B of the Rosette 

103 WG-N3-IWW-RC 
West Girder-Section N3-Inside West Web- 

Component C of the Rosette 

104 
EG-N2-OBF-F 

East Girder-Section N2-Outside Bottom Flange- Foil 

Gage 

105 
EG-N2-IBF-F 

East Girder-Section N2-Inside Bottom Flange- Foil 

Gage 

106 
WG-N2-OEW-RA 

West Girder-Section N2-Outside East Web- 

Component A of the Rosette 

107 
WG-N2-OEW-RB 

West Girder-Section N2-Outside East Web- 

Component B of the Rosette 

108 
WG-N2-OEW-RC 

West Girder-Section N2-Outside East Web- 

Component C of the Rosette 

109 
WG-N2-OBF-RA 

West Girder-Section N2-Outside Bottom Flange- 

Component A of the Rosette 

110 
WG-N2-OBF-RB 

West Girder-Section N2-Outside Bottom Flange- 

Component B of the Rosette 

111 
WG-N2-OBF-RC 

West Girder-Section N2-Outside Bottom Flange- 

Component C of the Rosette 

112 WG-N2-OWW-RA 
West Girder-Section N2-Outside West Web- 

Component A of the Rosette 

113 WG-N2-OWW-RB 
West Girder-Section N2-Outside West Web- 

Component B of the Rosette 

114 WG-N2-OWW-RC 
West Girder-Section N2-Outside West Web- 

Component C of the Rosette 

115 WG-N2-IEW-RA 
West Girder-Section N2-Inside East Web- 

Component A of the Rosette 

116 WG-N2-IEW-RB 
West Girder-Section N2-Inside East Web- 

Component B of the Rosette 

117 WG-N2-IEW-RC West Girder-Section N2-Inside East Web- 
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Component C of the Rosette 

118 WG-N2-IBF-RA 
West Girder-Section N2-Inside Bottom Flange- 

Component A of the Rosette 

119 WG-N2-IBF-RB 
West Girder-Section N2-Inside Bottom Flange- 

Component B of the Rosette 

120 
WG-N2-IBF-RC 

West Girder-Section N2-Inside Bottom Flange- 

Component C of the Rosette 

121 
WG-N2-IWW-RA 

West Girder-Section N2-Inside West Web- 

Component A of the Rosette 

122 
WG-N2-IWW-RB 

West Girder-Section N2-Inside West Web- 

Component B of the Rosette 

123 
WG-N2-IWW-RC 

West Girder-Section N2-Inside West Web- 

Component C of the Rosette 

124 
EG-NCL-TF-F 

East Girder-Section NCL-Exterior  Top Flange- Foil 

Gage 

125 
EG-SCL-TF-F 

East Girder-Section SCL-Exterior Top Flange- Foil 

Gage 

126 
EG-S1-TF-F 

East Girder-Section S1-Exterior Top Flange- Foil 

Gage 

127 
EG-S2-TF-F 

East Girder-Section S2-Exterior Top Flange- Foil 

Gage 

128 EG-S2-OBF-F 
East Girder-Section S2-Outside Bottom Flange- Foil 

Gage 

129 EG-S2-IBF-F 
East Girder-Section S2-Inside Bottom Flange- Foil 

Gage 

130 WG-S2-OEW-RA 
West Girder-Section S2-Outside East Web- 

Component A of the Rosette 

131 WG-S2-OEW-RB 
West Girder-Section S2-Outside East Web- 

Component B of the Rosette 

132 WG-S2-OEW-RC 
West Girder-Section S2-Outside East Web- 

Component C of the Rosette 

133 WG-S2-OBF-RA 
West Girder-Section S2-Outside Bottom Flange- 

Component A of the Rosette 

134 WG-S2-OBF-RB 
West Girder-Section S2-Outside Bottom Flange- 

Component B of the Rosette 

135 WG-S2-OBF-RC 
West Girder-Section S2-Outside Bottom Flange- 

Component C of the Rosette 

136 
WG-S2-OWW-RA 

West Girder-Section S2-Outside West Web- 

Component A of the Rosette 

137 
WG-S2-OWW-RB 

West Girder-Section S2-Outside West Web- 

Component B of the Rosette 
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138 
WG-S2-OWW-RC 

West Girder-Section S2-Outside West Web- 

Component C of the Rosette 

139 
WG-S2-IEW-RA 

West Girder-Section S2-Inside East Web- 

Component A of the Rosette 

140 
WG-S2-IEW-RB 

West Girder-Section S2-Inside East Web- 

Component B of the Rosette 

141 
WG-S2-IEW-RC 

West Girder-Section S2-Inside East Web- 

Component C of the Rosette 

142 
WG-S2-IBF-RA 

West Girder-Section S2-Inside Bottom Flange- 

Component A of the Rosette 

143 
WG-S2-IBF-RB 

West Girder-Section S2-Inside Bottom Flange- 

Component B of the Rosette 

144 WG-S2-IBF-RC 
West Girder-Section S2-Inside Bottom Flange- 

Component C of the Rosette 

145 WG-S2-IWW-RA 
West Girder-Section S2-Inside West Web- 

Component A of the Rosette 

146 WG-S2-IWW-RB 
West Girder-Section S2-Inside West Web- 

Component B of the Rosette 

147 WG-S2-IWW-RC 
West Girder-Section S2-Inside West Web- 

Component C of the Rosette 

148 EG-S3-OBF-F 
East Girder-Section S3-Outside Bottom Flange- Foil 

Gage 

149 EG-S3-IBF-F 
East Girder-Section S3-Inside Bottom Flange- Foil 

Gage 

150 WG-S3-OEW-RA 
West Girder-Section S3-Outside East Web- 

Component A of the Rosette 

151 WG-S3-OEW-RB 
West Girder-Section S3-Outside East Web- 

Component B of the Rosette 

152 
WG-S3-OEW-RC 

West Girder-Section S3-Outside East Web- 

Component C of the Rosette 

153 
WG-S3-OBF-RA 

West Girder-Section S3-Outside Bottom Flange- 

Component A of the Rosette 

154 
WG-S3-OBF-RB 

West Girder-Section S3-Outside Bottom Flange- 

Component B of the Rosette 

155 
WG-S3-OBF-RC 

West Girder-Section S3-Outside Bottom Flange- 

Component C of the Rosette 

156 
WG-S3-OWW-RA 

West Girder-Section S3-Outside West Web- 

Component A of the Rosette 

157 
WG-S3-OWW-RB 

West Girder-Section S3-Outside West Web- 

Component B of the Rosette 

158 
WG-S3-OWW-RC West Girder-Section S3-Outside West Web- 
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Component C of the Rosette 

159 
WG-S3-IEW-RA 

West Girder-Section S3-Inside East Web- 

Component A of the Rosette 

160 WG-S3-IEW-RB 
West Girder-Section S3-Inside East Web- 

Component B of the Rosette 

161 WG-S3-IEW-RC 
West Girder-Section S3-Inside East Web- 

Component C of the Rosette 

162 WG-S3-IBF-RA 
West Girder-Section S3-Inside Bottom Flange- 

Component A of the Rosette 

163 WG-S3-IBF-RB 
West Girder-Section S3-Inside Bottom Flange- 

Component B of the Rosette 

164 WG-S3-IBF-RC 
West Girder-Section S3-Inside Bottom Flange- 

Component C of the Rosette 

165 WG-S3-IWW-RA 
West Girder-Section S3-Inside West Web- 

Component A of the Rosette 

166 WG-S3-IWW-RB 
West Girder-Section S3-Inside West Web- 

Component B of the Rosette 

167 WG-S3-IWW-RC 
West Girder-Section S3-Inside West Web- 

Component C of the Rosette 

168 
EG-N4-InteriorTF-F 

East Girder-Section N4-Interior Top Flange- Foil 

Gage 

169 
EG-N2-InteriorTF-F 

East Girder-Section N2-Interior Top Flange- Foil 

Gage 

170 TD-N3-LC1 Top Deck-Section N3-Longitudinal Concrete Gage 

171 TD-N3-LC1.5 Top Deck-Section N3-Longitudinal Concrete Gage 

172 TD-N3-LC2 Top Deck-Section N3-Longitudinal Concrete Gage 

173 TD-N3-TC1 Top Deck-Section N3-Transverse Concrete Gage 

174 TD-N3-TC2 Top Deck-Section N3-Transverse Concrete Gage 

175 TD-N3-TC3 Top Deck-Section N3-Transverse Concrete Gage 

176 TD-N3-TC4 Top Deck-Section N3-Transverse Concrete Gage 

177 TD-N3-TC5 Top Deck-Section N3-Transverse Concrete Gage 

178 TD-N2-TC1 Top Deck-Section N2-Transverse Concrete Gage 

179 TD-N2-TC2 Top Deck-Section N2-Transverse Concrete Gage 

180 TD-N2-TC3 Top Deck-Section N2-Transverse Concrete Gage 

181 TD-N2-TC4 Top Deck-Section N2-Transverse Concrete Gage 

182 TD-N2-TC5 Top Deck-Section N2-Transverse Concrete Gage 

183 TD-N1.5-TC1 Top Deck-Section N1.5-Transverse Concrete Gage 

184 TD-N1.5-TC3 Top Deck-Section N1.5-Transverse Concrete Gage 

185 TD-N1.5-TC4 Top Deck-Section N1.5-Transverse Concrete Gage 

186 TD-N1.5-TC5 Top Deck-Section N1.5-Transverse Concrete Gage 
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187 TD-N1-TC1 Top Deck-Section N1-Transverse Concrete Gage 

188 TD-N1-TC3 Top Deck-Section N1-Transverse Concrete Gage 

189 TD-N1-TC4 Top Deck-Section N1-Transverse Concrete Gage 

190 TD-N1-TC5 Top Deck-Section N1-Transverse Concrete Gage 

191 TD-S1-TC1 Top Deck-Section S1-Transverse Concrete Gage 

192 TD-S1-TC3 Top Deck-Section S1-Transverse Concrete Gage 

193 TD-S1-TC4 Top Deck-Section S1-Transverse Concrete Gage 

194 TD-S1-TC5 Top Deck-Section S1-Transverse Concrete Gage 

195 TD-S1.5-TC1 Top Deck-Section S1.5-Transverse Concrete Gage 

196 TD-S1.5-TC3 Top Deck-Section S1.5-Transverse Concrete Gage 

197 TD-N4-TC2 Top Deck-Section N4-Transverse Concrete Gage 

198 TD-N4-TC4 Top Deck-Section N4-Transverse Concrete Gage 

199 TD-N3.5-TC1 Top Deck-Section N3.5-Transverse Concrete Gage 

200 TD-N3.5-TC2 Top Deck-Section N3.5-Transverse Concrete Gage 

201 TD-S1.5-TC4 Top Deck-Section S1.5-Transverse Concrete Gage 

202 TD-S1.5-TC5 Top Deck-Section S1.5-Transverse Concrete Gage 

203 TD-S2-TC1 Top Deck-Section S2-Transverse Concrete Gage 

204 TD-S2-TC2 Top Deck-Section S2-Transverse Concrete Gage 

205 TD-S2-TC3 Top Deck-Section S2-Transverse Concrete Gage 

206 TD-S2-TC4 Top Deck-Section S2-Transverse Concrete Gage 

207 TD-S2-TC5 Top Deck-Section S2-Transverse Concrete Gage 

208 TD-S3-TC1 Top Deck-Section S3-Transverse Concrete Gage 

209 TD-S3-TC2 Top Deck-Section S3-Transverse Concrete Gage 

210 TD-S3-TC3 Top Deck-Section S3-Transverse Concrete Gage 

211 TD-S3-TC4 Top Deck-Section S3-Transverse Concrete Gage 

212 TD-S3-TC5 Top Deck-Section S3-Transverse Concrete Gage 

213 TD-N2-LC1 Top Deck-Section N2-Longitudinal Concrete Gage 

214 TD-N2-LC2 Top Deck-Section N2-Longitudinal Concrete Gage 

215 TD-N1-LC1 Top Deck-Section N1-Longitudinal Concrete Gage 

216 TD-N1-LC2 Top Deck-Section N1-Longitudinal Concrete Gage 

217 TD-S1-LC1 Top Deck-Section S1-Longitudinal Concrete Gage 

218 TD-S1-LC2 Top Deck-Section S1-Longitudinal Concrete Gage 

219 TD-S2-LC1 Top Deck-Section S2-Longitudinal Concrete Gage 

220 TD-S2-LC2 Top Deck-Section S2-Longitudinal Concrete Gage 

221 TD-N3.5-TC4 Top Deck-Section N3.5-Transverse Concrete Gage 

222 TD-N3.5-TC5 Top Deck-Section N3.5-Transverse Concrete Gage 

223 ER-N2 East Railing-Section N2 

224 ER-N1 East Railing-Section N1 

225 ER-S1 East Railing-Section S1 

226 ER-S2 East Railing-Section S2 

227 ER-N2-MH East Railing-Section N2-Middle Height 
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228 LP-N3-ER Linear Potentiometer-Section N3-East Railing 

229 LP-S3-ER Linear Potentiometer-Section S3-East Railing 

230 LP-N3 Linear Potentiometer-Section N3 

231 LP-N2 Linear Potentiometer-Section N2 

232 LP-N1 Linear Potentiometer-Section N1 

233 LP-CL Linear Potentiometer-Section CL 

234 
SP-CL-EG1 

String Potentiometer-Section CL-East Girder  

(Western Tip of Bottom Flange) 

235 
SP-CL-EG2 

String Potentiometer-Section CL-East Girder  

(Eastern Tip of Bottom Flange) 

236 LP-S1 Linear Potentiometer-Section S1 

237 LP-S2 Linear Potentiometer-Section S2 

238 LP-S3 Linear Potentiometer-Section S3 

239 
LP-N4-IF 

Linear Potentiometer-Section N4-Interior Top Flange  

of the Fractured Girder 

240 
LP-N3-IF 

Linear Potentiometer-Section N3-Interior Top Flange  

of the Fractured Girder 

241 
LP-S3-IF 

Linear Potentiometer-Section S3-Interior Top Flange  

of the Fractured Girder 

242 
LP-S4-IF 

Linear Potentiometer-Section S4-Interior Top Flange  

of the Fractured Girder 

243 SP-CL String Potentiometer-Across the Fracture 

  

 

 

 

Agilent Systems System 

Index Gage Name Description 

0 ER-N1-MH East Railing-Section N1-Middle Height 

1 ER-NCL-MH East Railing-Section NCL-6in. from the Top Surface 

2 ER-NCL-MH2 East Railing-Section NCL-12in. from the Top Surface 

3 ER-SCL-MH East Railing-Section SCL-6in. from the Top Surface 

4 ER-SCL-MH2 East Railing-Section SCL-12in. from the Top Surface 

5 ER-S1-MH East Railing-Section S1-Middle Height 

6 ER-S2-MH East Railing-Section S2-Middle Height 

7 ER-NCL East Railing-Section NCL 

8 ER-SCL East Railing-Section SCL 

9 WR-N2 West Railing-Section N2 

10 WR-N1 West Railing-Section N1 

11 WR-NCL West Railing-Section NCL 

12 WR-SCL West Railing-Section SCL 

13 WR-S1 West Railing-Section S1 
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14 WR-S2 West Railing-Section S2 

15 
LP-N2-IF 

Linear Potentiometer-Section N2-Interior Top Flange 

of the Fractured Girder 

16 LP-N1-IF 
Linear Potentiometer-Section N1-Interior Top Flange 

of the Fractured Girder 

17 LP-CL-IF 
Linear Potentiometer-Section CL-Interior Top Flange 

of the Fractured Girder 

18 LP-S1-IF 
Linear Potentiometer-Section S1-Interior Top Flange 

of the Fractured Girder 

19 LP-S2-IF 
Linear Potentiometer-Section S2-Interior Top Flange 

of the Fractured Girder 

20 SP-N3-WG1 
String Potentiometer-Section N3-West Girder  

(Western Tip of Bottom Flange) 

21 SP-N3-WG2 
String Potentiometer-Section N3-West Girder  

(Eastern Tip of Bottom Flange) 

22 SP-N2-WG1 
String Potentiometer-Section N2-West Girder  

(Western Tip of Bottom Flange) 

23 SP-N2-WG2 
String Potentiometer-Section N2-West Girder  

(Eastern Tip of Bottom Flange) 

24 
SP-CL-WG1 

String Potentiometer-Section CL-West Girder  

(Western Tip of Bottom Flange) 

25 
SP-CL-WG2 

String Potentiometer-Section CL-West Girder  

(Eastern Tip of Bottom Flange) 

26 
SP-S2-WG1 

String Potentiometer-Section S2-West Girder  

(Western Tip of Bottom Flange) 

27 
SP-S2-WG2 

String Potentiometer-Section S2-West Girder  

(Eastern Tip of Bottom Flange) 

28 
SP-S3-WG1 

String Potentiometer-Section S3-West Girder  

(Western Tip of Bottom Flange) 

29 
SP-S3-WG2 

String Potentiometer-Section S3-West Girder  

(Eastern Tip of Bottom Flange) 

30 
SP-N3-EG 

String Potentiometer-Section N3-East Girder 

(Mid-width of Bottom Flange) 

31 SP-N2-EG 
String Potentiometer-Section N2-East Girder  

(Mid-width of Bottom Flange) 

32 SP-S2-EG 
String Potentiometer-Section S2-East Girder  

(Mid-width of Bottom Flange) 

33 SP-S3-EG 
String Potentiometer-Section S3-East Girder  

(Mid-width of Bottom Flange) 

34 EG-S3-TF-F 
East Girder-Section S3-Exterior Top Flange-Foil 

Gage 
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35 TD-N2.5-TC1 Top Deck-Section N2.5-Transverse Concrete Gage 

36 TD-N2.5-TC2 Top Deck-Section N2.5-Transverse Concrete Gage 

37 TD-N2.5-TC4 Top Deck-Section N2.5-Transverse Concrete Gage 

38 TD-N2.5-TC5 Top Deck-Section N2.5-Transverse Concrete Gage 

39 TD-N2-LC1.5 Top Deck-Section N2-Longitudinal Concrete Gage 

40 TD-N1-LC1.5 Top Deck-Section N1-Longitudinal Concrete Gage 

41 TD-NCL-LC0 Top Deck-Section NCL-Longitudinal Concrete Gage 

42 TD-NCL-LC1 Top Deck-Section NCL-Longitudinal Concrete Gage 

43 TD-NCL-LC2 Top Deck-Section NCL-Longitudinal Concrete Gage 

44 TD-SCL-LC0 Top Deck-Section SCL-Longitudinal Concrete Gage 

45 TD-SCL-LC1 Top Deck-Section SCL-Longitudinal Concrete Gage 

46 TD-SCL-LC2 Top Deck-Section SCL-Longitudinal Concrete Gage 

47 TD-S1-LC1.5 Top Deck-Section S1-Longitudinal Concrete Gage 

48 TD-S2-LC1.5 Top Deck-Section S2-Longitudinal Concrete Gage 

49 TD-S2.5-TC1 Top Deck-Section S2.5-Transverse Concrete Gage 

50 TD-S2.5-TC2 Top Deck-Section S2.5-Transverse Concrete Gage 

51 TD-S2.5-TC4 Top Deck-Section S2.5-Transverse Concrete Gage 

52 TD-S2.5-TC5 Top Deck-Section S2.5-Transverse Concrete Gage 

53 TD-S3-LC1 Top Deck-Section S3-Longitudinal Concrete Gage 

54 TD-S3-LC1.5 Top Deck-Section S3-Longitudinal Concrete Gage 

55 TD-S3-LC2 Top Deck-Section S3-Longitudinal Concrete Gage 

56 TD-S3.5-TC1 Top Deck-Section S3.5-Transverse Concrete Gage 

57 TD-S3.5-TC2 Top Deck-Section S3.5-Transverse Concrete Gage 

58 TD-S3.5-TC4 Top Deck-Section S3.5-Transverse Concrete Gage 

59 TD-S3.5-TC5 Top Deck-Section S3.5-Transverse Concrete Gage 

60 TD-S4-TC2 Top Deck-Section S4-Transverse Concrete Gage 

61 TD-S4-TC4 Top Deck-Section S4-Transverse Concrete Gage  
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