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Recently in the United States, there has been increasing interest in developing 

engineered approaches to structural fire safety of buildings as an alternative to 

conventional code-based prescriptive approaches. With an engineered approach, the 

response of a structure to fire is computed and appropriate design measures are taken to 

assure acceptable response. In the case of steel buildings, one of the key elements of this 

engineered approach is the ability to predict the elevated-temperature properties of 

structural steel. Although several past research studies have examined elevated-

temperature properties of structural steel, there are still major gaps in the experimental 

database and in the available constitutive models, particularly for ASTM A992 structural 

steel, a commonly used grade. Accordingly, the overall objective of this dissertation is to 

significantly enlarge the experimental database of the elevated-temperature properties for 

ASTM A992 structural steel and developing improved constitutive models for application 

in structural-fire engineering analysis. 

Specific issues examined in this dissertation include the following: tensile 

properties at elevated temperatures; room-temperature mechanical properties after 

heating and cooling; and creep and relaxation properties at elevated temperatures. For the 
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elevated-temperature studies of tension, creep and relaxation, constitutive models were 

developed to describe the measured experimental data. These models were compared to 

existing theoretical and empirical models from the literature. 
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CHAPTER 1 
Introduction 

1.1 OVERVIEW 

Recently in the United States, there has been increasing interest in developing 

engineered approaches to structural fire safety of buildings as an alternative to 

conventional code-based prescriptive approaches. With an engineered approach, the 

response of a structure to fire is computed and appropriate design measures are taken to 

assure acceptable response. In the case of steel buildings, one of the key elements of this 

engineered approach is the ability to predict the elevated-temperature properties of 

structural steel. Not only necessary in design and analysis, knowledge of the mechanical 

properties of structural steel subjected to elevated temperature is also useful for 

evaluating structural integrity after a fire.  

1.2 OBJECTIVE OF RESEARCH 

The objective of this research is to develop experimental data on the mechanical 

properties of ASTM A992 steel at elevated temperatures for use in structural-fire 

engineering analysis. Although several past research studies have examined elevated-

temperature properties of structural steel, there are still major gaps in the experimental 

database and in the available constitutive models. Accordingly, the overall goal of this 

dissertation is to enhance understanding of the topic, through significantly enlarging the 

experimental database of the elevated-temperature properties for structural steel and 

developing improved constitutive models for application in structural-fire engineering 

analysis. The models developed—for tension, creep and relaxation behaviors—were 

validated against the experimental data collected in this research as well as data reported 

in the literature. 
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In addition to the extensive experimental investigations, this research will also 

examine different approaches to defining material design parameters, such as yield stress, 

based on the experimentally measured stress-strain data. Finally, the experimental data 

collected in this research will be combined with data reported in the literature to suggest 

improved constitutive models for structural steel at elevated temperatures with uniaxial 

tension response as well as with creep and relaxation response. 

1.3 OUTLINE OF DISSERTATION 

This dissertation is organized with the results from different series of testing 

presented in separate chapters. A brief literature review is first provided in Chapter 2. 

Chapter 3 presents a discussion of the experimental techniques used in this research and 

their effect on the test results. Testing for basic mechanical properties like yield stress is 

less standardized at elevated temperature than at room temperature. It was therefore 

important to thoroughly document the testing methods used. At some points during 

testing, pilot testing was required before accurate results could be obtained consistently. 

Pilot testing was conducted to obtain uniform temperature throughout the test furnace, 

and accurate measurement of both coupon temperature and strain. For measurement of 

coupon temperature, studies of the effect of thermocouple type and methods of shielding 

and contact were undertaken. For strain measurement, different extensometers were 

tested and compared to one another for measurements of both small and large strains. 

Also related to strain measurement was the challenge of generating full stress-strain 

curves from strain data that was discontinuously measured due to the need to periodically 

reset the extensometers during testing as they would approach their measurement range. 

Chapter 4 discusses tension testing conducted at elevated temperatures. Test 

temperatures ranged from room temperature to 1000°C, in 100°C increments. All testing 

was thermal steady state, that is, the furnace was heated to the target temperature and 

held at that temperature throughout testing. Loading of the specimen to failure was 

performed under displacement control. For each temperature, the tensile test was repeated 
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at least three times: the test with the best, most representative stress-strain curve was 

selected for analysis. Curve fits of the stress-strain data were performed, and two 

constitutive models for the tensile behavior of A992 steel were developed. One of these 

models was a detailed model, aimed primarily for use in advanced analysis; the other was 

a simplified model for simplified analysis and design.  

Chapter 5 covers a series of tests performed at room temperature on coupons that 

had previously been heated and cooled. This testing was performed to provide data to 

help evaluate the post-fire properties of steel. Coupons were heated to a target 

temperature, held there for an hour; then removed and allowed to cool to room 

temperature. Three methods of cooling were investigated: Cooling-in-Air, Cooling-in-

Blanket and Cooling-in-Water; with their corresponding cooling rates being normal, slow 

and very rapid. Tension testing was then performed on the heated-and-cooled coupons. In 

addition, toughness and hardness testing was performed. Toughness testing was 

performed using the Charpy V-Notch (CVN) test. For this test, smaller, pre-notched 

specimens were fabricated from the ends of heated coupons. Hardness testing was then 

performed on these CVN specimens. All test results for coupons subject to heating and 

cooling were compared to the test results of a virgin unheated coupon. 

Tensile creep at elevated temperature is discussed in Chapter 6. Coupons were 

subjected to constant load, and the variation of strain with time was then measured. 

Analysis of the obtained creep curves was performed in terms of the observed behavior—

primary, secondary or tertiary creep. Four loading levels were used for each temperature 

to provide creep data over a range of stress values. A constitutive model was developed 

based on curve fits of the creep curves for each temperature.  

The final test series is presented in Chapter 7 on stress relaxation at elevated 

temperature. Coupons were subject to a constant displacement, and the variation of load 

with time was then measured. A constitutive model was developed from the curve fits of 

the relaxation behavior. 

Finally, Chapter 8 provides summary and conclusions from this research program. 
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CHAPTER 2 
Literature Review 

2.1 OVERVIEW 

The primary objective of this research program is to develop an experimental 

database on the elevated temperature properties of ASTM A992 steel for use in 

structural-fire engineering analysis. Typical building fires can achieve temperatures up to 

about 1000°C (Buchanan 2002), and if unprotected, structural steel members can reach 

these same temperatures. Thus, in this research, properties of ASTM A992 steel will be 

measured at temperatures varying from room temperature up to 1000°C. 

 While the literature on the elevated-temperature mechanical properties of ASTM 

A992 steel specifically is sparse, a number of tests have been conducted throughout the 

years on other grades of steel. While some of these previous tests focused on structure-

fire applications, many focused on industrial applications of steel where the temperatures 

of interest are considerably less than in structure-fire problems.  

This chapter will provide a brief literature review of subjects pertinent to the 

experimental determination of elevated temperature properties of steel for structure-fire 

problems. The literature review will be organized according to the chapter topics in this 

dissertation, as follows: 

a. Experimental considerations for testing of structural steel at elevated 

temperatures (Chapter 3) 

b. Tension testing at elevated temperatures (Chapter 4) 

c. Mechanical properties after heating and cooling (Chapter 5) 

d. Creep testing at elevated temperatures (Chapter 6) 

e. Relaxation testing at elevated temperatures (Chapter 7) 
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Each of the subsequent chapters in this dissertation will provide additional background 

from the literature, as pertinent to specific topics within those chapters. 

2.2 EXPERIMENTAL CONSIDERATIONS FOR TESTING AT ELEVATED TEMPERATURES  

In terms of general approaches for testing steel at elevated temperatures, two 

basic options are reported in the literature: thermal transient state and thermal steady state 

testing. With thermal transient-state methods, a constant load is applied to a steel coupon 

while the temperature is increased with time. Strains in the coupon are then measured as a 

function of temperature and time. Thermal transient state testing can be used to develop 

elevated temperature stress-strain curves as well as elevated temperature creep strain 

curves. To obtain a stress-strain curve from transient-state testing, the temperature-strain 

curves must be converted into stress strain curves. (Kirby and Preston 1988; Chen 2006), 

(Schneider and Lange 2010).  

For thermal steady-state methods, static load is monotonically increased while 

temperature is held constant. Thermal steady-state testing can be used to generate 

elevated temperature stress strain curves, creep strain curves, and stress relaxation curves. 

Most previous research of steel properties at elevated temperatures has been conducted 

by steady-state methods due to their simplicity, accuracy and practicality (Outinen 2001; 

Lee, Mahendran et al. 2003). Some researchers have suggested that thermal transient 

state testing is more realistic for structural-fire engineering applications, since 

temperatures vary with time during an actual fire (Kirby and Preston 1988). However, a 

review of the literature found no specific data to support this point of view, or to suggest 

that either transient state or steady state testing are fundamentally more correct or useful. 

Measurement of strain in elevated temperature testing poses special difficulties 

since specialized equipment is needed. Ranawka and Mahendran (2009) discussed these 

difficulties, and for their testing, used a contact-free laser extensometer. The laser 

extensometer was validated against other extensometers of known quality, at both room 

and elevated temperature. 



6 

 

Latella and Humphries (2004) developed another contact-free method, but for 

modulus rather than stress-strain data. Their impulse excitation technique was 

successfully used to find the elastic and shear modulus of 2.25Cr-1Mo steel at room and 

elevated temperature. When more conventional contact type extensometers are used, 

special techniques are generally needed to collect accurate strain data at elevated 

temperatures. Measuring strain becomes particularly difficult when accuracy is needed at 

small strain values, to compute elastic modulus for example, while at the same time 

capturing the full stress-strain curve up to fracture, which may occur at strains greater 

than 100%. A special technique that involves resetting of a high accuracy extensometer 

was developed in this research to accomplish this goal, and is described in detail in 

Chapter 3. 

Additional items that are critical in elevated temperature testing of steel is 

temperature measurement and control. A review of the literature revealed little useful 

guidance on these issues. Consequently, a major portion of this research program was 

focused on development of techniques to accurately measure and controls the 

temperature of steel coupons during testing. These techniques are also described in 

Chapter 3. 

2.3 TENSION TESTING AT ELEVATED TEMPERATURES  

Although many researchers have investigated the elevated-temperature properties 

of carbon steel, there is insufficient fundamental experimental data on the high-strength, 

low-carbon ASTM A992 steel, despite the prevalence of this steel in U.S. building 

construction practice. In fact, a review of the literature uncovered no previous 

experimental studies on the elevated temperature mechanical properties of ASTM A992 

steel. 

Despite the lack of data on A992 steel, there have been several past studies that 

have measured elevated temperature properties of steel for structural-fire engineering 

analysis. Harmathy (1970) performed fundamental research on the tensile and creep 
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properties of A36 mild steel. In the U.K., Kirby and Preston (1988) investigated the 

mechanical properties of hot-rolled BS4360 structural steel. Outinen et al. (2001) and 

Schneider and Lange (2010) contributed to the understanding of S350, S355 and S460 

steel properties in Europe. In China, Li et al. (2003) and Chen et al. (2006) performed 

elevated-temperature tests on 16Mn wrought steel and Bisplate 80 high-strength steel. 

Lastly, in Australia, a number of researchers have investigated the mechanical properties 

of light-gage, cold-formed steel and stainless steel. These include Lee et al. (2003), 

Ranawaka and Mahendran (2009), Gardner et al. (2010) and Kankanamge and 

Mahendran (2011).  

While there have been several past studies on the elevated temperature properties 

of various steels, the overall number of studies are actually quite limited. Consequently, 

the experimental database on elevated temperature properties of steel for temperatures of 

interest in structure-fire problems is actually quite small. Further, as noted earlier, there 

appear to be no previous studies on ASTM A992 steel.  

2.4 MECHANICAL PROPERTIES AFTER HEATING AND COOLING 

When a structure has been exposed to fire, an issue of concern following the fire 

is evaluating the safety of the structure and the need for repairs (Gosain et al., 2008; Tide, 

1998). In the case of a steel structure, questions arise on the effect that the exposure to 

heating and cooling may have had on the mechanical properties of the structural steel. 

Limited past studies have addressed the post-fire mechanical properties of structural steel 

(Smith, Kirby et al. 1981; Outinen and Makelainen 2004) whereas other studies have 

examined the effects of various cooling rates from a more fundamental metallurgical and 

microstructure point of view (Davis and King 1993; Dhua, Mukerjee et al. 2003; 

Pyshmintsev, Boryakova et al. 2008).  

However, the available experimental data pertinent to post-fire evaluation of 

structural steel is very limited. Furthermore, there is no data available on the effects of 

heating and cooling on the mechanical properties of ASTM A992 steel.  
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2.5 CREEP TESTING AT ELEVATED TEMPERATURES 

At room temperature, creep of steel is not normally a design consideration. 

However, at elevated temperatures, creep of steel can become very significant. A 

significant amount of past research has been conducted to collect experimental data and 

to develop mathematical models to predict creep strain as a function for steel at elevated 

temperature (Andrade 1910; Bailey 1929; Norton 1929; McVetty 1943; Dorn 1955; 

Walles and Graham 1955; Harmathy 1967; Sherby and Burke 1968; Ahmadieh and 

Mukherjee 1975; Fields 1989; Poh 1998; Mukherjee 2002; NIST 2005). The majority of 

this past research has evaluated creep of steel for industrial applications, such as in 

boilers. As such, the temperatures and times considered in this research were significantly 

different than those found in structure-fire problems. For example, in industrial 

applications, temperatures of interest are typically below 400°C and durations of 

exposure are on the order of years. For structure-fire problems, temperatures of interest 

are as high as 1000°C and durations of exposure are typically less than one hour. Thus 

despite the significant amount of past research on creep of steel at elevated temperatures, 

the amount of research pertinent to structure-fire problems is very limited. 

A review of the literature identified only a limited number of studies of creep on 

interest in structural-fire engineering applications. Harmathy (1967), studied creep of 

ASTM A36 steel, and was one of the first researchers to develop formulas for predicting 

the strains associated with primary and secondary creep of structural steels at elevated 

temperatures for specific application to structure-fire analysis. Harmathy’s creep equation 

was based on the concept of temperature compensated time from Dorn’s creep theory 

(Dorn 1955). Fields and Fields (1989) adapted the Norton-Bailey power-law creep model 

for Australian steel AS A149 and Japanese steel SS41 at elevated temperatures, and 

provided guidance for adjusting the model to accommodate for an-isothermal temperature 

conditions found in actual fires. Finally, during the investigation of the collapse of the 

World Reade Center Towers, the National Institute of Standards and Technology (NIST 
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2005) collected experimental creep data on steels recovered from the collapsed towers 

and suggested some modifications to the creep model previously developed by Fields and 

Fields. 

The review of literature indicates that little creep testing has been conducted on 

structural steel of any type for temperatures, times and stress levels of interest in structure 

fire problems. Further, there appears to be no creep test data available for ASTM A992 

steel.  

2.6 RELAXATION TESTING AT ELEVATED TEMPERATURES 

The behavior of steel at elevated temperature can show a significant dependence 

on time. One manifestation of the time-dependent response of steel is creep, as discussed 

in the previous section. In creep testing, steel samples are subjected to a constant stress, 

and strain is measured as a function of time. Stress relaxation is another manifestation of 

time dependent response of steel at elevated temperature. In relaxation testing, steel 

samples are subjected to constant strain and stress is measured as a function of time. In 

creep testing, strain increases with time under constant stress, whereas in relaxation test, 

stress decreases with time under constant strain. Stress relaxation may be particularly 

significant in structure-fire problems when evaluation structural response to thermally 

induced strains.  

Several past researchers have studied stress relaxation experimentally and have 

developed mathematical models to predict stress relaxation as a function of temperature, 

time, and strain (Getsov and Borzdyka 1988, Aoto et al 1986, Batsoulas 2003, Ellis and 

Tordonato 2000, Jia 2004, Woodford and Swindemann 2005, Beddoes and Mohammadi 

2010). As creep and stress relaxation of both representations of time-dependent material 

response, some researchers have developed more comprehensive models that consider 

both creep and stress relaxation (Aoto 1986, Batsoulas 2003). However, as is the case 

with creep, very little past research on stress relaxation has considered temperatures and 

exposure times that are pertinent to structure-fire problems. In fact, the review of 
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literature revealed no past experimental studies on elevated temperature stress relaxation 

of steel with temperature levels (up to 1000°C) and times (minutes up to several hours) of 

interest in structural-fire engineering analysis. 

2.7 SUMMARY 

This chapter has provided a brief review of previous research on elevated 

temperature testing of steel. This review indicates there has been substantial work in this 

area, but that the majority of this work has been aimed at elevated temperature properties 

of steel for use in industrial applications. The temperatures, exposure times, and stress 

levels considered in industrial applications are significantly different than found in 

typical structure-fire problems. The amount of experimental data on the elevated 

temperature properties of steel that is pertinent to structure-fire problems is, in fact, 

highly limited. Further, there appears to be no data whatsoever on ASTM A992 steel, 

which is widely used for building construction in the U.S. The available literature also 

indicates that time dependent effects can be highly significant in the response of steel 

materials at elevated temperature, which is very different form typical room temperature 

design. Time dependent response can be studied experimentally a number of ways; most 

commonly by creep testing and by stress relaxation testing. Again, there appears to be 

little data available in the literature on the creep and stress relaxation characteristics of 

steel for structure-fire applications. Another issue of interest in structural-fire engineering 

is the post-fire properties of steel. These are of interest when evaluating the condition and 

safety of a steel structure after a fire. Little data is available in the literature on the post-

fire properties of structural steel, and no data on the post-fire properties of ASTM A992 

steel. Finally, the literature review indicates that highly specialized techniques are needed 

to collect high quality experimental data on steel at elevated temperatures. Issues of 

interest include the need for specialized equipment, temperature control and temperature 

measurement of steel samples, and measurement of strain. Elevated temperature testing 

techniques are not as well developed and standardized as they are at room temperature, 
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thereby posing additional challenges in collecting experimental data on the elevated 

temperature properties of steel. 

The lack of experimental data on the elevated temperature properties of structural 

steel represents an important gap in the structural-fire engineering literature, and also 

serves as an impediment to progress in advancing structural-fire engineering practice. 

The research summarized in this dissertation is intended to help fill this gap, by 

substantially expanding the experimental database on the elevated temperature properties 

of structural steel for use in structural-fire engineering analysis. All of the testing reported 

herein will be on samples of ASTM A992 steel, as this steel is widely used in U.S. 

building construction practice, and there appears to be no data whatsoever on the elevated 

temperature properties of this steel. Finally, the research conducted for this dissertation is 

also intended to make a contribution to the development of testing techniques for steel at 

elevated temperatures. 
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CHAPTER 3 
Experimental Considerations 

3.1 OVERVIEW 

This chapter provides a description of the experimental techniques used in this 

research project, with an emphasis on the techniques used for tension testing of steel 

coupons at elevated temperatures. Subsequent chapters will provide further information 

on experimental techniques specific to other types of tests. Considerable detail is 

provided in this chapter on experimental techniques, since elevated-temperature testing of 

steel is not common and the techniques are not as well recognized or standardized as they 

are for testing at normal temperature. Also, as it was found that the test results can be 

quite sensitive to the testing techniques, it was considered important to carefully 

document the experimental techniques used in this research. 

This chapter begins with a discussion of the basic approach used in this research 

for testing at elevated temperatures, that is, thermal steady state testing. A description is 

provided of the testing equipment used followed by descriptions of the steel materials 

used in this research and of the methods used to prepare the test coupons. Next, the 

methods used to measure and control the temperature of the coupons are described, 

followed by a description of the techniques used to measure strain.  

3.2 GENERAL TESTING APPROACH 

The elevated temperature testing conducted for this research was thermal steady 

state, that is, the temperature was held constant while load was applied. Another testing 

approach sometimes seen in the literature for elevated temperature testing is thermal 

transient state testing. The differences between these two approaches are outlined in 

Table 3.1. 
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Table 3.1 Differences between steady- and transient-state testing 

Test Method Constant Variable Measurement 

Steady-State Temperature 
Loading and  
Displacement 

Load and Strain  

Transient-State Loading Temperature 
Temperature and  

Total Strain 

3.2.1 Steady-State Testing 

In steady-state testing, the specimen is heated to a target temperature while free to 

elongate. The temperature is then maintained as load is applied to the specimen until 

failure is reached. Tests may be run under load or displacement control. The direct result 

of this testing is a temperature-specific stress-strain curve, from which a variety of 

mechanical properties can be calculated. 

In the literature (Outinen and Makelainen 2004), thermal steady-state testing is 

widely used because of its simplicity. With a simpler procedure, results may be more 

reproducible. A disadvantage of the method is that it does not represent a real fire event, 

in which the temperature is varying with time. 

3.2.2 Transient-State Testing 

In transient-state testing, the specimen is held under constant load while the 

temperature is raised until failure is achieved. Temperature and total strain are measured 

during the test; typically, results are reported in terms of a strain-temperature curve like 

that of Figure 3.1.  
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Figure 3.1 Sample strain-temperature plot from transient-state testing  

(2009, Elghazouli) 

Transient-state testing may be a more realistic simulation of conditions in an 

actual fire (Elghazouli, Cashell et al. 2009). As tests may be many hours long, some 

creep effects not seen in thermal steady-state tests may be present. However, creep 

effects are also included in steady-state tests, depending on the loading rate and duration 

of test. There are significant disadvantages to the transient-state testing approach, 

however. While it is possible to convert a strain-temperature curve into the more 

conventional stress-strain curve, doing so requires estimates to be made for the 

mechanical properties at elevated temperature (Lee, Mahendran et al. 2003). In addition, 

controlling temperature of the test coupon is more difficult in a transient-state test, as 

there may not be sufficient time for the entire coupon to reach a uniform temperature. 

This introduces a potentially significant source of experimental error.  

3.2.3 Choice of Steady State 

All tests conducted for this research were thermal steady-states. That is, steel 

coupons were heated to the target temperature under zero load, and held at that 
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temperature a sufficient time to allow uniform heating of the coupon. Then, while 

holding the temperature constant, load was applied to the coupon and was increased up to 

fracture of the coupon. As noted above, both transient-state and steady-state test results 

will include effects of creep to some extent, depending on the heating rate used in 

transient-state tests and on the loading rate used in steady-state tests. Thus, it is unclear if 

one test method provides more representative stress-strain curves than the other. 

Ultimately, steady-state testing was chosen for this research for two reasons. First, the 

equipment available for these tests did not allow sufficiently accurate control of heating 

rate to allow transient-state testing. Secondly, it was felt that steady-state testing was 

simpler and less prone to experimental error due to non-uniform heating of the test 

coupons.  

3.3 TEST EQUIPMENT 

The section describes the equipment used to load and heat the test specimens. A 

brief description of the test specimen is provided first, followed by a description of the 

test equipment. 

3.3.1 Test Specimen 

Most materials testing conducted in this research used standard steel test coupons 

18 inches in length and a ½ inch in width. The thickness of the coupon corresponded to 

the thickness of the material from which the coupon was cut, which will be described 

later.  

Figure 3.2 shows the dimensions of the tension coupons. The dimensions were 

taken in accordance with ASTM A370 (2010). Details on the techniques used to fabricate 

the coupon can be found in Section 3.4. 
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Figure 3.2 18-inch coupon dimensions 

3.3.2 Test Machine and Furnace 

Central to the testing of steel at elevated temperatures are the MTS test machine 

and furnace, shown with other required equipment in Figure 3.3. 

The test machine used was an MTS 810, a servo-controlled, hydraulic model. 

This test machine is characterized by low capacity (22 kip) and high accuracy. Loading 

can be specified by crosshead displacement rate (used for tension and creep tests) or 

loading rate (used for relaxation tests). The test machine was equipped with water-cooled 

hydraulic grips for gripping the ends of the coupon. 

For testing at elevated temperature, the MTS 810 was fitted with an MTS 653.04 

furnace. This furnace is capable of achieving temperatures of 1400°C. For the purposes 

of this research, it was used for elevated temperatures in the range of 200 to 1000°C. 

The MTS 653 furnace consists of two halves, each 10 in. long, which were 

positioned to surround the middle portion of the specimen being tested. Three heating 

elements, spaced along the height of furnace, could be controlled individually through 

use of the MTS 409.83 temperature controller (also shown in Figure 3.3). 

Free thermal expansion during heating was allowed for all tests. That is, the 

bottom crosshead was allowed to move freely while the specimen was heated to its target 

temperature. The specimen typically reached the steady-state target temperature after 

about 20 minutes heating. At that time, loading of the coupon was begun. 
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Figure 3.3 MTS test machine with temperature controller and data-acquisition system 

Also shown in the Figure 3.3 is the temperature-monitoring system, consisting of 

a CR5000 data logger and a computer with Campbell Scientific PC9000 software. 

Monitoring of the specimen temperature was conducted separately from the monitoring 

(and control) of the furnace temperature.  

3.3.3 Furnace Temperature Control 

As noted in the previous section, a dedicated temperature controller (MTS 409.83) 

was used to specify the temperatures of the upper, middle and lower zones of the furnace. 

Heating elements at each of these locations were turned on or off independently based on 

the reading of an adjacent thermocouple.  

The temperature control system for the furnace is shown on the left side of Figure 

3.4. Attempts to connect specimen thermocouples directly to the temperature controller 

Furnace 
Temperature 

Controller 

MTS Test 
Machine & 

Furnace 

Desktop for 
MTS Control Laptop for 

Data Analysis 

Data-Acquisition System 
with Desktop for 

Monitoring of  
Coupon Temperature  
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proved unsuccessful, so a separate system (right side of figure) was used to monitor the 

temperature of the test specimen. 

 
Figure 3.4 Components of temperature control and monitoring systems 

The ability to control specimen temperature within a tight tolerance is a challenge 

in thermal steady-state testing. Existing ASTM standards, summarized in Table 3.2, give 

tolerances of 2 to 5°C for mechanical testing of steel at elevated temperatures. Tolerances 

are tighter in tests for the time-dependent effects of creep and relaxation. 

Table 3.2 ASTM temperature tolerances for elevated-temperature testing 

Standard 
Tolerance 

Temps < 1000°C Temps ≥ 1000°C 

ASTM E21-09 Tension ± 3°C ± 5°C 

ASTM E139-11 Creep and 
Relaxation ± 2°C ± 3°C 
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Changes in furnace temperature that exceeded the above tolerances can lead 

inaccurate test results. An example of this phenomenon is shown in Figure 3.5 for a 

relaxation test conducted at 400°C for an imposed strain equal to 75% of the yield strain. 

As shown in Figure 3.5, approximately 30 minutes into the test, a sudden increase in the 

measured rate of relaxation was observed. This unexpected behavior can be explained in 

light of the specimen temperature profile. The lower specimen thermocouple (red) 

showed a sudden increase in temperature of 5°C, approximately double the acceptable 

tolerance. Within a few minutes, the increase in relaxation occurred. 

  
Figure 3.5 Effect of temperature change on relaxation test (400°C, 0.75εy)  

3.3.4 Balancing the Furnace  

Heat was lost from the furnace through both convection and conduction: 

convection through gaps at the top and bottom of the furnace, less than 1 in. on all sides 

surrounding the test specimen; and conduction through the test specimen itself.  

This uneven heat loss could be compensated for by setting the upper, middle and 

lower heating elements of the furnace to difference temperatures. If all three were set to 
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the specimen target temperature, the middle portion of the specimen would be too hot and 

the upper and lower portions too cold. The furnace could be balanced, however, to 

achieve a uniform target temperature along the test length of the specimen. If uniform 

temperature were not achieved, test results would be influenced. For example, necking of 

the section could occur at the hottest spot. 

A pilot test was conducted to determine appropriate setpoints for the three heating 

elements of the furnace; results are shown in Table 3.3 and Figure 3.6. 

Table 3.3 Setpoints for furnace heating elements to reach specimen target temperatures 

Target Temp 

for Specimen 

(°C) 

Setpoints (°C) for Furnace 
Heating Elements 

Deviation from Specimen 
Target Temperature (°C) 

Upper Middle Lower Upper Middle Lower 

400 481.5 393.3 490.0 +81.5 -6.8 +90.0 
500 555.0 487.5 567.5 +55.0 -12.5 +67.5 
600 638.8 587.5 660.0 +38.8 -12.5 +60.0 
700 735.0 700.5 776.3 +35.0 +0.5 +76.3 
800 831.3 782.5 873.8 +31.3 -17.5 +73.8 
900 927.5 893.8 948.8 +27.5 -6.3 +48.8 
1000 1010.0 990.0 1055.0 +10.0 -10.0 +55.0 

 
Figure 3.6 Deviation of setpoints for heating elements from target temperature 
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To achieve uniform specimen temperature, the lower heating element of the 

furnace had to be set hottest, then the upper heating element, and lastly, the middle. For 

most target temperatures, the middle element was set at a temperature lower than the 

target. The deviation of the appropriate setpoint for the upper heating element from the 

target temperature was highly dependent on the target temperature: for 400°C, the upper 

element should be set 80°C hot; for 1000°C, only 10°C. The deviation of the lower 

setpoint also decreased with increasing target temperature, but less dramatically. 

While the setpoints found in the pilot test (Table 3.3) were good starting points, 

additional care was needed. It was found that the most effective technique to achieve 

uniform temperature over the specimen test length was to modify the furnace setpoints 

slightly several times during heating. New setpoints were determined based on the 

measured temperatures at the upper, middle and lower portions of the specimen. 

Typically, the furnace was reset three times during heating as shown in Figure 3.7. 

 
Figure 3.7 Heating using multiple furnace settings over time 
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3.4 STEEL MATERIAL PROPERTIES AND TEST SPECIMENS 

3.4.1 Material Classification  

All of the testing conducted in this research was on samples of ASTM A992 steel 

(A992 2011). Steel samples were cut from three different wide-flange members for 

various phases of the testing program. The three material types are referred to as “MA,” 

“MB,” and “MC.” (Table 3.4) The MA and MB materials were cut from the web of two 

different sections of W30x99, coming from two different heats of steel. The MC material 

was cut from the flange of a W4x13 section.  

Table 3.4 lists the measured room temperature values of yield stress and tensile 

strength for each of the three types of steel. These values are based on tests conducted in 

this research, rather than the values listed on the Certified Mill Test Reports (CMTRs). 

Also shown in the table is the specified values of yield stress (Fy) and tensile strength (Fu) 

for ASTM A992 steel. Table 3.5 lists the chemical composition for the three types of 

steel, along with the ASTM A992 chemical requirements. The chemical composition for 

the MC steel was taken from the CMTR. CMTRs were not available for the MA and MB 

steels, so the chemical composition was determined by sending samples of the steel to a 

commercial testing laboratory. Note that in terms of yield stress, tensile strength and 

chemical composition, all three materials used in this research complied with ASTM 

A992 requirements.  
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Table 3.4 Room-temperature properties of A992 samples used in research 

Type Source Fy (ksi) Fu (ksi) Tests 

MA W30x99 63.5 76.1 Ch 4 ET  Tension 

MB W30x99 51.3 66.2 Ch 5 
RT  Tension, Toughness & 

Hardness after Heating/Cooling 

MC W4x13 51.0 68.3 
Ch 6 

Ch 7 

ET  Creep 

ET  Relaxation 

ASTM - 50 to 65 
min 65 or  

Fy / 0.85 
- - 

Note: ET = Elevated Temperature, RT = Room Temperature 
 

Table 3.5 Chemical composition of ASTM A992 samples used in research (%) 

Type C Cr Mo V Ni Mn Si P S Cu 

MA 0.081 0.09 0.034 0.065 0.11 1.41 0.21 0.019 0.022 0.39 

MB 0.079 0.09 0.026 0.027 0.13 0.97 0.20 0.014 0.024 0.38 

MC 0.080 0.10 0.026 0.002 0.09 0.91 0.23 0.011 0.025 0.24 

ASTM 0.23 

max 

0.35 

max 

0.15 

 max 

0.15 

max 

0.45 

max 

0.50 to 

1.60 

0.40 

max 

0.035 

max 

0.045 

max 

0.60 

max 

3.4.2 General Considerations for Coupon Preparation 

This section describes the methods used to prepare the tension coupons for this 

research. Included are descriptions of how material samples were cut from the wide 

flange sections, machined into coupons and subsequently prepared for testing.  

3.4.2.1 Cutting Plate from Wide Flange Section 

Materials MA and MB were cut from the web of two different W30x99 sections 

of A992 steel. As a first stage in coupon preparation, sections of plate were cut from the 

webs, as shown in Figure 3.8. When cutting the plates from the web, the plate orientation 

with respect to the rolling direction was noted. All coupons cut from the plate were 
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oriented along the rolling direction. The web plates were removed from the wide flange 

section by torch cutting. However, the strips cut from the plates for making coupons were 

away from the torch cut edges, to avoid any potential influence of the torch-cutting 

process on the mechanical properties of the coupons. 

            
 a) W30x99 section used for coupons b) Plate cut from W30x99web 

Figure 3.8 W30x99 section and plate cut from web 

Material type MC was taken from the flange of a W4x13 section, as shown in 

Figure 3.9. The orientation of the coupons was again along the rolling direction.  

     
 a) Flange cutting using horizontal saw b) Strip from flange 

Figure 3.9 W4x13 section and strips cut from flange 

Web 
Plat
e 

Direction of Strip Cutting 

W4x13 

Strip  
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The dimensions of the tension coupons were in accordance with ASTM A370 

(A370 2008).  Figure 3. shows the dimensions of the coupons.  

 
Figure 3.10 Rectangular tension specimen (ASTM E8/E8M, 2010) 

3.4.2.2  Strip Milling 

As a next step in coupon preparation, the strips of steel cut from the W30x99 web 

plates and from the W4x13 flanges were milled to provide a 1-inch width. Figure 3.11 

shows photos of the milling. After milling, the edges of the coupons were very sharp, so 

they were smoothed for safe handling using a de-burring tool or fine sandpaper.  

     
 a) Strip side-milling  b) Completed strip side-milling 

Figure 3.11 Strip side-milling work 

3.4.2.3 Coupon Shaping 

A computer numerical controlled (CNC) milling machine was used to cut the 

reduced sections of the coupons. The CNC milling machine was programmed to provide 
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the desired dimensions of the reduced section considering the strip plate width. To 

minimize thermal damage by cutting friction and for good performance of the milling 

machine, two passes were made on each side. The cutting depth per pass used on each 

side was one half of the final cut depth. Details of the cutting process are shown in Figure 

3.12 and Figure 3.13.  

 
a) First-pass cutting 

 
b) Second-pass cutting 

Figure 3.12 Specimen cutting processes (plan view) 
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 a) Cutting of specimen  b) Specimens after cutting 

Figure 3.13 Making reduced section from strip plate 

3.4.2.4 Coupon Grinding  

The surface of the wide-flange members used to make the coupons had mill scale 

and rust, as shown in Figure 3.14. The coupon surfaces were therefore cleaned by 

grinding. The reduced sections of the coupons were cleaned with a steel wire brush 

grinder (Figure 3.15) in manner to avoid any striations on the finished surface. The final 

surface was suitable for making accurate measurements of cross-section dimensions (to 

provide accurate cross-sectional area) and to allow proper attachment of the 

thermocouples and the extensometer. The coupons’ ends were finished with a bench 

grinder in a manner that left a series of striations in transverse direction, as shown in 

Figure 3.16. During tension testing, the roughened surface at the coupon ends helped 

prevent slip of the coupons within the machine grips.  

Reduced 
Section 
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 a) W30x99 rust surface  b) W4x13 rust surface 

Figure 3.14 Rust and mill scale on W30x99 and W4x13 surfaces 

 
Figure 3.15 Before and after grinding reduced section of coupon 

Surface after grinding 

Surface before grinding 
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 a) Grinding of coupon ends b) Coupon end in test-machine grip. 

Figure 3.16 Grinding of coupon ends 

3.4.2.5 Coupon Punching  

For each coupon, a series of punch marks were made along the reduced section. 

The distance between punch marks was measured before and after testing of the coupons. 

These measurements were used as part of the extensometer resetting process, which will 

be described in detail later. As part of the process of capturing the full stress-strain curve 

for the coupons, it was necessary to capture the strain within the necked portion of the 

coupon. Consequently, the punch marks were located to allow measurement of the total 

elongation of a gauge length that included the necked region, for various locations of 

necking, as shown in Figure 3.17. To accommodate various possible locations of necking, 

two punch marks were placed on one side of the coupon, and three punch marks were 

made on the opposite side, as shown in Figure 3.18 and Figure 3.19. The punch marks 

made were shallow, less than 1/32 inch deep, to avoid initiation of fracture at a punch 

mark. During the actual testing of the coupons, it was found that fracture rarely initiated 

at a punch mark, so it is believed that the punch marks themselves had little effect on the 

measures stress-strain response.  

Direction of striations 
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Figure 3.17 Possible locations for necking 

 

 
Figure 3.18 Location of punch marks  
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 a) Front side  b) Back side 

Figure 3.19 Punch marks on coupons  

3.4.2.6 Coupon Marking 

During the course of this research, a very large number of tension coupons were 

tested. Consequently, a system was needed to place identifying marks on the coupons that 

would survive the heating and cooling process, and would still be visible following the 

test. It was found that punched marks in the end region of the coupons provided the most 

reliable method for marking the coupons, as shown in Figure 3.20.  

 
Figure 3.20 Coupon identification method 

1 
1 2 3 2 
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3.5 TEMPERATURE MEASUREMENT 

Measurement of temperature in this research was done using thermocouples. The 

properties of the thermocouples and installation techniques chosen are presented in this 

section, along with data from pilot testing supporting these techniques. 

3.5.1 Thermocouples 

Type K wire thermocouples consisting of Chromel (90%/Ni + 10%/Cr) and 

Alumel (95%/Ni + 2%/Mn + 2%/Al + 1%/Si) were used to measure and control the 

temperature of the coupons during testing. This type of thermocouple was selected for 

three reasons:  

 the measurement range of the thermocouple (-270 to 1370°C) was appropriate 

for both testing at temperatures ranging from room temperature to 1000°C;  

 the type of thermocouple is mentioned in two relevant ASTM standards (E220 

and E235) and as such, recognized as adequate for elevated-temperature 

materials testing; and  

 the price of the thermocouple, compared to other elevated-temperature-

measurement options, was economical. 

 

Furnace temperature measurements were made with type R thermocouples 

provided with the furnace.  The thermocouples connect to an MTS model 409.83 

temperature controller which uses three Eurotherm 2216 temperature control 

modules.  The temperature control system and thermocouples were calibrated by the 

manufacturer. 

Specimen temperature measurements were taken using type K thermocouple as 

noted above.  The thermocouples were connected to three Omega model DRF-TC signal 

conditioners located in an environmental cabinet. An Omega CL3512A digital 

temperature calibrator was used to calibrate the signal conditioners and analog input 

channels. 
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As shown in Figure 3.21, the TC setup for elevated-temperature tensile testing 

consisted of TCs attached at three locations along the length of each coupon. One TC was 

placed near the middle of the reduced section, with the other two TCs placed just outside 

the reduced section: one above and one below. 

 
Figure 3.21 Thermocouples placement on coupon 

Several methods of attaching thermocouples to the steel coupons were evaluated 

through the trial-and-error process discussed in the next section. The method ultimately 

adopted is shown in Figure 3.22. It consists of thermocouple wire wrapped around the 

coupon, twisted several times to prevent slip, and covered in foil. The foil was bound to 

the coupon using spare thermocouple wire (not used for temperature measurement). 

 The method for twisting the thermocouple wire proved important for 

measurement accuracy. Multiple twists were required to prevent the thermocouple from 

slipping along the surface of the coupon during testing. Since the first twist would be the 

point at which temperature was measured, care was taken to ensure that this point was 

held in contact with the steel. 
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 a) Before wrapping with SS foil  b) After wrapping with SS foil 

Figure 3.22 Attachment of thermocouples to steel coupons 

Providing shielding for the thermocouples also proved important. It was found 

that, covered in foil, the thermocouple could do a better job recording the coupon 

temperature independent of the effects of thermal radiation emanating from the furnace 

heating coils. As described in Section 3.2, the testing was steady state with respect to 

temperature. The heating coils would turn on and off during testing to maintain the target 

temperature, and as such, the amount of thermal radiation was controlled but not constant. 

The type of foil used was Type 321 stainless steel.  

The width of the foil shielding used was approximately 1 inch for the outer 

thermocouples and ½ inch for the middle thermocouple. Less shielding foil was used for 

the middle thermocouple out of concern for interference with the strain measurement 

equipment during testing. The extensometer was placed to best capture necking, which 

might mean that the extension rods were placed nearby the foil shielding, as shown in 

Figure 3.23. Since the foil was not under load, if the rods were coming into contact with 

it, poor strain readings would result. 

3.5.2 Goals of Temperature-Verification Testing 

Pilot testing was conducted in order to verify that the techniques used to measure 

temperature were appropriate. This testing had two purposes: 

First Twist Stainless Steel Foil 
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 To verify the uniformity of specimen temperature, and 

 To investigate the reliability of different thermocouple installation 

techniques. 

                                 

 a) Shielding for middle b) Coupon at elevated temperature  
 thermocouple with extensometer shown 
Figure 3.23 Potential interference of middle-thermocouple shielding and extensometer 

3.5.2.1 Verification of Temperature Uniformity 

There were two aspects to this investigation of temperature uniformity: the 

variation of surface temperature within the coupon reduced section and the variation of 

temperature between the surface and inside of coupon. 

The variation of surface temperature within the reduced section was expected to 

be minimal. Through the furnace-balancing process described in Section 3.3.4, 

appropriate setpoints had been found for the three heating elements of the furnace such 

that the coupon temperature would be relatively uniform. This assumption was confirmed 

by placing thermocouples on the surface of the coupon, up and down the reduced section, 

and comparing the observed variation to the tolerance (2 to 5°C, Table 3.2). 
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Additionally, an attempt was made to investigate a potential temperature 

difference between the surface and the interior of the coupon. To this end, a hole was 

drilled into the coupon (Figure 3.24) so that a thermocouple could be placed inside the 

specimen. As the removal of one-sixth of the cross section would clearly affect the 

coupon properties, this sort of thermocouple installation could only be used during this 

pilot-testing stage. 

 
 a) Hole location  b) Hole drilled into specimen 

Figure 3.24 Drilled hole to measure interior temperature of coupon 

3.5.2.2 Investigation of Different Thermocouple Installations 

The process of determining which method of installing thermocouples yielded the 

most reliable and accurate measurements were trial and error. Experimentation was 

conducted on two different forms of the Type K thermocouple as well as different 

methods of shielding and attachment. 

The two forms of thermocouple—wire and rod—used for this pilot testing are 

shown in Figure 3.25. The wire thermocouple consisted of two 20-gage conductors, 

protected by a braided fiberglass sheath. The thermocouple itself required some assembly 

at each installation: the two conductors needed to be twisted together to create 

measurement point. Quicker to install could be the preassembled, plug-in rod 

thermocouple. For this form of thermocouples, the tip only needed to be placed in contact 
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with the specimen: the electrical connection between the two conductors had already 

been made inside the probe. Protection of the conductors was provided, in this case, by an 

1/8-inch stainless steel sheath.  

 

                      
 a) Wire b) Rod 

Figure 3.25 Forms of Type K thermocouples 

Two other variables were investigated: shielding and method of attachment. 

Shielding of the thermocouple by two methods was tried, using stainless steel foil and 

ceramic paste. Some thermocouples were deployed with no shielding to test its effect. In 

terms of methods of attachment, direct contact and welding were investigated. 

3.5.3  Temperature Verification 

For temperature verification, multiple pilot tests were conducted. In these, the 

forms of and methods of shielding and attachment for the installed thermocouples were 

varied, as well as the location of the thermocouples. One thermocouple installation was 

kept consistent for all cases to serve as a point of reference. It should be noted that all 

thermocouples used in this research, even in preliminary testing stages, were Type K. 

Testing was performed by heating an instrumented coupon up to a series of target 

temperatures. The coupon was held at each target temperature 40 minutes or longer, to 

ensure that steady state was reached. 

For the purposes of this dissertation, a total of five case studies will be discussed. 

The thermocouple design for these case studies is presented in brief in Table 3.6. The 
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rows of this table shaded in blue correspond to the reference thermocouple: a foil-

shielded wire thermocouple located just about midpoint.  

Table 3.6 Summary of temperature-verification case studies 

Case 
 

TC Style Shielding / Surroundings Attachment 

Wire Rod Foil Ceramic Hole Contact Weld 

1 

H X  X   X  

M  X X   X  

 X   X X  
L X     X  

2 

H X  X   X  

M 
 X X   X  
 X   X X  

L 
X     X  
 X    X  

3 

T X  X   X  
H X  X   X  
M  X   X X  
L X  X   X  
B X  X   X  

4 

T X  X   X  
H X  X   X  
M X   X X X  
L X  X   X  

B X  X   X  

5 

H X  X    X 
H X  X   X  
M X   X  X  

L X  X   X  
Shaded rows correspond to the reference thermocouple, the same for all cases. 
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A case-by-case analysis of the temperature verification studies outlined in the 

previous table will follow. Case 1 data is shown in Figure 3.26. 

   
a) Test view and results                      b) Temperature profile at 900°C 

Figure 3.26 Temperature profile for Case 1 

For Case 1, four thermocouples—two wire and two rod thermocouples—were 

installed within an inch of the coupon midpoint. Two of the thermocouples were shielded 

using foil, one was unshielded and the last was placed inside the drilled hole. Such is 

shown in Figure 3.26a, along with the temperature profile of the four thermocouples. 

There were three temperatures at which the furnace was allowed to reach steady 

state: approximately 700, 800 and 900°C. Results shown in Figure 3.26b for ~900°C are 

typical for the other two temperatures. The two wire thermocouples and the rod 

thermocouple on the coupon surface all returned similar readings: within 2°C of the 

average of the three. The rod thermocouple placed in the hole gave a reading 15°C lower. 
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a) Test view and results                      b) Temperature profile at 1000°C 

Figure 3.27 Temperature profile for Case 2 

Case 2 was designed to investigate the effect of foil shielding on rod 

thermocouple readings. For Case 1, a foil-shielded rod thermocouple (green) returned a 

surface reading effectively the same as the wire thermocouple readings. For Case 2, then, 

an additional, unshielded, rod thermocouple was used; all other thermocouples were kept 

the same and shown in Figure 3.27.  

The results for Case 2 were very different from Case 1, but not illogically so. 

Again, three thermocouples returned very similar results, but in this case it was the two 

foil-shielded thermocouples (one wire and one rod) and the rod thermocouple in the 

drilled hole. The two unshielded, surface thermocouples produced results that were 

deviated 7–10°C from the others. This data supported the hypothesis that foil shielding 

could be used to minimize the difference in readings between thermocouples. The foil 

would protect the thermocouple from direct exposure to the thermal radiation from the 

heating coils, which would fluctuate as the coils were cycled on and off. 

The rod thermocouple placed in the hole, kept the same between these two cases, 

returned markedly different results. Rather than being 15°C low, it was essentially the 

same as the reference thermocouple for Case 2. The effort to match a temperature 

measurement from inside the specimen to one made on the surface was proving difficult 

to execute. 
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a) Test view and results                      b) Temperature profile at 600°C 

Figure 3.28 Temperature profile for Case 3 

Given the demonstrated importance of foil shielding in Case 2, foil-shielded wire 

thermocouples were chosen for Case 3 shown in Figure 3.28. Placed top to bottom 

covering the reduced section, the thermocouples were used to investigate temperature 

uniformity.  

Compared to previous testing, the deviation between thermocouples was 

unsatisfactory: readings differed by 45°C between the most extreme. However, some 

observations can still be made. The lowest reading, like in Case 1, was for the unshielded 

rod thermocouple placed in the drilled hole. Alternatively, this reading being the lowest 

could be used as further support of the argument presented on the necessity of shielding, 

or as further demonstration that the effort to compare inside and surface temperatures was 

ineffectual. 

Though the 2-3°C tolerance at 600°C was exceeded, the readings for the wire 

thermocouples at the top (T) and middle (H and L) positions were more tightly grouped 

than the others. Examining only the surface thermocouples, there seems to have been a 

significant temperature gradient present, with the bottom of the specimen being the 

coolest and the top the hottest. Since heat rises, this observation suggests the setpoints for 

the furnace heating elements required slight adjustment. Such was done before the next 

case, with success. 
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a) Test view and results                       b) Temperature profile at 1000°C 

Figure 3.29 Temperature profile for Case 4 

The intent of Case 4 shown in Figure 3.29 was similar to the previous case, but 

was better executed. At 1000°C, all surface thermocouples read within tolerance for 

tension testing (5°C). The foil-shielded wire thermocouple was thus shown satisfactory, 

though another test would be conducted to verify that the temperature-uniformity 

problems experienced in Case 3 had truly been resolved. 

A different sort of thermocouple was used for the drilled hole in Case 4. Rather 

than a rod thermocouple, which may have had issues consistently contacting the interior 

surface of the hole, a wire thermocouple was used. Thermally conductive ceramic paste 

was used to fill the hole, both serving as shielding and allowing the much smaller wire 

thermocouple to be placed in a hole drilled for the larger rod. Despite the change in 

thermocouple installation, the results were similar to Case 1 and 3: the thermocouple in 

the hole registered a low temperature compared to the surface thermocouples. 
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a) Test view and results                       b) Temperature profile at 1000°C 

Figure 3.30 Temperature profile for Case 5 

For Case 5, an additional option was investigated, and subsequently abandoned: 

welded thermocouples were shown in Figure 3.30. The data from the welded 

thermocouple was erratic, indicating a probable incompatibility between the weld 

material and the thermocouple metals. 

The two foil-shielded wire thermocouples again were demonstrated to read the 

same result within tolerance. Given the success of this installation, it was chosen for 

deployment throughout all subsequent testing. 

Based on the review of temperature profile analysis, wire and rod thermocouples 

with foil shielding provided the most consistent temperature readings. Therefore, wire 

thermocouples with foil shielding were used throughout the remainder of the test program. 

3.6 STRAIN MEASUREMENT 

For this research, strain was measured using extensometers mounted on or placed 

in contact with the steel coupons. At elevated temperatures, the performance 

requirements for these extensometers are demanding. As such, a pilot program was 

undertaken to better evaluate the ability of each extensometer to deliver an accurate and 

precise strain measurement in real time without data loss. Data from the extensometers 
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were compared with elongation at failure, measured directly from punch marks using 

calipers. 

3.6.1 Description of Strain-Measurement Devices 

Figure 3.31 are shown the three extensometers used. Each was used for a different 

application, and the properties of each will be described in turn. 

   
a) 2-inch extensometer 

for room temperature 

b) 1-inch extensometer  
for elevated temperature 

c) 2-inch extensometer  
for elevated temperature 

(Section 3.6.1.1) (Section 3.6.1.2) 
Figure 3.31 Three extensometers used in research 

3.6.1.1 Extensometer for Room-Temperature Testing (2SS) 

For tension testing conducted at room temperature, a MTS 634.25E-24 

extensometer (Table 3.7 and Figure 3.32 2SS extensometer (room temperature)) was used. 

This extensometer was of a fairly common design: it had a 2-inch gauge length and 

would mount to a specimen using spring-loaded clips. The extensometer, when mounted 

on a coupon, could be said to be “self-standing.” The designation chosen for the device 

was 2SS.  Specifications for the 2SS extensometer are listed below. Especially important 

here is the 50% tensile strain limit, which can be compared to the room-temperature 

elongation at failure for A992 steel of ~40%. No resetting of the extensometer was 

therefore required during testing to capture the entire stress-strain curve. 
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Table 3.7 Specifications for 2SS extensometer  

Model 

Gauge 
Length 

Maximum 
Travel 

Maximum 
Strain 

Temperature 
Range 

Activation 
Force 

(in) (in) (%) (°C) (g) 

634.25E-24 2.00 -0.20 – 1.00 -10 – 50 -85 – 120 30 

 

 
  Figure 3.32 2SS extensometer (room temperature) 

3.6.1.2 Extensometers for Elevated Temperatures (1PS and 2PS) 

Two extensometers with different gauge lengths by different manufacturers were 

used to measure strain at elevated temperatures. These extensometers differed in style 

from the self-standing extensometer used for room-temperature testing in several ways. 

First, rather than mounting to the specimen at the extensometer contact points, they were 

supported externally. Strain was measured over the gauge length defined by two stiff, 

ceramic rods extending from the instrument body. These extension rods were held in 

contact with the specimen with a spring-loaded hold-down system (part of the fixture). 

Because this spring-loaded system applied positive pressure against the specimen, these 

extensometers were designated “PS” extensometers: the initials for “pressure-standing.”  

Particular to their design for elevated-temperature usage were two aspects: the 

heat shield on the specimen-side of the extensometer and the compressed-air cooling 

system. Both elevated-temperature extensometers were rated for use up to 1200°C. 
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The primary extensometer used at elevated temperatures was an MTS 632.54E-11 

with a 1 inch gauge length (Table 3.8 and Figure 3.33). By design, this extensometer 

sacrificed some degree of usability for accuracy: it was only capable of measuring tensile 

strains up to 10%. The failure strain from every tensile test, regardless of temperature, 

was larger than this strain limit. As such, it was necessary to reset the 1PS extensometer 

multiple times during the testing, and connect the strain data after the test to produce a 

complete stress-strain curve. The resetting and reconnection process is described later in 

Section 3.7. 

The contact force between the ceramic rods and the specimen was provided by the 

spring-loaded hold-down system mentioned previously. It was possible to adjust the 

spring in this system to vary the contact force. Because there was no load cell as part of 

the system, achieving the specified contact force was a matter of trial and error. With too 

little contact force, the extension rods would slide relative to the specimen; too much 

force and the strain data would come out jittery. 

Table 3.8 Specifications for 1PS extensometer 

Model 

Gauge 
Length 

Maximum 
Travel 

Maximum 
Strain 

Temperature 
Range 

Contact  
Force/rod 

(in) (in) (%) (°C) (g) 

632.54E-11 1.00 -0.05 – 0.10 -5 – 10 up to 1200 100 

 

 
Figure 3.33 1PS extensometer (elevated temperature) 
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A 2-inch extensometer (2PS) was used as a supplemental extensometer for 

tension testing at elevated temperatures. Less accurate than the 1PS extensometer, it had 

a much wider measurement range: up to 50% tensile strain. At most temperatures, the 

steel failed before the 2PS extensometer had to be reset. As such, the 2PS extensometer 

provided continuous strain data for the periods of time during which the 1PS was being 

reset. 

Table 3.9 Specification of Epsilon E3548-0200-050-ST 

Model 

Gauge 
Length 

Maximum 
Travel 

Maximum 
Strain 

Temperature 
Range 

Contact 
Force/rod 

(in) (in) (%) (°C) (g) 

E3548 2.00 -0.4 – 0.40 -25 – 50 20 – 1200 500 

 

  
Figure 3.34 2PS extensometer (elevated temperature) 

By design, the pressure-standing extensometers were supported by the spring-

induced pressure, the reaction of which was provided by the test specimen. At the time 

the specimen failed, however, the reaction would be suddenly removed. To provide 

additional security against the extensometers falling or being otherwise damaged by the 

sudden movement that might be transmitted via the extensometer rods, a string was used 
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to provide backup vertical support, as shown in Figure 3.35. The spring-loaded system 

providing horizontal support is also shown in this figure.  

 
Figure 3.35 Extensometer support system 

3.6.1.3 Calipers for Elongation at Failure 

As discussed in Section 3.4.2.5, punch marks were made on each coupon for a 

post-test validation of the failure strain measured by the extensometers. The distances 

between the various punch marks were measured both before (Figure 3.36) and after 

(Figure 3.37) the test. The caliper strain measured between the two punch marks that best 

encompassed the necking zone was compared to the extensometer readings. 

 
Figure 3.36 Measuring distance between punch marks, before testing 

  

Extensometer Hung for Safety 
at Specimen Failure 

2 Ceramic Rods 
of Extensometer Primary Support: Spring & Fixture 
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Figure 3.37 Coupons after failure requiring measurement of failure elongation 

3.6.2 Operational Considerations for Extensometers 

Testing at elevated temperatures is less forgiving than at room temperatures. A 

number of factors were found to matter considerably in terms of the quality of the strain 

data that would be produced. This was especially true for the 1PS extensometer, whose 

light weight left it very sensitive to vibration coming from various sources. Unless 

controlled, this vibration would lead to oscillations in the strain data that were quite 

noticeable. 

Among the considerations required for good operation are the following, which 

will be discussed in turn: 

1. Frequent calibration  

2. Proper positioning of extensometer 

3. Good contact with the specimen 

4. Modifications to cooling system 

5. Quick reset of the extensometer 

3.6.2.1 Frequent calibration 

Prior to each test series (e.g. tension at elevated temperature), calibration was 

performed on each extensometer to be used for those tests. While the manufacturers of 

the extensometers did provide calibration data, those values represented the instruments 
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when they had left the factory. It was possible—with time, use and different 

environmental conditions—for the value for output sensitivity to shift slightly. 

The method adopted for calibration was through comparison with strain-gauge 

data. A total of four strain gauges were mounted on a coupon: one on each side to 

compensate for unintentional loading eccentricity. The calibration coupon loaded at room 

temperature, strain data would be recorded for both the strain gauges and the 

extensometer being calibrated. 

Given the specifications of the cyanoacrylate adhesive used to bond the strain 

gauges to the calibration coupon, testing could only be carried out to 5% strain before de-

bonding was expected to occur. It was thus impossible to calibrate the extensometers for 

their full strain range. However, it should be noted that the calibration range was large 

enough to encompass the regions of the stress-strain curve in which most of the 

mechanical properties of interest are defined, e.g. elastic modulus, proportional limit, 

yield strength. 

3.6.2.2 Proper Positioning of Extensometer  

To achieve good axial strain readings, it was necessary to properly align the 

extensometer with the centerline of the specimen. If the extensometer were to be skewed, 

it would measure less strain than truly occurred, by a factor of the cosine of the angle of 

misalignment as shown in Figure 3.38. 
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Figure 3.38 Furnace launched with Epsilon 2 inches extensometer 

In addition to angular alignment, the vertical position of the extensometer would 

matter after initiation of necking. Before necking, strain was uniform over the length of 

the coupon’s reduced section; after, concentrated in the necking zone. Necking could 

occur anywhere within the length of the reduction section. It was very possible to 

position the 1PS extensometer gauge length such that, at 40% of the reduced section 

length, the extensometer missed necking.  

If the extensometer missed the necking zone during part of the test, it was often 

evident in the character of the stress-strain curve, e.g. Figure 3.39. When the necking 

zone was missed, after reaching the peak stress, the stress-strain curve would curl 

downward (red). If, then, the extensometer were reset and this time placed properly to 

capture necking, the apparent strain rate would increase again (blue). 



52 

 

 
Figure 3.39 Effect of extensometer placement on tension test results (200°C) 

While generally the 1PS extensometer was reset when it was approaching its 

strain limit of 10%, it occasionally was necessary to reset it solely to relocate it so that 

necking would be captured properly. To locate the necking zone, continuous visual 

observation was necessary. Visual observation was performed through the small gap 

between the two furnace halves left open for extensometer access. Most of the gap was 

filled with an insulating material to limit heat loss, but a small window was kept open, as 

shown in Figure 3.40. If necking was found to be occurring outside the range of the 

extensometer, the instrument was promptly relocated. 
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 a) Gap left between furnace halves b) Specimen through window          

Figure 3.40 Window between furnace halves through which necking was observed  

It should be noted that locating the necking zone visually was difficult, especially 

at its beginning, before substantial necking had occurred. The window between the 

furnace halves was kept small to minimize heat loss and improve furnace control.  

Additionally the process of relocating the extensometer to the necking location 

was challenging due to time pressure. A quicker reset of the extensometer is decreased 

strain data loss. While lost data was corrected for after the test—assuming that, 

considering the time immediately before and immediately after the extensometer reset, 

the average strain rate prevailed during the resetting process—the less time the 

extensometer was not recording data, the more accurate the test. 

Knowing the location of necking prior to the test was impossible, but it was found 

that review of the coupon dimensions could be helpful. Precise measurements of as-built 

coupon dimensions were made at the top, middle and bottom of the reduced section. A 

location with a marginally smaller cross-sectional area would experience marginally 

higher stresses; necking would be more likely to occur there. While coupons were made 

through precision machining, this process still had tolerances. 

Window Window 
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3.6.2.3 Good contact with the specimen 

Achieving good contact between the pressure-standing extensometers and the 

specimen throughout testing depended on three factors: 

 selection of chisel shape for extension-rod tip 

 maintenance of chisel tips through removal of scale 

 provision of sufficient contact force 

The last of these was accomplished through trial-and-error adjustment of the 

horizontal spring support system, and was discussed in detail in Section 3.6.1.2.  

As for chisel shape, the three alternatives available from the manufacturers are 

shown in Figure 3.41. Both the straight chisel and the conical chisel may be appropriate 

for flat-surfaced specimens, but the straight chisel was selected due to its increased 

contact area with the specimen. The greater contact area, the less likely the slip. 

 
Figure 3.41 Options for chisel shape with corresponding contact area 

It was found that the chisel tips needed to be maintained between tests done at 

high temperatures. At temperatures in excess of 500°C, the surface of A992 steel would 

start to scale. The scale particles would grow in size and thickness with increasing 

temperature, starting to delaminate at 900°C. At the point of delamination, the scale 

would stick to the extension rods (Figure 3.42). If, after coupon failure, an attempt were 

made to remove the extensometer immediately, the extension rods could break, being so 

selected 
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firmly stuck to the specimen. Through allowing the coupon to cool fully and then pulling 

the extensometer off slowly, fewer rods were broken. 

 
Figure 3.42 Scale on rod tip after testing at elevated temperatures  

If scale was attached to the chisel tips at the end of one test, it would be removed 

before the next test using a blunt object (flathead screwdriver). The straight chisel shape 

would be restored to the rod using a diamond grinder and a fine metal file.  

3.6.2.4 Modifications to Cooling System 

As mentioned previously, the two pressure-standing extensometers were outfitted 

with cooling systems. These consisted of an intake for compressed air, the expansion of 

which was to cool the instrument.  

It was found that, while satisfactorily protecting the instrument from damage, this 

cooling system adversely affected the strain data in the initial portion of the stress-strain 

curve. As shown in Figure 3.43, shaking was seen in the strain data. Condensation was 

observed on the surface of the extensometer, so it was hypothesized that this shaking was 

due to the presence of moisture in the available compressed-air lines. As the air expanded, 

water droplets would form and subsequently hit the extensometer at high velocity. With 

the low weight of the 1PS extensometer, the water droplets could be enough to impact the 

data in this way. This hypothesis was confirmed in part by the observation that shaking 

worsened in the summer months, in which the humidity was typically higher. 

 
Ceramic Rod 

Scale 
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A solution to this problem was found by changing cooling methods to the fan 

shown in Figure 3.44. The fan proved satisfactory in terms of heat abatement, and as 

shown in Figure 3.43b, eliminated the problem with shaking. It should be mentioned that 

experimentation was required to set the distance of the fan from the extensometer. When 

the fan was placed very close to the extensometer body, a similar shaking behavior was 

observed, though it was lesser in extent that that shown for the compressed-air system. 

    
 a) Full stress-strain curve b) Curve at elastic region 

Figure 3.43 Shaking phenomenon due to cooling system (tension test, 700°C) 

 
 a) Expansion of compressed air  b) Fan-cooling 

Figure 3.44 Before and after change to cooling system 

       
1PS Extensometer 

Compressed Cool Air Cooling Fan 
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3.6.2.5 Quick Reset of the Extensometer 

As mentioned in the description of the 1PS extensometer, its limited strain range 

of 10% meant that it had to be reset several times during each tension test. With practice, 

the extensometer was able to be reset as fast as 10 seconds, although closer to 60 seconds 

was more typical. The strain “lost” during the resetting time was compensated for after 

the test, with the assumption of a consistent strain rate before and after reset. 

After being reset, the resulting raw stress-strain curve would look like that shown 

in Figure 3.45. Detailed information on the process to generate a smooth stress-strain 

curve from this discontinuous data is given in Section 3.7. 

 
Figure 3.45 Captured screen of tensile test at 700°C with several extensometer resets 

3.6.3 Extensometer Verification 

The validation and verification of the extensometers for room- and elevated-

temperature use were performed by comparison of axial strain data from different devices. 

The extensometers were compared to each other, and also tested against foil strain gauges 
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(SGs). The following Table 3.10 outlines the different verification tests performed; the 

results of each will be discussed in the upcoming sections. 

Table 3.10 Test plan for extensometer verification 

Case Case 1 Case 2 Case 3 Case 4 

Extensometer Type 1PS-2SS 2PS-2SS 1PS-2SS-SG 1PS-2PS 

Temperatures 20°C 20°C 20°C 20°C / 700°C 

3.6.3.1 Case 1: 2SS and 1PS at room temperature 

The first extensometer-verification test was performed with the 1PS and 2SS 

extensometers at room temperature. As shown in Figure 3.46, these extensometers were 

mounted to a test coupon, which was subsequently loaded up to 10% strain while strain 

data for each extensometer was recorded. While the test could have been taken to failure, 

that would require multiple resets of the 1PS extensometer. The strain data for the 1PS 

could be corrected for resetting, but testing to its strain limit seemed more appropriate for 

validation testing: differences in readings would be definitively due to differences in the 

extensometers rather than assumptions of the extensometer reset–compensation process. 

 
Figure 3.46 Case 1: 2SS and 1PS at room temperature 

2" Self-Standing 
(2SS) 

1" Pressure-Standing 
(1PS) 
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The results of the testing are shown in Figure 3.47. It was desired that a data 

comparison be completed for both elastic and inelastic behavior.  

    
a) Stress-strain curve to 10% strain b) Elastic Response 

Figure 3.47 Stress strain of 2SS and 1PS at room temperature 

In terms of the inelastic behavior, Figure 3.47a shows that very close 

correspondence between the two extensometers. A slight difference in elastic modulus is 

shown in Figure 3.47b, however. In both cases, the measured elastic modulus was similar 

to common values measured for A992 steel: 29,000 to 30,000 ksi. A slight angular 

misalignment of the extensometers could account for the fact that both measured values 

exceed 30,000. In Table 3.11, the elastic-zone accuracy of the two extensometers is given 

as a ratio of the measured elastic modulus to the reference value of 29,000 ksi. 

Table 3.11 Elastic modulus of Case 1 at room temperature 

Measurement 1PS 2SS 

Elastic Modulus (ksi) 31,379 30,326 

Modulus Ratio to 29,000 ksi 1.093 1.046 

3.6.3.2 Case 2: 2SS and 2PS at room temperature 

For Case 2, the 2SS extensometer was used again, compared this time to the 

results of the other elevated-temperature extensometer, the 2PS. The test setup is shown 

in Figure 3.48. In this case, since resetting of the extensometers was not an issue, testing 

was carried out to failure. 
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Figure 3.48 Case 1: 2SS and 2PS at room temperature 

The pattern of the overall stress-strain data is the same as that found in Case 1: the 

two extensometers have good correspondence in the inelastic range. The failure strain for 

the 2SS (0.424 inch) was almost exactly that measured by calipers (0.427 inch, using the 

method described in Section 3.6.1.3), but the failure strain measured by the 2SS was 

within 5% of this value. 

A marked difference can be seen between the two extensometer readings in the 

elastic zone. The 2SS again gave a reasonable value for the elastic modulus, but the 2PS 

data suggested an elastic modulus roughly half the standard value.  

   
 a) Overall stress-strain curve  b) Elastic modulus 

Figure 3.49 Stress strain of 2SS and 2PS at room temperature 

2" Self-Standing 
(2SS) 

2" Pressure-Standing 
(2PS) 
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At first, it appeared like the instrument gauge factor was improperly entered for 

the 2PS, off by a factor of two. Though it was verified to be correct, the reader should be 

reminded that any parameter affecting the elastic behavior would also influence the 

inelastic behavior. Halving the failure strain shown in Figure 3.49a would cause a greater 

error in the full stress-strain curve. A better explanation was that, with its large 

measurement range and high contact force, the 2PS extensometer was ill-equipped to 

measure such small strains. 

Case 2, summed up in Table 3.12, further substantiated the accuracy of the 2SS 

extensometer, while returning mixed results for the 2PS. It appeared to be accurate in the 

inelastic range, but inaccurate for measurements of elastic behavior. 

Table 3.12 Elastic modulus and failure strains for Case 2 at room temperature 

Measurement 2PS 2SS 

Elastic Modulus (ksi) 16,680 30,461 

Modulus Ratio to 29,000 ksi 0.575 1.050 

Failure Strain (in/in) 0.443754 0.423840 

Strain Ratio to 0.42740 in. 
(caliper measurement) 1.038 0.992 

3.6.3.3 Case 3: 1PS, 2SS and SG at room temperature 

As further verification that the 2PS extensometer in Case 2 truly did greatly 

overestimate the elastic-zone strains, a repeat of Case 1 was performed. This time, 

however, foil strain gauges were deployed to independently evaluate the accuracy of the 

2SS and 1PS extensometers (Figure 3.50). 

Foil strain gauges were installed according to the manufacturer’s specifications, 

which consisted of preparing the surface mechanically and chemically before adhering 

the gauges to the surface. Gauges were installed on all four sides of the reduced section to 

correct for accidental eccentricity.  



62 

 

 
Figure 3.50 Case 3: 1PS and 2SS extensometer, with strain gauges 

Due to the strain limits on the strain-gauge adhesive used, the extent of testing for 

Case 3 was 5% strain. To better study the elastic response, the coupon was loaded to 1%, 

unloaded and then reloaded to the final strain value. Results from this testing are shown 

in Figure 3.51. 

 
a) Stress-strain curves when loading and reloading  

2" Self-Standing 
(2SS) 

1" Pressure-Standing 
(1PS) 

Strain Gauges 
(SG) 
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 b) Elastic modulus during loading  c) Elastic modulus during reloading 

Figure 3.51 2SS, 1PS and SG at room temperature 

The findings for the elastic moduli measured during loading and reloading are 

shown in Table 3.13. During loading, the results from the extensometers and the strain 

gauges were remarkably similar: 1PS, 2SS and the average of the strain gauges returned 

values 0.5% of each other. The difference was a little greater for the reloading condition, 

but still all were within 1.5%. 

Table 3.13 Elastic modulus of Case 3 at room temperature 

Measure-
ment Condition 

Extensometers Strain Gauges 

1PS 2SS 1 2 3 4 avg 

Elastic 
Modulus (ksi) 

Loading 29,347 29,192 29,256 28,518 29,446 30,098 29,330 

Reloading 29,493 29,273 28,720 28,705 30,610 30,622 29,664 

Modulus Ratio 
to 29,000ksi 

Loading 1.012 1.007 1.009 0.983 1.015 1.038 1.011 

Reloading 1.017 1.009 0.990 0.990 1.056 1.056 1.023 

 
As shown in Figure 3.52, for both the loading and unloading conditions, the 

elastic moduli for the 1PS and 2SS extensometers were within the standard range of 

values. (While individual strain gauges were outside this range, the average of the four 

was within it.) Case 3 thus served as validation of the elastic-zone strain data produced by 

both the 1PS and 2SS at room temperature. 
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Figure 3.52 Elastic modulus summary graph of 1PS, 2SS and SG 

3.6.3.4 Case 4: 1PS and 2PS at elevated temperature 

While the 2SS extensometer was demonstrated accurate through the results of the 

previous three cases, its design prevented it from being used at elevated temperatures. 

Since validation at elevated temperature was desired, for Case 4, the 1PS and 2PS 

extensometers were used (Figure 3.53).  

While Case 2 results threw into question the accuracy of the 2PS extensometer for 

measuring the small strains necessary to find elastic properties, they also supported the 

idea that it was suitable to measure inelastic strains, e.g. to failure. The use of 2PS 

concurrently with the 1PS extensometer during testing would, then, serve the purpose of 

independently verifying the failure strains, and more generally, all strains significantly 

beyond the elastic zone. 

Two tests were performed: the first at room temperature, and the second at the 

elevated temperature of 700°C. For the elevated-temperature testing, the coupon was 

heated for an hour to allow it to achieve thermal equilibrium. During this time, it was 

allowed to expand freely. 
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Figure 3.53 Case 4: 1PS and 2PS extensometer with furnace 

The results of Case 4 testing are shown in Figure 3.54. The overall stress-strain 

behavior at both room- and elevated temperature are similar in that the strain data from 

the two extensometers are essentially identical up to the point necking occurred. Beyond 

that point, strain is no longer uniform along the specimen and the difference in gauge 

length between the two extensometers matters. If all of the strain after necking were 

concentrated at a single necking point, the post-necking strain for the 2PS would be 50% 

that of the 1PS. As it turned out, for both 20 and 700°C, the measured strain after necking 

for the 2PS was 55 to 60% that of the 1PS. This indicates that the assumption that all the 

post-necking elongation would occur in the necking zone, while not exactly true, was 

fairly descriptive of the behavior observed. 

In terms of elastic-zone performance at room temperature, the findings were 

similar to the previous cases. The elastic modulus measured by the 2PS extensometer was 

a little under 60% of the reference value at room temperature; the 1PS returned a highly 

accurate value. At the elevated temperature, the two readings were closer together, but 

the 2PS modulus was still only 70% of the 1PS. This data is summarized in Table 3.14. 

1" Pressure-Standing 
(1PS) 

2" Pressure-Standing 
(2PS) 
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 a) Overall stress-strain at 20°C  b) Elastic modulus 

    
 c) Overall stress-strain at 700°C  d) Elastic modulus 

Figure 3.54 1PS and 2PS at elevated temperature 

Table 3.14 Elastic modulus of Case 4 at room and elevated temperatures 

Extensometer Condition 1PS 2PS 

Elastic Modulus (ksi) 
20°C 29,400 16,755 

700°C 8,941 6,441 

Modulus Ratio to 29,000 ksi at 20°C 
and 8,941 ksi at 700°C 

20°C 1.014 0.578 

700°C 1.000 0.720 
 

3.6.3.5 Summary of extensometer verification test 

In terms of measurements of elastic behavior, both the 1PS and 2SS 

extensometers performed very well. The measured elastic moduli for these two 
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extensometers corresponded well with the expected value for A992 steel, that is, in the 

range of 29,000 to 30,000 ksi.  

The 2PS extensometer proved incapable of measuring elastic strains accurately. 

Its measured elastic modulus was typically 40% low at room temperature. The large 

measurement range of this instrument—up to 50% tensile strain—may have inhibited its 

ability to perform measurements of elastic strains —less than 2%—accurately. 

The elastic component of the strain-verification testing is shown in Table 3.15. 

Table 3.15 Elastic modulus ratio to 29,000ksi for extensometer verification 

Case Condition 1PS 2PS 2SS SG avg 

1 20°C 1.093 - 1.046 - 
2 20°C - 0.575 1.050 - 

3 
Loading 1.012 - 1.007 1.011 

Reloading 1.017 - 1.009 1.023 

4 
20°C 1.014 0.578 - - 
700°C 0.308 0.222 - - 

 
All three extensometers returned relatively similar inelastic strain readings prior 

to the onset of necking: the maximum observed variation was on the order of 5%. After 

necking, at both room and elevated temperature, the 1PS measured higher strains than the 

2PS, but this behavior was due to the shorter gauge length. 

In terms of potential usage during testing, the 1PS extensometer was shown 

adequate at both room and elevated temperatures. The 2SS was shown adequate for room 

temperature. Elastic-zone measurements from the 2PS should be considered inaccurate, 

but measurements of large inelastic strains proved accurate. As such, the 2PS 

extensometer could be used, but only in conjunction with another extensometer if any 

elastic properties were desired. 
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3.7 CORRECTION FOR EXTENSOMETER RESET DURING TESTING 

For the temperature range tested, the steel coupons experienced up to 130% 

elongation before rupturing in tension. In comparison, the measurement range of the 

primary extensometer—1PS—was 10% strain. As such, during a given tension test, it 

was necessary to physically reset the extensometer up to thirteen times. This process 

produced discontinuous strain data, which was converted to a complete stress-strain curve 

through a process of connection and adjustment (Figure 3.55). This section provides 

information on how this process was completed. A more detailed, step-by-step 

presentation can be found in Appendix A. 

 
a) Before curve connection      b) After curve connection 

Figure 3.55 Before and after curve connection of tensile test at 400°C 

3.7.1 Process Followed to Correct Strain Data 

The process of generating a stress-strain curve can be described by the six steps 

shown in Figure 3.56. From the output data, the random strains recorded during the 

resetting process were deleted. The remaining curve segments were shifted and, with 

recovered data, connected. (More discussion will be provided on data recovery in the 

Section 3.7.1.1.) The now-connected “raw” stress-strain curve was adjusted to the 

fracture strain directly measured using the punch marks on the coupon and calipers. 
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a) Step.1                                                 b) Step.2  

 
c) Step.3                                                 d) Step.4  

 
e) Step.5                                                 f) Step.6  

Figure 3.56 Sample of curve connection showing process step by step 
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3.7.1.1 Recovery of Data Lost During Resetting Using Adjacent Data  

During the time the extensometer was in the process of being reset, typically 15-

30 seconds, no strain data was recorded. However, it is reasonable to assume that the 

strain rate during this period is likely to be similar to the rates observed immediately 

before and after resetting. The time interval between strain readings was constant. So, 

once a strain rate for the resetting period was assumed, the strain lost due to resetting 

could be calculated.  At times, it took several attempts to properly seat the extensometer 

on the specimen. When strain data was only collected for a short time before another 

reset (only for a few seconds, covering less than 1% strain), this data was judged to be of 

questionable quality, and was typically deleted and then recovered. The segments of the 

stress-strain curve that would be connected were typically greater than 8% strain in 

length (compared to the 10% strain limit of the extensometer). 

3.7.1.2 Adjustment so Final Strain Matches Caliper Measurement 

After the stress-strain curve was connected, it was adjusted such that the final 

strain would match that measured directly after the test using the punch marks and 

calipers. In all cases, this meant an increase from the raw extensometer strain values.  

There were several reasons to adjust the final strain. Since most are related to the 

fact that the extensometer was reset, it was decided to adjust the strains starting only 

beyond the nominal strain at which the extensometer was reset the first time: 10%. A 

strain for the final stress-strain curve could be then calculated as given in Equation (3.1. 

       (       ) (
    

    
) (3.1) 

where 

εi = Arbitrary strain greater than 0.10 in/in (that is, 10%) 

εf = Final strain measured after failure with calipers 

εl = Last strain from raw data, after completing reconnection 
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As will be presented in detail in the next section, an extensometer, if reset during 

testing, is not capable of measuring all the strain experienced by a specimen. Each time 

the extensometer is reset, it is made to cover a smaller and smaller portion of the initial 

length that was instrumented. This is shown in Figure 3.57. The strain should be 

considered relative to the initial length, however. The portion of the strain corresponding 

to the stretching of the previously-but-now-uninstrumented zone is not included in the 

extensometer data.  

 
Figure 3.57 Zone for which strain is no longer measured after reset of extensometer 

A theoretical compensation factor could be generated for this phenomenon—this 

topic is presented in Section 3.7.2—but it was found that the amount of adjustment that 

could be applied this way was not always sufficient to match the directly measured 

failure strain. This observation is likely due primarily to assumptions made during curve 

reconnection. The choice to use the measured value rather than a theoretical estimate as a 

basis for final-strain adjustment also provides compensation for other sources of error 

related to the extensometer measurement and curve connection process. 
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3.7.2 Theoretical Adjustment of Strain due to Stretching of Previously 

Instrumented Length of Specimen 

As discussed in the previous section, an addition to the raw strain values is 

required for the stretching of portions of the specimen instrumented initially but no 

longer instrumented after multiple extensometer resets. This section presents a theoretical 

approach on this topic. It should be noted that while stress-strain curves compensating for 

this effect were generated, a different method of adjustment—using the caliper-measured 

final strain—was ultimately implemented. The use of a directly measured final strain 

does empirically compensate for the phenomenon here described. 

Discussion will proceed by following the strains—those recorded by the 

extensometer and those that actually occur—over a period that covers multiple 

extensometer resets. Before the first reset, the coupon has elongated an amount    and 

the strain situation is as illustrated in Figure 3.58 and Equation (3.2. The parameters    

and   , defined by strain from previous steps, are zero here: this is the first step. 

        
a) Stress-strain curve                                b) Strain during this period 

 Figure 3.58 Strain-correction schematic diagram before first reset  
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During the next step, the strain recorded by the extensometer is again   . Strain 

carried over from the previous step,   , is elongated an additional amount due to the 

stretching of the coupon during this step. If assumed that the extensometer is reset to its 

nominal gauge length (1 inch) each time, the correction to the strain,   , can be expressed 

as      , where a is the ratio of strain for the previously instrumented as compared to the 

current gauge length spanning necking zone. Before necking, strain is uniform over the 

test length of the specimen, so a = 1. After necking, the strain rate in the necking zone is 

greater than over the other length, so 0 < a < 1. 

As shown in Equation (3.3, the equation for total measured strain at this step,   , 

can be reduced to be dependent only on the strain from the previous step,   , and the 

partial-stretch reduction factor, a. 

 

       
a) Stress-strain curve 

Figure 3.59 Strain-correction schematic diagram after first reset  

(continued on next page) 

      (3.2) 

where 
    Total measured strain 
    Strain recorded during this step (since last extensometer reset) 
  ,     Defined by strains from previous steps 
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b) Components of strain during this period 

Figure 3.59 Strain-correction schematic diagram after first reset (continued) 

 
During the last step as shown in Equation (3.4, after the final extensometer and 

before failure, total measured strain is calculated similar to the strain recorded after the 

first reset, dependent only on the strain from the previous step and the partial-stretch 

reduction factor.  

            
              
      (     )  
      (     )  

(3.3) 

where 
    Total measured strain  
    Strain recorded during this step  
    Uncorrected strain from previous step =    
    Strain increment due to previous uncorrected strain        
    Reduction factor accounting for partial stretching of previously 

instrumented length vs. current gauge length spanning necking zone 
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a) Stress-strain curve 

 
b) Components of strain during this period 

Figure 3.60 Strain-correction schematic diagram when coupon failure 

            
      (     )  
  (   )         (   )   

(3.4) 

where 
    Total measured strain  
    Strain recorded during this step 
    Uncorrected strain from previous step 
    Strain increment due to previous uncorrected strain 
   Reduction factor for partial stretching of previously instrumented length 
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Combining the strain schematic diagrams from the steps considered above, Figure 

3.61 is generated. Again, it can be noted that with an assumption for the ratio of strains 

between the previously instrumented zone and the current zone, the final strain is 

dependent only on the strain calculated for the penultimate step. 

 

Figure 3.61 Schematic diagram of total strain from initial step to failure  

In all cases, the raw strain from curve connection was less than the measured 

strain by calipers. Compensating for the stretching of no-longer-instrumented segments 

of the coupon improved the correlation to measured strain. Figure 3.62 and Table 3.16 

show the ratio of  -compensated strain, that is, strains corrected using the method 

described in this section, to measured strain. For this figure, it is assumed that a = 1: that 

all portions of the coupon stretch equally throughout the test. The ratios of the two strains 

range from 0.84 to 1.12, with most  -compensated strains falling within 10% of measured. 
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Figure 3.62 Strain after correction and failure 

Table 3.16 Strain ratios by correction method and by caliper measurement 

Temp (°C) 
Strain 

Ratio 
y-Compensated Caliper-Measured 

20 0.6213 0.5540 1.12 
100 0.4837 0.5118 0.95 
200 0.3907 0.4657 0.84 
300 0.4960 0.4841 1.03 
400 0.4707 0.4892 0.96 
500 0.4038 0.4444 0.91 
600 0.5875 0.5259 1.12 
700 0.7204 0.7423 0.97 
800 1.3813 1.2793 1.08 
900 0.6144 0.6049 1.02 
1000 0.4644 0.4308 1.08 
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Some investigation was made into finding a fitting value for a, the partial-stretch 

reduction factor, considering the areas at failure of the necking zone and other portions of 

the coupon reduced section. However, these efforts were unsuccessful for two reasons. 

First, the value of a is not constant throughout the test. Before necking, it approaches 

unity; afterwards, it is less than one. Second, adjustments need to be made for errors 

inherent in the curve connection process. In some cases, the value of the strain measured 

by calipers suggested an experimental value of a greater than one. This finding does not 

invalidate the above theory, just suggests that correction by final measured strain is a 

more robust technique than a theoretical compensation for the strains out of range for the 

reset extensometer. 
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CHAPTER 4 
Tension Testing at Elevated Temperatures 

4.1 OVERVIEW 

This chapter describes the procedures for and results from tension testing of 

ASTM A992 steel at elevated temperatures. Tests were conducted for temperatures 

ranging from room temperature to 1000°C to determine mechanical properties including 

yield stress, tensile strength, and elastic modulus. Two constitutive models were 

developed based on the experimental data to predict elevated temperature stress-strain 

response. One is a detailed model that captures many of the features of the measured 

stress-strain curves; this model is appropriate for advanced analysis of steel structures 

subjected to fire. The second is a simplified trilinear model that may be more useful in 

design calculations. Results from these models are compared with an existing, widely 

used model, from Eurocode 3 (Eurocode 1993). 

4.2 TEST COMPONENTS AND PROCEDURES 

The general testing procedures used for most elevated temperature tests conducted 

for this dissertation were discussed in Chapter 3. This section provides some additional 

details specific to tension testing at elevated temperature. 

4.2.1 Test Specimens 

In order to better assess the behavior of ASTM A992 steel at high temperatures 

considering the possible variability in steel material, specimens were cut from different 

wide-flange sections from different heats of ASTM A992 steel. Tests were conducted on 

two different samples of ASTM A992 material. These materials are designated as MA, 

MB and MC, as described in Chapter 3. Specimens designated as MA and MB were cut 

from the web of a W30×99 section with different heat number, and those designated as 
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MC were cut from the flanges of a W4×13 section. To provide further evaluation of the 

effects of material variability, the results of tests conducted herein will be compared with 

the results of elevated temperature tests on ASTM A992 steel. MA coupon of steel cut 

from the web of a W30×99 section, but this section was from a different heat of ASTM 

A992 steel than the W30×99 used for the MB specimens. Thus, test results reported in 

this chapter are from three different samples of ASTM A992 steel designated as MA, 

MB, and MC (Figure 4.1a). Room-temperature mechanical properties and results of 

chemical analysis for all three materials are provided in Section 3.4.1. 

 Details of the dimensions of the specimens, in accordance with ASTM Standard 

A370 (A370 2012), are shown in Figure 4.1b. The coupons were prepared so that their 

longitudinal dimension (18 inch) was along the rolling direction of the wide flange 

sections. Moreover, though not specified by ASTM A370, the 18-inch length of the 

coupon was selected to create enough clearance between the furnace and the grips of the 

testing machine. Coupon fabrication followed the procedures described in Section 3.4.2.  

 
a) Coupon sources beam and location 

Figure 4.1 Experimental coupon details used in testing (continued on next page) 



81 

 

 
b) Coupon dimensions  

Figure 4.1 Experimental coupon details used in testing (continued) 

4.2.2 Strain Measurement 

Coupon strain was measured during elevated-temperature testing through 

simultaneous use of two extensometers, designated as “1PS” and “2PS”, shown in Figure 

4.2. As discussed in Section 3.6, these extensometers were both of the same design 

(pressure-standing extensometers, with ceramic arms and an air-cooling system for high-

temperature use), but had different gauge lengths (1 and 2 inch) and different 

measurement ranges (10 and 50% strain, respectively).  

Most notably, however, the two extensometers had different uses. The 2PS, due to 

its large strain capacity, was less accurate for measuring response at very small strains. 

On the other hand, the 2PS allowed the measurement of very large strains with a 

minimum number of resets. The 1PS extensometer allowed more accurate measurement 

at small strain levels, but required a larger number of resets to capture the full stress-

strain curve. The difference in measurement range meant that the 1PS needed to be reset 

at least ten times for 800°C. While the 1PS was reset, the 2PS was still in contact with the 

specimen, collecting strain data. More information on the effects of resetting and 

controlling the extensometers during the test and corrections made for reset can be found 

in Section 3.7. 
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Figure 4.2 Use of 1PS and 2PS extensometers 

4.2.3 Temperature Measurement 

Temperature measurement is a critical factor in elevated-temperature testing. 

Having a uniform temperature distribution over the gauge length of the steel coupon is 

crucial in order to accurately evaluate mechanical properties of steel at a specific 

temperature. 

Type K thermocouple wires were used to measure the temperature at different 

locations along the gauge length of the coupon. Due to the fact that the thermocouple 

extension wire measures the temperature at the first contact point of its two dissimilar 

metals, this first contact point has to touch the surface of the steel coupon and maintain 

the initial position without moving during the test. Therefore, to have a reliable 

temperature measurement, thermocouple extension wires should be firmly attached to the 

surface of specimens. In addition, to be protected from radiation from the furnace heating 

elements, the thermocouple wires were wrapped by Type 321 stainless steel tool wrap or 

1PS 

2PS 
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foil, which is commonly used in heat treatment of tool steels. Figure 4.3 shows, for 

representative steel coupons, the attachment of the thermocouple wires covered by the 

stainless steel tool wraps at their contact points with the specimens. Three Type K 

thermocouples were attached to each coupon, and protected with stainless steel foil. This 

system for attaching thermocouples to the steel coupons was developed after extensive 

study of various temperature measurement approaches. Methods for attaching the 

thermocouple to the steel coupons were described in greater detail in Section 3.5. 

 
Figure 4.3 Coupon with Type K wire thermocouples 

4.2.4 Furnace and Test Machine 

Specifics of the MTS 653.04 furnace and MTS 810 test machine can be found in 

Section 3.3. All tests were conducted by displacement control, using a constant crosshead 

displacement rate to load the steel coupons. All tests conducted on materials MA, MB 

and MC were at a crosshead displacement rate of 0.01 inches per minute. Thus, all 

tension test results reported in this chapter were conducted at a constant crosshead rate of 

0.01 inches per minute. For laboratory convenience, it was desirable to heat the coupons 

to their target temperature in a similar time, regardless of the magnitude of the 
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temperature. As such, rates of heating were varied (Table 4.1), and the furnace reached its 

target temperature in approximately 30–40 minutes (Figure 4.4).  

The furnace was held at the target temperature until at least 60 minutes had passed 

after the start of heating to allow the coupon to achieve greater uniformity of temperature. 

During the heating process, the coupons were allowed to freely expand under zero load. 

Consequently, all strains reported in the stress-strain curves in this chapter are 

mechanical strain only, and do not include thermal strain. 

Table 4.1 Heating Rate (°C/min) 

Time(min) 
Temperature (°C) 

200 300 400 500 600 700 800 900 1000 

1 77.0 124.9 141.7 150.0 200.4 210.2 177.8 256.3 365.3 
2 2.4 31.3 43.8 78.0 93.0 79.9 97.7 107.3 101.5 
3 5.4 13.9 26.7 47.9 53.4 54.3 73.3 68.7 50.2 
4 5.7 13.1 22.5 26.8 44.9 48.5 50.6 52.5 42.8 
5 6.0 12.1 13.2 22.6 40.0 44.2 45.5 36.6 31.9 
6 5.7 10.1 12.2 17.9 22.0 40.0 38.5 35.6 30.3 
7 6.6 8.6 14.1 17.6 19.0 31.3 34.6 30.4 25.8 
8 6.4 9.3 11.9 14.7 15.1 27.0 32.6 25.6 24.8 
9 5.3 8.0 12.6 11.6 10.5 21.7 31.0 24.4 25.3 
10 5.2 5.7 8.3 12.5 10.0 18.2 28.9 24.3 25.0 

 

 
a) Temperature profile                                         b) Heating rate 

Figure 4.4 Temperature profile and heating rate 
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4.2.5 Test Repetitions 

To help ensure accurate results, three to seven tensile tests were performed at each 

temperature, depending on the consistency in and quality of the stress-strain curves 

obtained in each test. It should be noted that virtually all tests showed good repeatability 

with respect to three parameters typically extracted from tension testing: yield stress, 

tensile strength and elastic modulus. Issues with repeatability, when they did arise, were 

related to the descending branch of the stress-strain curve (the post-peak behavior), which 

was difficult to capture consistently. 

Inconsistencies in the stress-strain data occurred for several reasons, but most 

notably due to extensometer resetting. At times, when the extensometer was reset, the 

necking point ended up outside the range of the extensometer. In that case, the large 

deformations that occur at the necking point were not reflected by the readings of the 

extensometer. It proved difficult to find the necking point through the small window of 

the furnace (Figure 4.5) when the material was red hot. 

        
 a) Window in furnace b) View through furnace window  

Figure 4.5 Necking behavior as viewed through furnace window 

An example of inconsistent stress-strain data resulting from improper placement 

of the extensometer after resetting is given for three tests conducted at 300°C in Figure 

4.6. For Test 1 and 2, the extensometer was reset three times. It was reset four times in 

Window 

Necking 
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the Test 3. Test 3 was taken as the most representative result, as the final elongation most 

closely matched the elongation measured from punch marks on the coupon. The lower 

strain values measured for the first two tests indicate that the extensometer did not 

capture necking optimally. At ultimate, 5 to 8% smaller strains were measured (in 

absolute terms). The sharp decrease in stress at constant strain seen in the Test 2 

(highlighted in Figure 4.6b) indicates that the extensometer was set to a location where it 

entirely missed necking, whereas the shortened plateau at maximum stress seen in Test 1 

is indicative of partially missed necking. 

 
 a) Full stress-strain curves                     b) Curve for upper range of stress 

Figure 4.6 Effect of necking in repeated tension tests at 300°C 

Another source of inaccurate stress-strain data, shown for five tests performed at 

600°C (Figure 4.7), was non-uniform temperature during the testing period. While for 

most tests, the target temperature was maintained within a tolerance of 3°C, during one 

test temperatures fluctuated by up to 20°C. This increase in temperature leads to 

considerable error in the stress-strain curve, as illustrated in Figure 4.7. 
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a) Stress- and temperature-strain curves b) Results from repeated testing 

Figure 4.7 Effect of temperature variation in repeated tension tests at 600°C 

Different sources of error—those identified in the previous two figures and 

otherwise—affected each tension test in a unique way. As such, averaging the results of 

all tests conducted at a given temperature was not considered to provide a representative 

stress-strain curve at elevated temperature. Rather, for repeated tests at a given 

temperature, the data was evaluated carefully to choose the curve that was least affected 

by errors.  

4.3 TEST RESULTS 

This section presents the results of the elevated temperature tension tests. As 

described earlier, tests on materials MA, MB and MC were conducted as part of this 

current research. Test results are provided are provided in this section in several different 

formats. First, stress-strain curves are provided according to the material type (MA, MB 

and MC), and are then given according to temperature. Finally, stress-strain curves given 

by extensometer type are presented.  

All stress-strain curves presented in this section are from tests conducted at a 

constant crosshead rate of 0.01 inches per minute. Further, unless noted otherwise, strains 

were measured using the 1PS extensometer using the resetting technique described in 

Chapter 3. 
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4.3.1 Stress-Strain Curves by Material 

To illustrate the effect of different heats of ASTM A992 steel materials at 

elevated temperatures, stress-strain curves are presented for materials MA, MB and MC 

in Figure 4.8 to Figure 4.10, respectively. In these figures, stress-strain curves are plotted 

up to 80% strain, which includes strains from the start of loading to the fracture of the 

coupons at different temperatures, except for materials MA and MB at 800°C, for which 

the strains at fracture are 110% and 130%, respectively. As can be seen in Figures 4.8a, 

4.9a and 4.10a for each material, the tensile strength increases compared to the 

corresponding one at room temperature, at temperatures of 200°C and 300°C. At higher 

temperatures, progressive loss in the tensile strength can be clearly observed. Another 

important property, ductility, as measured by the final elongation of the coupons, exhibits 

a small reduction up to 500°C, then increases in the range of 600 to 800°C, and then 

reduces again at 900°C. On the other hand, ductility, as measured by the strain at which 

the tensile strength is developed, shows a dramatic decrease with increasing temperature 

from 400 to 700°C.  

Figures 4.8b, 4.9b and 4.10b plot the initial parts of the stress-strain curves up to 

0.5% strain for each material. These figures clearly show that the yield stress and 

modulus of elasticity decrease with temperatures. 

 
a) Full-range stress-strain curves             b) Initial portion of stress-strain curves  

Figure 4.8 Stress-strain curves for MA at elevated temperatures 
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a) Full-range stress-strain curves             b) Initial portion of stress-strain curves  

Figure 4.9 Stress-strain curves for MB at elevated temperatures 

 
a) Full-range stress-strain curves             b) Initial portion of stress-strain curves  

Figure 4.10 Stress-strain curves for MC at elevated temperatures 

As observed in previous tension tests reported in the literature, this data shows 

that the fundamental shape of the stress-strain curve changes as temperature increases. At 

400°C and above, the steel no longer exhibits a well-defined yield plateau, and shows 

significant nonlinearity at low levels of stress and strain. Likewise, as described above, 

the strain corresponding to the maximum engineering stress (tensile strength) decreases 

rapidly as temperature increases, and the stress-strain curve subsequently shows a long, 

gradual decline.  

At ambient temperature, the initial portion of the stress-strain curve is often 

modeled using a simple elastic-perfectly plastic approximation in which the response is 
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linear-elastic up to yield, and then follows a plateau. Simple elastic-perfectly plastic 

stress-strain models may be less appropriate at elevated temperatures due to early 

nonlinearity in stress-strain curves, as seen in Figure 4.8 to Figure 4.10. This early 

nonlinearity may be particularly significant when considering stability phenomena, 

wherein tangent stiffness is a critical material property. 

4.3.2 Stress-Strain Curves by Elevated Temperatures 

Figure 4.11 illustrates the effect of material variability by presenting stress-strain 

curves at specific temperatures for materials designated as MA, MB and MC. As is clear 

from this figure, there is appreciable difference in material stress-strain response among 

these three materials that are all classified ASTM A992 steel. More specifically, it can be 

observed from this figure that materials MA and MB, both of which are from the web of 

W30×99 sections of different heats, show similar stress-strain behaviors, especially at 

temperatures lower than 500°C. It can also be observed that the stress-strain curves of 

material MC, which is from the flange of a W4×13 section, are very different from those 

of materials MA and MB at elevated temperatures. Of particular interest is the 

comparison amongst these three materials at 200°C, where very large strain hardening 

and a very large increase in tensile strength are seen in the stress-strain behavior of 

material MC. At first, this behavior was suspected to be experimental error. However, 

several coupons of MC material were retested at 200°C, and this same behavior was 

consistently observed. These observations suggest that there may be considerable 

variability in stress-strain response for a particular grade of steel. 
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a) 20°C                                                   b) 200°C  

 
c) 300°C                                                   d) 400°C  

 
e) 500°C                                                   f) 600°C  

Figure 4.11 Stress-strain curves for MA, MB, and MC at elevated temperatures 
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g) 700°C                                                   h) 800°C  

 
i) 900°C                                                   j) 1000°C  

Figure 4.11 Stress-strain curves for MA, MB and MC at elevated temperatures 
(continued) 

4.3.3 Stress-Strain Curves by Extensometer 

Test results plotted according to extensometer type are shown in Figure 4.14 for 

material MA. Stress-strain curves are shown for two cases. One is for strains measured by 

the 1PS extensometer (1-inch gauge length; 10% strain limit), and the second is for 

strains measured using the 2PS extensometer (2-inch gauge length; 50% strain limit). 

Note that each pair of curves is for the same coupon. That is, as a coupon was being 

loaded, strains were measured on the coupon using the two different extensometers 

simultaneously. 
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In comparing stress-strain curves for the two different extensometers, it can be 

observed that the curves are essentially the same up through the development of the 

highest engineering stress, that is, until the development of the tensile strength of the 

material. Once the tensile strength is achieved, necking initiates in the coupon, and the 

stress-strain curves for the two different extensometers begin to deviate. The differences 

in the curves after necking is likely related to the different gauge lengths of the 

extensometers; 1 inch for the 1PS and 2 inches for the 2PS. Once necking initiates, strain 

is no longer uniform over the gauge length of the coupon, but rather is concentrated 

within the necked region. The 2PS extensometer, because of its longer gauge length, 

averages the strain over a larger length than the 1PS extensometer. As a result of this 

larger averaging length, the 2PS extensometer is expected to record a smaller average 

strain over its gauge length than the 1PS extensometer. This is clearly reflected in the 

stress-strain curves in Figure 4.14, where the strains for the 2PS extensometer are 

consistently smaller than for the 1PS extensometer once necking begins. The effect of 

extensometer gauge length on the post-necking portion of the stress-strain curve was also 

discussed in Chapter 3. 

Mechanical properties of interest in design include the modulus of elasticity, 

proportional limit, yield stress, and tensile strength. These properties are all derived from 

the portion of the stress strain curve that occurs prior to necking. Thus, these properties 

are largely independent of extensometer gauge length. An additional property of interest 

is the elongation of the coupon, which is the strain at fracture. The apparent strain at 

fracture is dependent on extensometer gauge length, as is clear from Figure 4.12. The 

dependence of measured elongation on extensometer gauge length is well recognized in 

material specifications. For example, the required minimum elongation of ASTM A992 

steel is 18% for an 8-inch gauge length and is 21% for a 2-inch gauge length. 
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a) 20°C                                                   b) 200°C  

 
c) 300°C                                                   d) 400°C  

 
e) 500°C                                                   f) 600°C  

Figure 4.12 Full stress-strain curves by 1PS and 2PS extensometers  
(continued on next page) 
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f) 700°C                                                   g) 800°C  

 
h) 900°C                                                   i) 1000°C  

Figure 4.12 Full stress-strain curves by 1PS and 2PS extensometers (continued) 

4.4 MECHANICAL PROPERTIES AT ELEVATED TEMPERATURE 

The mechanical properties of steel derived from tension testing include elastic 

modulus, yield stress, proportional limit, tensile strength and total elongation. The last 

two properties are maximum values, so are easy to define: tensile strength is the highest 

stress observed during testing and total elongation the highest strain. The other properties 

describe behavior at low values of strain; in the elastic zone and just beyond. Figure 4.13 

qualitatively shows the initial portion of an elevated temperature stress-strain curve, and 

graphically illustrates the elastic modulus, proportional limit, and yield stress. Since 

elevated temperature stress-strain curves typically do not exhibit a well-defined yield 
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plateau, various definitions of yield stress are possible. The definition of yield stress will 

be discussed in greater detail later. 

 
Figure 4.13 Definitions for elastic modulus, yield stress and proportional limit 

The elastic modulus (E) is the initial slope of the stress-strain curve. The 

proportional limit defines the stress at which linear behavior ceases. For the elevated-

temperature yield stress (fy), three definitions are provided in the figure: the 0.2% offset 

method, 0.5% total strain and 2.0% total strain. The first of these definitions, the 0.2% 

offset method, is widely adopted for testing at room temperature. The last of these, 2% 

strain, is used in Eurocode 3 (Eurocode 1993). The intermediate value of 0.5% total strain 

is sometimes seen in the literature (Kirby and Preston, 1988).  

4.4.1 Yield Stress 

The yield stress was determined by the three methods discussed in Section 4.4: 

the 0.2% offset method, 0.5% total strain and 2.0% total strain. At temperatures above 

approximately 300 to 400°C, the measured stress-strain curves do not exhibit a well-

defined yield plateau. Consequently, defining yield stress becomes more subjective at 

elevated temperatures than at ambient temperature. For metals that do not exhibit a yield 
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plateau, the 0.2% offset yield stress definition is widely used and is specified by ASTM 

E21 (ASTM, 2009) for defining the yield stress at elevated temperatures. With this 

method, yield stress is defined as the stress at the intersection of the stress-strain curve 

and the proportional line offset by 0.2% strain. Within the literature on elevated-

temperature properties of structural steel, various definitions of yield stress have been 

used. In addition to the conventional 0.2% offset definition, the yield stress has also been 

defined as the stress corresponding to 0.5% total strain, the stress corresponding to 2% 

total strain, as well as other definitions. Both Eurocode 3 (Eurocode 1993) and AISC 

Specification (AISC 2005) have adopted the 2% total strain definition for the yield stress 

of structural steel at elevated temperatures.  

Figure 4.14 shows the initial portion of a stress-strain curve from this test program 

for 400°C and a crosshead displacement rate of 0.01 in/min. The values of yield stress are 

shown for the three definitions of yield stress: 43.8 ksi for 0.2% offset strain, 45.8 ksi for 

0.5% total strain, and 57.5 ksi for 2% total strain definition. It is clear that the choice of 

the definition of yield stress can have a very large impact on the resulting value of yield 

stress.  

 

Figure 4.14 Example of yield stress definitions at 400°C 

Yield stress–retention factors based on the data collected in this research are 

plotted in Figure 4.15. The yield stress–retention factor is defined as the yield stress at a 
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specific temperature (using stress-strain curves at 0.01 in/min crosshead displacement 

rate) divided by the yield stress at ambient temperature. The retention factors for yield 

stress based on the 0.2% offset, 0.5% total strain and 2% total strain definitions are 

compared with retention factors from the Eurocode 3 and from the AISC Specification in 

Figure 4.15. Note that Eurocode 3 and the AISC Specification use the same retention 

factors for yield stress, and are therefore plotted as a single line. As can clearly be seen 

on MA and MC from Figure 4.15a and Figure 4.15b, for temperatures in the range of 100 

to 500°C, the yield stress–retention factors from tests, based on the 0.2% offset and 0.5% 

total strain definitions, are significantly lower than the corresponding values specified by 

Eurocode 3 and the AISC Specification except for MB material. To the contrary, Figure 

4.15c shows a good agreement between retention factors from test data of MA material 

and those predicted by the codes, when the retention factors for the test data are based on 

the 2% total strain definition of yield stress. However, MB has high conservative from 

room temperature to 500°C while MC has it around 400°C. Similar observations can be 

made from Figure 4.15d, Figure 4.15e and Figure 4.15f, where yield stress–retention 

factors are presented and compared with code predictions for materials MA, MB, and 

MC, respectively. From these figures, it can be seen that the values of yield stress from 

the test data are fairly close to one another for the 0.2% offset and 0.5% total strain 

definitions. Further, above about 600°C, all three definitions of yield stress give similar 

values. However, below 600°C, the yield stress based on the 2% total strain definition is 

significantly higher than the yield stress values based on the other two definitions. 

As is clear from Figure 4.15, the yield stress of steel at elevated temperatures up 

to about 600°C is highly dependent on the manner in which it is defined. Based on Twilt 

and Both (1991), it appears that the yield stress–retention factors for structural steel at 

elevated temperatures used in Eurocode 3 were adopted from British Steel Corporation 

data (Kirby and Preston, 1988). However, little was found in the literature to support this 

definition of yield stress for structural-fire engineering design of steel structures. It seems 

that the most appropriate definition for yield stress of steel at elevated temperatures 
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ultimately lies in how these values are used in design formulas, and further investigation 

and discussion of this issue appears justified.  

 
a) 0.2% offset definition               d) MA: Different yield stress definitions 

 
b) 0.5% offset definition               e) MB: Different yield stress definitions 

 
c) 2.0% offset definition                f) MC: Different yield stress definitions 

Figure 4.15 Yield stress–retention factors 
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The yield stresses and associated retention factors obtained by representative 

material MA are summarized in Table 4.2 for the different definitions of yield stress. 

Table 4.3 shows how the room-temperature value of yield stress was retained at higher 

temperatures. For comparison, the yield stress–retention factors from Eurocode 3 

(Eurocode 1993), and Outinen (Outinen and Makelainen 2004) are provided.  

Table 4.2 Yield stress for Material MA (ksi) 

Method 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

0.2% offset 63.1 58.5 48.4 43.5 38.7 26.8 13.1 5.3 4.4 2.1 
0.5% strain 63.2 57.4 50.5 45.8 41.0 27.9 13.5 5.6 4.6 2.3 
2.0% strain 61.9 60.6 62.8 57.5 48.7 30.3 13.3 5.9 4.7 2.7 

 

Table 4.3 Yield stress–retention factor for Material MA 

Method or 

Source 

Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

0.2% offset 1.00 0.93 0.77 0.69 0.61 0.43 0.21 0.08 0.07 0.03 
0.5% strain 1.00 0.91 0.80 0.73 0.65 0.44 0.21 0.09 0.07 0.04 
2.0% strain 1.00 0.98 1.01 0.93 0.78 0.49 0.22 0.09 0.08 0.04 
Eurocode 3 1.00 1.00 1.00 1.00 0.78 0.47 0.23 0.11 0.06 0.04 

Outinen 1.00 0.93 0.89 0.86 0.62 0.38 0.14 0.11 0.07 0.03 

4.4.2 Tensile Strength 

The tensile strength was defined as the maximum measured engineering stress. 

The retention factors for tensile strength, obtained for all steel materials tested in this 

program, are compared with the corresponding values in Eurocode 3 and AISC 

Specification in Figure 4.16. In Figure 4.16a, the tensile strength–retention factor is 

defined as the tensile strength measured at a specific temperature divided by the yield 

stress measured at ambient temperature. The data is presented in this manner as this is 

how the tensile strength–retention factor is defined in both Eurocode 3 and the AISC 
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Specification. For temperatures at and above 400°C, both Eurocode 3 and the AISC 

Specification take the elevated-temperature tensile strength equal to the elevated-

temperature yield stress.  

Figure 4.16b shows the tensile strength–retention factors from the tests, where the 

retention factor is defined as tensile strength measured at a specific temperature divided 

by the tensile strength measured at ambient. This seems to be a more conventional 

definition of tensile strength–retention factor. For reference, the tensile strength values 

obtained for each steel material at elevated temperatures are shown in Table 4.4. 

Comparing the elevated-temperature tensile strength values listed in Table 4.4 with the 

elevated-temperature yield stress values based on the 2% total strain definition, it can be 

seen that the tensile strength generally exceeds the yield strength for temperatures up 

through and including 500°C. For 600°C and above, the measured tensile strength and 

yield strength values are essentially the same. The experimentally determined tensile 

strengths are summarized on Table 4.4 and plotted in Figure 4.16.  

 
a) By (fu,T/fy,20°C)definition                            b)By (fu,T/fu,20°C)definition 

Figure 4.16 Tensile strength–retention factors 
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Table 4.4 Tensile strength (ksi) 

Material 

Type 

Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

MA 76.2 73.8 79.2 73.1 54.3 31.1 13.5 5.9 5.1 3.3 
MB 66.2 76.6 79.5 71.5 47.7 27.2 13.9 5.9 4.7 3.9 
MC 68.3 89.4 77.4 60.0 39.2 18.9 9.7 6.1 5.3 3.3 

4.4.3 Elastic Modulus 

The elastic modulus at elevated temperature is defined as the slope of the stress-

strain curve in the linear-elastic range just as at room temperature, as shown in Figure 

4.17 and Table 4.5. The elastic modulus was determined by measuring the slope of the 

initial linear portion of the stress-strain curves for tests conducted at a crosshead 

displacement rate of 0.01 in/min. Strains were measured in the tension coupon tests using 

a non-averaging type extensometer, i.e. strains were measured on only one side of the 

coupon. Consequently, errors at small strain levels can occur due to bending of the 

coupon resulting in errors in the measured strain. As such, the elastic modulus values 

derived from the stress-strain curves may be subject to some error. Nonetheless, the 

elastic modulus data were still examined for general trends. 

 
a) Elastic modulus                                    b) Retention factors 

Figure 4.17 Elastic modulus and retention factor 
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Table 4.5 Elastic modulus (ksi) 

Matl. 

Type 

Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

MA 29500 27000 25000 24700 23100 14600 8900 5190 4830 5320 
MB 29600 29200 28600 26200 21300 14000 8350 4260 6400 5320 
MC 28700 30000 25700 26500 24800 20800 11300 8900 8900 6400 

 
Another way to look at this data is in terms of the ratio of elastic modulus at a 

given elevated temperature to the room-temperature elastic modulus. This elastic 

modulus–retention factor is presented in Table 4.6 and plotted in Figure 4.17. Also 

included, for sake of comparison, are results from the Eurocode 3 (Eurocode 1993).  

Table 4.6 Elastic modulus–retention factor 

Material 

or Source 

Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

MA 1.00 0.91 0.84 0.83 0.77 0.49 0.27 0.18 0.16 0.18 
MB 1.00 0.99 0.97 0.88 0.72 0.47 0.28 0.14 0.22 0.18 
MC 1.00 1.05 0.90 0.92 0.86 0.72 0.39 0.31 0.31 0.22 

Eurocode 3 1.00 0.90 0.80 0.70 0.60 0.30 0.10 0.00 0.07 0.05 
 

4.4.4 Proportional Limit 

The proportional limit is defined as the stress at which the linear portion of the 

stress-strain curve ends. The value of the proportional limit is used in Eurocode 3 to 

compute buckling capacities of steel members (column buckling, lateral torsional 

buckling, etc.). Some judgment was needed in interpreting the stress strain curve to 

establish the end of the linear portion, so the proportional limit values reported here 

should be considered approximate. The experimentally determined proportional limits are 

summarized in Table 4.7. The retention factor for proportional limit from the tests are 
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compared to the predictions of Eurocode 3 (Eurocode 1993) in Table 4.8 and plotted in 

Figure 4.18b. In general, reasonable agreement can be found between experimental 

retention factors for proportional limit and those predicted by Eurocode 3 and by AISC 

Specification. 

 
a) Proportional limit strength                     b) Retention factor  

Figure 4.18 Proportional limit and associated retention factor 

Table 4.7 Proportional limit (ksi) 

Material 

Type 

Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

MA 66.5 58.9 42.3 30.2 18.9 16.1 8.9 2.5 2.6 1.4 
MB 53.2 57.3 41.7 31.4 15.7 11.1 9.0 4.1 2.0 1.7 
MC 50.7 47.4 46.2 17.3 12.9 8.0 5.7 2.3 2.4 1.9 

 

Table 4.8 Proportional limit–retention factor 

Material 

or Source 

Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

MA 1.00 0.89 0.64 0.45 0.28 0.24 0.13 0.04 0.04 0.02 
MB 1.00 1.08 0.78 0.59 0.29 0.21 0.17 0.08 0.04 0.03 
MC 1.00 0.93 0.91 0.34 0.25 0.16 0.11 0.05 0.05 0.04 

Eurocode 3 1.00 0.81 0.61 0.42 0.36 0.18 0.08 0.05 0.04 0.03 
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4.4.5 Elongation 

To evaluate differences in the measured elongation based on extensometer gauge 

length, elongations were measured simultaneously using the 1PS and 2PS extensometers 

for material MA coupons. The elongation at failure and the associated retention factor for 

the 1PS (1-inch gauge length) and 2PS (2-inch gauge length) extensometers are 

summarized in Table 4.9, Table 4.10, and plotted in Figure 4.19. The elongation at failure 

measured by 2PS was approximately two-thirds that measured by 1PS due to the different 

gauge lengths, as discussed earlier. Although the two extensometers give significantly 

different values of elongation, the elongation retention factors are quite similar, as seen in 

Figure 4.19b.  

 
 a) Elongation b) Retention factor 

Figure 4.19 Elongation and associated retention factor 

Table 4.9 Elongation at failure (in/in) for Material MA 

Source 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

1PS 0.55 0.47 0.48 0.50 0.46 0.57 0.74 1.28 0.59 0.43 
2PS 0.36 0.28 0.31 0.31 0.29 0.35 0.45 0.86 0.43 0.35 
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Table 4.10 Elongation retention factor for Material MA 

Source 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

1PS 1.00 0.84 0.87 0.90 0.82 1.02 1.34 2.31 1.07 0.78 
2PS 1.00 0.77 0.85 0.85 0.79 0.98 1.23 2.37 1.17 0.96 

 
The elongation at failure for steel coupons for materials MA, MB and MC are 

shown in Figure 4.20 and Table 4.11. For this comparison, all values of elongation are for 

the 1PS extensometer. That is, all values of elongation are for a 1-inch gauge length. As 

seen in this figure, the elongation for materials MA and MB is relatively constant for 

temperatures up to 500°C and then shows a sharp increase up to 800°C, and finally a 

sharp decrease at 900°C, almost to its corresponding value except for room temperature. 

The elongation at failure was fairly constant with a sharp maximum value at 800°C. Here 

the elongation was more than double that at room temperature. This occurs due to a phase 

change in the steel: the austenite (γ-Fe), which forms above the eutectoid point can 

withstand more elongation (Callister 2007).  

In case of material MC, the same trend can be observed although with less 

variation than seen for materials MA and MB. The primary difference in the trend of 

elongations can be seen in the temperature range of 900 to 1000°C, where material MA 

and MB see a drop in elongation while material MC experiences a rise in elongation. 

 
Figure 4.20 Elongations for Material MA, MB and MC 
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Table 4.11 Elongations for Materials MA, MB and MC (in/in) 

Material 

Type 

Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

MA 0.55 0.47 0.48 0.50 0.45 0.57 0.74 1.28 0.59 0.43 
MB 0.44 0.45 0.52 0.46 0.43 0.60 0.66 1.20 0.49 0.40 
MC 0.52 0.34 0.44 0.33 0.25 0.49 0.57 0.54 0.26 0.74 

 

4.5 CURVE FITTING AND ANALYSIS 

In order to develop a constitutive model for elevated temperature stress-strain 

curves for ASTM A992 steel, curve fitting was performed on the stress-strain data at each 

temperature as a first step. The different types of curves fit for the test results at room and 

elevated temperatures are explained in the following sections. Based on this curve fitting, 

a detailed stress-strain model will subsequently be developed.  

4.5.1 Curve Type 

Two different types of stress-strain curves were seen in testing as shown in Figure 

4.21. Curve Type I is the same shape as tension test results at room temperature. It has an 

elastic zone, a plastic zone, and a strain-hardening zone before strain softening and 

failure. Curve Type II was seen at high temperatures. There is no plastic plateau, and 

strain softening makes up a more significant portion of the response. Curve fitting was 

conducted according to the type of the curve. 
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.  
a) Curve Type I 

 
b) Curve Type II 

Figure 4.21 Curve types used for fitting 

Curve fitting was conducted based on the shape of the stress-strain curve for each 

temperature. Type I curves were used up to 300°C. Beyond that temperature, the Type II 

curve was more descriptive (Table 4.12).  

Table 4.12 Curve types selected by temperature 

Temp(°C) 20 200 300 400 500 600 700 800 900 1000 

Type I I I II II II II II II II 

4.5.2 Curve Fitting Equations 

The following sections explain the six kinds of equations used for Type I and 

Type II curve fitting.  
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4.5.2.1 Lognormal Equation 

The lognormal shown on Equation 4.1 was well suited for the strain-hardening 

zones of both Type I and Type II curve fits, as well as for the strain softening for the 

temperatures of 400 and 500°C. 

4.5.2.2 Hill Equation 

The Hill equation shown on Equation 4.2 was used for the strain hardening region 

of the Type II stress-strain curves at 600°C to 800°C.  

4.5.2.3 Power Law 

A power law equation shown on Equation 4.3 was used for strain softening for 

most temperatures.  

4.5.2.4 Exponential Equation 

A decaying exponential equation shown on Equation 4.4 was used in the strain 

softening region at 800°C with a Type II curve fit. 

          [ (
  (

 
  

)

  
)

 

] (4.1) 

where y = stress,   = initial stress, A = amplitude,  
   = peak position, w = peak width 

 

     
(    )

  (
    

 
)
  (4.2) 

where x = strain, y = stress,   = base: stress at small strain,  
A = max: stress at large strain, r = rise rate,  
     = strain at which stress is (    )   

 

          (4.3) 

where x = strain, y = stress,    = initial stress, A = amplitude,  
p = power >1 or close to zero. 
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4.5.2.5 Polynomial Equation 

A polynomial equation shown on Equation 4.5 was adopted for strain softening at 

1000°C. The behavior at this temperature was different from others because of the re-

crystallization phenomena, which manifests itself as a second phase of strain hardening 

after the onset of strain softening. 

4.5.2.6 Linear Equation 

A linear equation shown on Equation 4.6 was used in plastic plateau region at low 

temperatures. 

4.5.3 Curve Fitting by Temperatures 

The following sections present the curve fits of the stress-strain data. For each 

temperature, the equations selected and parameters determined for each region of the 

response are shown. The strain data used here is that measured by the 1PS extensometer. 

After the curve fits for each temperature are individually presented, a summary of the 

stresses and strains at the transition points between the different zones of response is 

given for all temperatures (Table 4.23). These transition points are the proportional limit, 

the 0.2% offset yield point, the point of ultimate tensile stress, and the fracture point. 

          (
    

 
) (4.4) 

where x = strain, y = stress,    = initial strain value,    = initial stress,  
A = amplitude, τ = fit coefficient 

 

             
  … (4.5) 

where x = strain, y = stress,    = initial stress;   ,   … = parameters.  

          (4.6) 

where x = strain, y = stress,    = initial stress, A = slope  
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4.5.3.1 Curve fitting at 20°C 

The curve Type I model was adopted at this temperature and the detailed curve 

fitting results are shown in Figure 4.22 and Table 4.13. 

 
 a) Zone I b) Zone II 

 
 c) Zone III d) Zone IV 

Figure 4.22 Fitted equations at 20°C stress-strain curve 

Table 4.13 Parameters after curve fitting at 20°C 

Zone Equation Parameters for Type I model 

I Line a = 0 b = 29,475 - - 

II Line a = 62.59 b = -10.855 - - 

III Lognormal y0 = 62.51 A = 13.523 x0 = 0.12973 w = -1.2688 

IV Power Law y0 = 76.21 A = -258.34 p = 3.6739 - 
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4.5.3.2 Curve fitting at 200°C 

The curve Type I model was adopted at this temperature and the detailed curve 

fitting results are shown in Figure 4.23 and Table 4.14. 

 
 a) Zone I b) Zone II 

 
 c) Zone III d) Zone IV 

Figure 4.23 Fitted equation at 200°C stress-strain curve 

Table 4.14 Parameters after curve fitting at 200°C 

Zone Equation Parameters for Type I model 

I Line a = 0 b = 27,001 - - 

II Line a = 58.18 b = -62.635 - - 

III Lognormal y0 = 57.46 A = 16.109 x0 = 0.10726 w = -1.4007 

IV Power Law y0 = 73.76 A = -174.31 p = 2.8548 - 
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4.5.3.3 Curve fitting at 300°C 

The curve Type I model was adopted at this temperature and the detailed curve 

fitting results are shown in Figure 4.24 and Table 4.15. 

 
 a) Zone I b) Zone II 

 
 c) Zone III d) Zone IV 

Figure 4.24 Fitted equations at 300°C stress-strain curve 

Table 4.15 Parameters after curve fitting at 300°C 

Zone Equation Parameters for Type I model 

I Line a = 0 b = 24,678 - - 

II Line a = 48.25 b = 6.842 - - 

III Lognormal y0 = 48.62 A = 30.331 x0 = 0.16001 w = 2.3425 

IV Power Law y0 = 78.94 A = -366.64 p = 3.926 - 
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4.5.3.4 Curve fitting at 400°C 

The curve Type II model was adopted at this temperature and the detailed curve 

fitting results are shown in Figure 4.25 and Table 4.16. 

 
 a) Zone I b) Zone II 

 
c) Zone III 

Figure 4.25 Fitted equations at 400°C stress-strain curve 

Table 4.16 Parameters after curve fitting at 400°C 

Zone Equation Parameters for Type II model 

I Line a = 0 b = 24,437 - - 

II Lognormal y0 = 73.04 A = -258.4 x0 = 1.5657 w = -0.73668 

III Lognormal y0 = 32.70 A = 39.978 x0 = 0.17978 w = -3.2232 
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4.5.3.5 Curve fitting at 500°C 

The curve Type II model was adopted at this temperature and the detailed curve 

fitting results are shown in Figure 4.26 and Table 4.17. 

 
 a) Zone I b) Zone II 

 
c) Zone III 

Figure 4.26 Fitted equations at 500°C stress-strain curve 

Table 4.17 Parameters after curve fitting at 500°C 

Zone Equation Parameters for Type II model 

I Line a = 0 b = 23,428 - - 

II Lognormal y0 = 19.91 A = 34.109 x0 = 0.090952 w = -3.7759 

III Lognormal y0 = 54.11 A = -182.08 x0 = 3.0233 w = 1.1569 
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4.5.3.6 Curve fitting at 600°C 

The curve Type II model was adopted at this temperature and the detailed curve 

fitting results are shown in Figure 4.27 and Table 4.18. 

 
 a) Zone I b) Zone II 

 
c) Zone III 

Figure 4.27 Fitted equations at 600°C stress-strain curve 

Table 4.18 Parameters after curve fitting at 600°C 

Zone Equation Parameters for Type II model 

I Line a = 0 b = 14,574 - - 

II Hill Equation y0 = 17.00 A = 30.907  r = 1.8031 x1/2 = 0.0026675  

III Power Law y0 = 30.91 A = -32.014 p = 1.9368 - 



117 

 

4.5.3.7 Curve fitting at 700°C 

The curve Type II model was adopted at this temperature and the detailed curve 

fitting results are shown in Figure 4.28 and Table 4.19. 

 
 a) Zone I b) Zone II 

 
c) Zone III 

Figure 4.28 Fitted equations at 700°C stress-strain curve 

Table 4.19 Parameters after curve fitting at 700°C 

Zone Equation Parameters for Type II model 

I Line a = 0 b = 8,522 - - 

II Hill Equation y0 = 8.87 A = 13.456 r = 4.0577 x1/2 = 0.0017166 

III Power Law y0 = 13.49 A = -12.321 p = 0.99313 - 
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4.5.3.8 Curve fitting at 800°C 

The curve Type II model was adopted at this temperature and the detailed curve 

fitting results are shown in Figure 4.29 and Table 4.20. 

 
 a) Zone I b) Zone II 

 
c) Zone III 

Figure 4.29 Fitted equations at 800°C stress-strain curve 

Table 4.20 Parameters after curve fitting at 800°C 

Zone Equation Parameters for Type II model 

I Line a = 0 b = 5,236 - - 

II Hill Equation y0 = 2.50 A = 5.892 r = 2.0609 x1/2 = 0.0013613 

III Exponential y0 = -2.26 A = 8.1899 p = 0.70002 - 
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4.5.3.9 Curve fitting at 900°C 

The curve Type II model was adopted at this temperature and the detailed curve 

fitting results are shown in Figure 4.30 and Table 4.21. 

 
 a) Zone I b) Zone II 

 
c) Zone III 

Figure 4.30 Fitted equations at 900°C stress-strain curve 

Table 4.21 Parameters after curve fitting at 900°C 

Zone Equation Parameters for Type II model 

I Line a = 0 b = 5,069 - - 

II Lognormal y0 = 2.73 A = 2.2654 x0 = 0.095477 w = -5.1962 

III Power Law y0 = 5.08 A = -6.6937 p = 2.2266 - 
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4.5.3.10 Curve fitting at 1000°C 

The curve Type II model was adopted at this temperature and the detailed curve 

fitting results are shown in Figure 4.31 and Table 4.22. 

 
 a) Zone I b) Zone II 

 
c) Zone III 

Figure 4.31 Fitted equations at 1000°C stress-strain curve 

Table 4.22 Parameters after curve fitting at 1000°C 

Zone Equation Parameters for Type II model 

I Line a = 0 b = 5,277 - - 

II Lognormal y0 = 1.43 A = 1.8613 x0 = 0.28766 w = 4.4799 

III Polynomial y0 = 3.21 k1 = 24.434 k2 = -348.05 
k3 = 1498.6 
k4 = -2086.8 
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Table 4.23 Curve connection points between fitted curves 

Temp(°C) 20 200 300 400 500 600 700 800 900 1000 

fp 62.59 58.18 48.25 32.7 19.91 17.00 8.87 2.50 2.73 1.43 

fy 62.51 57.46 48.62 43.30 38.48 26.86 13.23 5.30 4.32 2.08 

fu 76.21 73.76 78.94 73.04 54.11 30.91 13.49 5.87 5.08 3.21 

fb 47.02 54.03 58.07 50.06 40.83 19.57 4.45 1.01 3.2 2.5 

εp .0119 .0022 .0020 .0013 .0008 .0012 .0010 .0005 .0005 .0003 

εy .0042 .0042 .0040 .0038 .0036 .0038 .0038 .0050 .0028 .0024 

εu .1593 .1001 .2000 .2045 .1194 .1204 .0100 .0200 .1197 .1301 

εb .5536 .4638 4832 .4968 .4508 .5614 .6856 1.200 .5427 .3310 

4.6 CONSTITUTIVE EQUATION S AND DISCUSSION 

Two models were developed to predict the stress-strain behavior of ASTM A992 

steel at elevated temperature, based on the test data developed in this test program. These 

two models will be referred to as the “Detailed Model’ and the “Simple Model.” The 

Detailed Model is intended for use in advanced analysis of steel structures subjected to 

fire, using finite element programs such as Abaqus or ANSYS. The Simple Model is 

intended where a simplified stress-strain law gives sufficiently accurate results, as may be 

the case in many design applications. 

4.6.1 Detailed Model for Stress-Strain Behavior 

The objective of the Detailed Model was to closely simulate the measured stress-

strain results of ASTM A992 at each temperature while using a consistent set of 

equations. This last point is a point of difference with the curve fits developed in the 

previous sections, which consisted of a unique combination of the six equation types. The 

equations used in this model and their applicable strain and temperature ranges are shown 

in Figure 4.32 and Table 4.24. The parameters for each equation are provided in Table 

4.25. 
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Figure 4.32 Assumed behavior for Detailed Model 

Table 4.24 Detailed Model for Stress-Strain Behavior 

Zone Strain Range Stress Temp Range 

I          20 – 1000°C 

II              
20–300°C 

(for ≥400°C,      ,  
there is no Zone II) 

III                [  (
      

 
)
 

]
   

 20–1000°C 

IV           
     [  (

    

 
)
 

]
   

 
20–1000°C  

(except for 700 
and800°C) 

   
 

 
(    ) 700–800°C only 

Parameters        ,        ,        ,         
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Table 4.25 Detailed Model parameters 

Parameter 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

Eθ / E 1.000 0.909 0.843 0.830 0.771 0.492 0.274 0.176 0.163 0.180 

fyθ / fy 1.000 0.928 0.769 0.688 0.611 0.427 0.210 0.084 0.069 0.033 

fu / fy 1.20 1.25 1.65 1.70 1.40 1.15 1.00 1.10 1.15 1.53 

fb / fy 0.60 0.80 1.00 1.00 1.00 0.60 0.30 0.05 0.60 1.15 

εs 0.024 0.02 0.004 εy εy εy εy εy εy εy 
εu 0.150 0.100 0.150 0.150 0.100 0.050 0.005 0.010 0.100 0.100 

εb 0.554 0.466 0.484 0.500 0.450 0.567 0.694 1.208 0.548 0.330 

where 
Eθ = Elastic modulus at elevated temperatures 
fyθ = Yield stress by 0.2% offset methods at elevated temperatures 
fu = Tensile strength  
fb = Breaking strength at failure 
εy = Yield strain 
εs = Beginning strain at strain hardening  
εu = Tensile strength at ultimate point 
εb = Breaking strain at failure 

4.6.2 Simple Model for Stress-Strain Behavior 

Given the complexities of the first constitutive model, a much simpler model was 

developed for use in design. The cost of simplicity is less accuracy. The normalized 

stress-strain curves (Figure 4.33) proved to be a good starting point when developing the 

simplified model. Viewed on this basis, it was apparent that for many temperatures, the 

stress at failure was higher than that at yield.  
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Figure 4.33 Normalized stress-strain curves for all temperatures 

A bi- and tri-linear stress-strain model was developed by using the 0.2% proof 

stress and strain, 5% total strain and initial tangent slope up to 10–15% strain as 

illustrated in Figure 4.34. The first step to construct the Simple Model is to find the yield 

stress using the 0.2% offset method (Point “A”) and then to find the stress at 5% total 

strain and stress by using the given stress ratio relation (Point “B”). The strain limit of the 

Simple model is defined as the last strain (Point “C”) and is provided in Table 4.26. The 

strain limit is set around 10 to 15% because necking was occurred near these strain values  

 
Figure 4.34 Schematic diagram of Simple Model 
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There are two ways for generating the Simple model. The first way is to generate 

the Simple model by using the parameters summarized in Table 4.26.  

Table 4.26 Simple Model parameters 

Parameter 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

E (ksi) 29,600 26,900 24,900 24,500 22,800 14,500 8,100 5,200 4,800 5,300 

fy (ksi) 62.9 58.4 48.4 43.3 38.5 26.9 12.0 5.3 4.3 2.1 

fy0.05 (ksi) 70.6 69.2 72.3 67.1 53.0 30.8 12.0 5.3 4.8 3.0 

εL 0.15 0.15 0.15 0.15 0.15 0.15 0.10 0.10 0.15 0.15 

 
The second way is able to generate the Simple Model by using generalized 

equations. The generalized equation was constructed with polynomial equations and 

correction factors as a function of temperature. The equation, constants and parameters 

are provided in Equation 4.7, Table 4.27 and Table 4.28 respectively.  

Table 4.27 Constants for Simple Model equation 

Constants a b c d 

Fy (ksi) 1.442E-07 -2.261E-04 2.139E-02 6.193E+01 

E (ksi) 8.797E-05 -1.425E-01 3.118E+01 2.788E+04 

     (               ) 

    (               ) 

   
  

 
 

(4.7) 

where 

Fy,   , E = yield stress, yield strain and elastic modulus at elevated temperatures 

a, b, c, d = constants,  ,   = correction factors, x = applied temperature (°C) 
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Table 4.28 Parameters for generalized Simple Model 

Parameter 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

α 1.011 1.001 0.932 0.995 1.128 1.096 0.770 0.649 1.366 1.465 

β 1.040 0.923 0.931 1.059 1.209 1.018 0.805 0.779 1.040 1.174 

fy0.05 / fy 1.122 1.185 1.496 1.549 1.377 1.147 1.000 1.000 1.111 1.466 

εL 0.15 0.15 0.15 0.15 0.15 0.15 0.10 0.10 0.15 0.15 

4.6.3 Model Verification 

The Detailed and Simple models are evaluated by comparing the stress-strain 

curves at every specific elevated temperature. Also included, for sake of comparison, are 

results derived from the Eurocode 3 model, the only existing codified model that provides 

steel stress-strain equations for steel at elevated at elevated temperatures. The comparison 

of constitutive model was performed with Eurocode 3, experimental results, Detailed and 

Simple models. These comparisons are provided in Figure 4.35 to  a) Initial portion of 

stress-strain curve b) Full stress-strain curve 

.  

In examining these comparisons, several observations can be made. First, the 

Detailed model matches the experimental data quite closely. This is no surprise, since the 

model is based on curve fitting to the experimental data. The Simplified model provides a 

reasonable representation of the initial potion of the experimental data, although the 

model somewhat underestimates strain hardening at lower temperatures. The Eurocode 3 

model, also underestimates strain hardening at lower temperatures but somewhat 

overestimates hardening at higher temperatures.  
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 a) Initial portion of stress-strain curve b) Full stress-strain curve 

Figure 4.35 Constitutive models at 20°C  

 
 a) Initial portion of stress-strain curve b) Full stress-strain curve 

Figure 4.36 Constitutive models at 200°C 

 
 a) Initial portion of stress-strain curve b) Full stress-strain curve 

Figure 4.37 Constitutive models at 300°C  
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 a) Initial portion of stress-strain curve b) Full stress-strain curve 

Figure 4.38 Constitutive model at 400°C  

 
 a) Initial portion of stress-strain curve b) Full stress-strain curve 

Figure 4.39 Constitutive models at 500°C 

 
 a) Initial portion of stress-strain curve b) Full stress-strain curve 

Figure 4.40 Constitutive models at 600°C 
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 a) Initial portion of stress-strain curve b) Full stress-strain curve 

Figure 4.41 Constitutive models at 700°C 

 
 a) Initial portion of stress-strain curve b) Full stress-strain curve 

Figure 4.42 Constitutive models at 800°C 

 
 a) Initial portion of stress-strain curve b) Full stress-strain curve 

Figure 4.43 Constitutive models at 900°C 
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 a) Initial portion of stress-strain curve b) Full stress-strain curve 

Figure 4.44 Constitutive models at 1000°C 

4.7 SUMMARY AND CONCLUSIONS 

This chapter presented results of tension tests of A992 steel at elevated 

temperatures. From this test data, curve fits for stress-strain behavior at each individual 

temperature were developed, as well as two temperature-dependent models for stress-

strain behavior.  

Testing indicated that most mechanical properties of steel (elastic modulus, yield 

stress, proportional limit, and tensile strength) decrease dramatically with increasing 

temperatures up to the highest temperature tested, 1000°C. The elongation was fairly 

constant at lower temperatures, with a slight rise at 700°C and then a sharp maximum at 

800°C before returning to lower values up to 1000°C. This phenomenon, for low carbon 

steel such as A992, is directly related to the phase change to ferrite (α-Fe) and austenite 

(γ-Fe) above the eutectoid temperature of the phase diagram. The tensile strength 

dropped to two-thirds of its room temperature value by 500°C, to one-third by 600°C, 

and to a fifth by 700°C. Above 800°C, the tensile strength was less than 5% of its room 

temperature value.  

Though two extensometers were used for the testing, the results obtained from the 

2PS extensometer were not accurate in the elastic region, as they resulted in unreliable 

elastic modulus measurements. However, the full stress-strain results from the 2PS 
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extensometer were helpful because less resetting of the extensometer was required during 

testing. It should be noted that the failure strain measured by the 1PS and 2PS 

extensometers was not same because of the different gauge lengths for these two 

extensometers  

Curve fitting was carried out using best-fit equations on defined zones of the 

experimental stress-strain curves: elastic, plastic plateau, strain-hardening and strain-

softening regions. The curve-fitting results were helpful to derive the constitutive models 

of the stress-strain curves at room and elevated temperatures. Two different stress-strain 

models were developed, referred to as the Detailed Model and the Simple Model. 
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CHAPTER 5 
Mechanical Properties after Heating and Cooling 

5.1 OVERVIEW 

In this chapter, the results of a different kind of testing are described. Rather than 

performing tests at the elevated temperatures as in Chapter 4, the tests in this chapter 

were performed after heating and cooling: that is, heating specimens to the target elevated 

temperature, then allowing them to cool down, back to room temperature. This test 

procedure was developed to investigate the post-fire mechanical properties of ASTM 

A992 steel.  

Most structures affected by fire do not collapse as a result of the fire event. 

Afterwards, an evaluation of the structural steel elements may be needed to establish the 

safety of the structure and to assess the need for repair or replacement of damaged 

members. Such a post-fire evaluation should be conducted on the basis of the structural 

integrity of the steel considering the continued service of the structure. As such, a 

detailed investigation of the room-temperature material properties of structural steel after 

exposure to high temperatures is justified. 

One factor known to affect heat-treated steel is the rate of cooling the metal 

experiences. In a real-world fire-affected structure, a variety of cooling rates would be 

expected. Some members might cool gradually, left exposed to the atmosphere. Others 

might cool even more slowly, being insulated either by the fireproofing or other 

nonstructural materials. Yet others might be quenched, cooling rapidly after being 

sprayed by water used by emergency personnel to extinguish the fire. These three cases 

were simulated in this test program by the Cooled-in-Air (CIA), Cooled-in-Blanket (CIB) 

and Cooled-in-Water (CIW) conditions. 
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5.2 EXPERIMENTAL INVESTIGATION 

Extensive discussion of the experimental techniques used for the tension testing at 

elevated temperatures was provided in Chapter 3. Many of those techniques are the same 

as those used for testing at room temperature after heating and cooling; these description 

will not be repeated. This section, rather, will highlight the differences between methods 

used for this testing and the methods previously described. 

In addition to tension testing, testing for two additional properties, toughness and 

hardness, was performed. Standard testing for these properties requires use of special test 

machine. Toughness testing was conducted using the Charpy V-Notch (CVN) test. The 

additional steps taken to make the CVN specimens will be described. Following that, 

brief descriptions of the toughness and hardness test methods will be provided. 

5.2.1 Test Specimen 

The heating and cooling treatments described in this section were performed on 

coupons of two different lengths: 14 inch and 18 inch. The dimensions of the two 

coupons differed only in overall specimen length: the reduced sections of both specimens 

were identically sized at 2.25 inch long and 0.5 inch square (Figure 5.1).  The chemical 

composition of steel coupon was shown in Table 5.1. 

The 14-inch coupons were used for the tension testing described in this chapter. 

This shorter coupon length, based on the minimum practical grip length, was chosen for 

easier handling during the cooling process. The 18-inch coupons were cut down to 

produce Charpy V-Notch specimens after heating and cooling, and subsequently tested 

for toughness.  
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a) 14-inch coupon, used for tension testing 

 
b) 18-inch coupon, used for toughness testing 

Figure 5.1 Coupon dimensions 

Table 5.1 Chemical composition for Material MB 

Matl. 
Type C Cr Mo V Ni Mn Si P S Cu 

MB 0.079 0.09 0.026 0.027 0.13 0.97 0.20 0.014 0.024 0.38 

 
In both cases, coupons were fabricated of material type MB, which conformed to 

ASTM A992 as is shown in Table 3.4 and Table 5.2. Further description of this and the 

other steel material types used in this research can be found in Section 3.4.1.  

Table 5.2 Room-temperature properties for Material MB 

Material 

Type 
Source Fy (ksi) Fu (ksi) 

MB Web of W30x99 51.3 66.2 
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5.2.2 Heating 

An enclosed, stand-alone furnace was used to heat eight coupons at a time—four 

each of the 14 and 18 inch lengths—to specified target temperatures ranging from 200 to 

1000°C. The coupons were heated and cooled side-by-side, so that their temperature 

profiles were the same, and as such, direct comparisons of the data from tension and 

toughness testing could be made. 

5.2.2.1 Furnace 

The furnace used for heat treatment was a 12,000-Watt Applied Test Systems 

(ATS) model with a rated temperature capacity of 1000°C. Similar to the MTS furnace 

used for elevated-temperature tension testing, this furnace had three heating elements, 

each of which could be controlled individually. Specifications of the furnace are given in 

the Table 5.3; it is depicted in Figure 5.2.  

Table 5.3 Furnace specifications 

Furnace Wattage 
Current 

per Zone 
Voltage 

Max 

Temp 

Dimensions 

(D x W x H) 

Applied Test 

Systems 3160 
12,000 W 19.2 A 208 V 1000°C 24 x 24 x 28 inch 
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 a) Exterior view  b) Interior view, with three heating zones visible 

Figure 5.2 Furnace used for coupon heating  

Inside the furnace, the coupons were suspended by nickel wire to allow for free 

thermal expansion and even exposure to heating on all surfaces. This type of wire was 

chosen as the material to minimize creep (and subsequent wire sagging) at elevated 

temperatures. The coupon mounting setup is shown in Figure 5.3. The refractory board 

on top was used both to close the furnace and for handling of the coupon.  

     
 a) Coupon suspended by nickel wire b) Handled using refractory board 

Figure 5.3 Coupon suspension and handling scheme 
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Since free expansion was allowed, there was no need to monitor strain during 

heating, or to leave open small gaps in the furnace for this purpose. The heat-treatment 

furnace could then be fully enclosed. This setup allowed a more uniform temperature 

distribution over the coupon length as compared to the MTS setup discussed in Chapter 3. 

The use of one thermocouple, installed at the middle of the reduced section, was found to 

be adequate to track the coupon temperature throughout heating and cooling. The 

thermocouple installation consisted of one Type K wire thermocouple with stainless steel 

foil shielding; more information is available in Section 3.5.1. The coupon setup in the 

furnace can be seen in Figure 5.4. 

 
 a) Topside view of furnace   b) Elevation view, with coupons 
  (duplicate specimens not shown) 

Figure 5.4 Coupon placement in furnace 

To keep the temperature profiles of the side-by-side coupons as similar as 

possible, it was desirable to hang them as shown in Figure 5.4b: so that the centers of the 
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specimens—and accordingly, of their reduced sections—lined up and were contained 

within the same heating zone. 

5.2.2.2 Heating Procedure 

The procedure chosen for heating to the various target temperatures (200 to 

1000°C) was adapted from ASTM E119. The E119 standard provides for a simulated fire 

event in which, initially, the temperature is ramped up rapidly, reaching 840°C in 30 

minutes. After the initial period of heating, temperature increase is more gradual. 

Temperature reaches 1200°C after 8 hours of testing. 

Since the target temperatures varied for this research, it would have been 

impossible to follow E119. The plan instead was to heat the specimen to temperature in 

less than 30 minutes and then maintain the specimen at the target temperature for 1 hour. 

After this step, the coupon was removed from the furnace and the cooling stage began. 

Figure 5.5 shows typical time-temperature curves for the three heating/cooling scenarios 

for the 1000°C target temperature, along with that prescribed by the ASTM standard. At 

this temperature, the heating rate adopted was higher than E119; however it should be 

noted that for lesser temperatures, this was not always true. 

 
Figure 5.5 Typical time-temperature curves for heating and cooling stages (1000°C) 
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Prior to heat-treatment of coupons for tension testing, pilot testing was done on 

the furnace. One finding from this pilot testing was that, early in the heating cycle, the 

temperature of heated coupons would exceed the temperature set for the furnace. With 

enough time (several hours), the coupon temperature would settle down to the target 

temperature. It was determined that this behavior resulted from the disparity in 

conductivity between the highly conductive steel coupons and the insulating material that 

made up the walls of the furnace. Once the furnace walls got hot enough, using furnace 

setpoints equal to the target temperature was appropriate. 

For this research, it was desirable that the coupon temperature never exceed its 

target value, within a reasonable tolerance. An appropriate sequence of setpoints for the 

furnace temperature was developed through a trial-and-error process, and is reported in 

Table 5.4.  

Table 5.4 Furnace setpoint temperatures to achieve given coupon target temperature  

Coupon Temp 

(°C) 

Furnace Setpoints (°C) for Time Period (min) 

0–40 40–55 55–70 70–100 

200 120 160 170 180 

300 220 220 250 250 

400 310 350 355 355 

500 420 420 440 440 

600 520 530 545 550 

700 630 630 650 650 

800 720 720 750 800 

900 820 820 850 850 

1000 930 950 950 950 

   
The temperature values above were programmed into the furnace controller as 

shown in Figure 5.6. The same setpoints were used for all three heating zones: upper, 

middle and lower. At times, due to convection, the upper zone would be slightly hotter 

than the lower zones, but this effect was minimal. 
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Figure 5.6 Furnace controller set for 900°C coupon target temperature  

The heating rates for each target temperature are given in Table 5.5. 

Table 5.5 Heating rates for specific target temperature 

Temp (°C) 200 300 400 500 600 700 800 900 1000 

Heating Rate 

(°C/sec) 
0.20 0.30 0.40 0.51 0.91 1.06 0.81 1.36 1.52 

   

5.2.2.3 Temperature Monitoring and Recording System 

As previously mentioned, coupon temperatures were monitored using 

thermocouples installed at the middle of the specimen. During heating and cooling, a 

real-time readout of temperature values was possible using Campbell Scientific PC9000 

software. Temperature values were logged independently, using a CR5000 data logger 

(also by Campbell Scientific). Temperatures were recorded at 10-second intervals.  

5.2.3 Cooling 

The actual cooling rates for structural steel after a fire can depend on a number of 

factors, including the cooling rate of the fire itself, whether or not the steel is insulated, 

whether or not the steel is exposed to water from fire-fighting operations or sprinklers, 

and others. Three different cooling methods were used for the test coupons in an attempt 

Setpoint Furnace Air Temp 

Upper Zone 
Panel 

Middle Zone 
Panel 

Lower Zone 
Panel 

Overall 
Temp T/C 
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to provide a range of cooling rates that might reasonably bracket realistic conditions. The 

three cooling methods are referred to as Cooled-In-Air (CIA), Cooled-In-Blanket (CIB), 

and Cooled-In-Water (CIW). 

The approximate amount of time required for the coupons to fully cool from 

1000°C to room temperature was 4 hours, 14 hours and 1 minute for the CIA, CIB and 

CIW cases, respectively, as was shown in Figure 5.5. 

5.2.3.1 Cooled-in-Air Specimens 

For the CIA case, a heated coupon was taken from the furnace and allowed to 

cool sitting on a non-flammable concrete or stone block as shown in Figure 5.7. While 

the room in which the coupons were set to cool was not temperature-controlled, coupons 

were protected from large temperature changes during cooling. Temperature was 

monitored for a total of 12 hours. 

  
a) 14 inch coupon air-cooling                         b)  18 inch coupon air cooling 

Figure 5.7 Cooled-in-air (CIA) coupons 

Regardless of the temperature to which the coupon was heated, the CIA time-

temperature curves were similar in shape. As shown in Figure 5.8, all CIA specimens 

approached room temperature after 30 to 90 minutes of cooling. That said, the cooling 

process continued, at a very slow rate, for up to 4 hours. 
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Figure 5.8 CIA temperature profile 

The cooling rates measured by time period are reported in Table 5.6. By 60 

minutes, it is clear that most of the cooling has occurred: for all temperatures, the cooling 

rate is less than 1°C/min. 

Table 5.6 Cooling rate of CIA 

Temp 

(°C) 

Cooling Rate (°C/min) over Time Period (min) 

0–30 30–60 60–90 60–120 120–180 180–240 240–720  

200 4.48 0.97 0.32 0.13 0.04 0.02 0.01 

300 7.26 1.46 0.36 0.14 0.05 0.02 0.01 

400 10.49 1.61 0.39 0.09 0.01 0.01 0.0 

500 13.32 1.88 0.55 0.19 0.05 0.0 0.0 

600 16.87 1.83 0.37 0.1 0.02 0.01 0.01 

700 19.28 2.27 0.64 0.23 0.07 0.02 0.01 

800 22.62 2.27 0.62 0.18 0.04 0.03 0.01 

900 25.05 2.95 0.75 0.23 0.06 0.02 0.01 

1000 28.97 2.52 0.70 0.24 0.06 0.01 0.0 
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5.2.3.2 Cooled-in-Blanket Specimens 

For the CIB case, a heated coupon was wrapped in a ceramic-fiber refractory 

blanket and placed inside a box constructed of ceramic fiberboard. The CIB setup is 

shown in Figure 5.9, and the thermal properties of the blanket and fiberboard given in 

Table 5.7.  

          
a) Exterior view                           b) Interior view, with blanket and coupons 
Figure 5.9 Ceramic-fiber blanket and box used for CIB testing 

Table 5.7 Properties of blanket and ceramic fiberboard 

Properties 
Blanket  

(Inswool) 

Fiberboard  

(Nutec) 

Thermal 

Conductivity 

(W/m·°C) 
0.26 0.17 

Thickness (in) 1 1 

Density (lb/ft
3
) 6 21–25 

 
Temperature loss was very gradual, given the excellent insulating properties of 

the blanket-and-box setup. It was necessary to double the amount of temperature-

monitoring time compared to CIA, from 12 to 24 hours. The CIB temperature profiles are 

as given in Figure 5.10. The shapes of the curves are slightly more differentiated than the 

CIA time-temperature curves. 
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It should be noted that there was some degree of temperature loss due to handling. 

Though care was taken to move the heated coupons from the furnace to the insulated box 

as quickly as possible, a rapid temperature loss of 10 to 50°C can be observed in every 

curve. 

 
Figure 5.10 CIB temperature profile 

Over the first 30 minutes, the cooling rates for the CIB specimens were slightly 

less than half of their corresponding CIA values. The drop-off in the cooling rate 

happened much more slowly, however: the CIB rates did not reach the one-hour values of 

the CIA rates until 3 hours of cooling passed. The cooling rate of CIB is shown in Table 

5.8. 
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Table 5.8 Cooling rate of CIB 

Temp 

(°C) 

Cooling Rate (°C/min) over Time Period (min) 

0–30 30–60 60–90 60–120 120–180 180–240 240–720  

200 1.89 0.93 0.70 0.56 0.41 0.26 0.04 

300 3.21 1.30 0.99 0.77 0.55 0.35 0.08 

400 4.57 1.95 1.43 1.07 0.71 0.38 0.09 

500 6.08 2.44 1.77 1.30 0.87 0.51 0.10 

600 7.79 3.51 2.25 1.50 0.84 0.45 0.10 

700 9.77 4.21 2.58 1.69 1.00 0.52 0.09 

800 9.73 4.85 3.15 2.09 1.27 0.68 0.14 

900 11.21 5.14 3.45 2.34 1.44 0.82 0.16 

1000 13.22 5.17 3.52 2.49 1.57 0.91 0.19 

5.2.3.3 Cooled-in-Water Specimens 

For the CIW case, a heated coupon was removed from the furnace and 

immediately dunked in a 5-gallon bucket containing room-temperature water (Figure 

5.11). While this procedure likely resulted in more rapid cooling than might be 

experienced by a steel member sprayed by water in a fire situation, the procedure was 

simple, repeatable and considered a limiting case of cooling rate for steel sprayed with 

water by fire fighters. 

   
Figure 5.11 Coupons cooled in water (CIW) 
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As shown in Figure 5.12, cooling for the CIW specimens happened very rapidly. 

Within the course of one minute, the temperature was decreased to that of the room-

temperature water. Though the accuracy of the calculated cooling rates was impaired by 

the slow rate of data collection (every 10 seconds), the rates shown in Table 5.9 do 

increase with temperature with the exception of the 1000°C data point. It should be noted 

that CIW testing was performed only for the temperatures of 500°C and up. 

 
Figure 5.12 CIW temperature profile 

Table 5.9 Cooling rate of CIW 

Temp 

(°C) 

Temperature (°C) Cooling 

Time 

(sec) 

Cooling Rate 

Before 

Cooling 

After 

Cooling 
°C/Sec °C/Min 

500 498.1 39.2 50 9.2 550.7 

600 596.0 42.6 60 9.2 553.3 

700 698.6 41.8 40 16.4 985.2 

800 794.9 42.4 50 15.1 903.0 

900 894.0 38.1 40 21.4 1283.9 

1000 993.0 41.3 110 8.7 519.1 
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5.2.4 Tension Testing at Room Temperature 

Aside from the absence of the furnace during testing, most components of the 

procedure for room-temperature tension testing for the heated and cooled specimens were 

identical to their elevated-temperature counterparts. For example, testing was performed 

under displacement control, at a rate of 0.01 inch/min. The cleaning process required 

after heating and cooling were complete, and the strain measurement techniques, 

however, were unique and deserve further explanation. 

5.2.4.1 Specimen Preparation after Heating and Cooling  

After heating and cooling, coupons were cleaned and punch-marked for final 

strain measurement. Punch-marking was performed in a similar manner to that described 

in Chapter 3.4.2.6, only the timing was different: after heating and cooling rather than 

during initial fabrication. 

With regards to cleaning, very little was need for coupons heated below 500°C. 

The heating process had changed their color (200°C to gold, 300°C to light blue, 400°C 

to silver) but had not otherwise affected the surface properties. For coupons heated to 

500°C and up, however, the surface began to scale. The thickness and degree of 

delamination of the scale increased with temperature. For the highest temperatures tested, 

the thickness of the scale was measured at 1/32 inch. Surface color change and scaling 

are shown for each temperature in Figure 5.13. 
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Figure 5.13 Coupons after heating and cooling to various temperatures 

It was necessary to remove the scale on the surface for two reasons: to minimize 

slipping of the coupon in the MTS test machine grips, and to maximize accuracy of 

coupon section-area measurements. The scale was removed using a rotary wire-brush 

grinder. Special care was taken not to damage the reduced section. The effect of the wire 

brush can be seen with the before-and-after comparison of Figure 5.14. It should be noted 

that some scale was impossible to remove with the wire brush, having melted to the 

surface (Figure 5.14b). These surface deformations were highly discontinuous, and did 

not affect either section-area measurement or structural performance. 
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a) Coupon surface scaling, after cooling stage, for all three cases 

 
b) Deformations on surface after cleaning by rotary wire brush 

Figure 5.14 State of coupon surface (1000°C) 

  

1000 CIW 

1000 CIB 

1000 CIA 

Melted Scale 

Scattered Spots 
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5.2.4.2 Strain Measurement for Tension Testing 

Strain measurement was performed using the 2SS extensometer: the 2-inch, self-

standing model shown in Figure 5.15.  More details on the extensometer are available in 

Section 3.6. It should be noted that the 2SS was verified as accurate for both small and 

large strains and returned similar results to the primary extensometer used for elevated-

temperature testing, the 1SS. The strain capacities of these two extensometers differed 

greatly—50% for the 2SS, 10% for the 1SS—meaning that testing with the 2SS was 

much simpler, requiring fewer resets of the extensometer before failure. In most cases, no 

resets were required. 

               
a) Before necking                   b) After necking                         c) After failure 

Figure 5.15 2SS extensometer throughout course of room-temperature test 
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5.2.5 Toughness Testing (Charpy V-Notch) 

The toughness of steel, a measurement of how much energy the material can 

absorb before fracture, is an essential parameter for both impact and fatigue loading 

scenarios. In current design specifications for bridges a minimum toughness required to 

avoid fracture is typically specified.  

Toughness testing was performed essentially in accordance with ASTM E23 

(2007), the Charpy V-Notch (CVN) impact test. In this test, a small piece of steel is 

fractured by a pendulum axe. The energy absorbed during fracture is measured by the 

difference in the height of the hammer before and after fracturing the specimen. A V-

shaped notch is cut into the specimen before testing. For this research, CVN specimens 

were cut from the ends of heat-treated coupons, as shown in Figure 5.16.  

 
a) 18-inch coupon, before being cut down into CVN specimens 

 
b) CVN specimen 

Figure 5.16 Charpy V-Notch specimen made from heated coupon  
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5.2.5.1 Charpy V-Notch Specimen Fabrication 

The techniques required to fabricate the CVN specimens were similar to those 

previously discussed in Section 3.4.2 for coupon fabrication. It should be noted, however, 

the tolerances allowed for the dimensions of the CVN specimen (Table 5.10) are tighter 

than those allowable for tension coupons.  

Table 5.10 Permissible variation of CVN specimen dimensions (ASTM A370) 

Specimen 

Size 

Dimension 

(mm) 

Dimension Tolerance 

Notch Centering Length Cross Section 

Standard  10×10×55 ±1 mm 
(±0.039 in) 

+0, -2.5 mm 
(+0, -0.100 in) 

±0.075mm 
(±0.003 in) 

 
After heating and cooling, the ends of the 18-inch coupon were cut off and ground 

down to the specified thickness using a sand-disk grinder with 1 mil precision, as shown 

in Figure 5.17. The ends were then cut into four. The length and width of the CVN 

specimen were end-milled, ground and de-burred.  

     
 a) Coupon ends on grinding table b) Ground to a precise thickness 

Figure 5.17 Sand-disk grinding of coupon ends 

The CVN specimen was notched perpendicular to the rolling surface using a 

Mini-Broach machine (Figure 5.18a). After notching, the angle, depth and other 

dimensions of the notch were measured using a Starrett HE400 optical comparator 

(Figure 5.18c) to ensure conformity to ASTM A370 within tolerance (Table 5.11). 
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 a) Mini-Broach V-Notching Machine  b) After notching 

     
 c) Examination of V-Notch dimensions  d) Completed CVN specimen 

Figure 5.18 V-Notching process 

Table 5.11 Permissible variables of V-Notch by ASTM A370 

Angle of 
Notch 

Angle to  
Adj. Sides Depth of Notch Radius at Base  

of Notch Finish 

45° ± 1° 90° ± 10 min 2 ± 0.025 mm 
(0.079±0.001 in) 

0.25 ± 0.025 mm 
(0.010±0.001 in) 

+2 µm 
(63 µin) 

5.2.5.2 Charpy V-Notch Testing 

Charpy V-Notch testing was performed with the Tinius Olsen machine shown in 

Figure 5.19a. The test machine consists of a pendulum axe swung to fracture the notched 

specimen described in the previous section. The energy transferred to the steel by the 

pendulum can be inferred by comparing the difference in height of the hammer before 

and after striking the specimen (Figure 5.19b). The test machine was calibrated such that, 

after the test, the amount of absorbed energy could be read directly off a dial gauge 

(Figure 5.19c). 
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 a) Test machine  b) Height of hammer before and after swing 

   
c) Reading test result off dial gauge 

Figure 5.19 Tinius Olsen CVN test machine 
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5.2.6 Hardness Testing 

The hardness of the A992 steel was measured using ASTM E18, the Rockwell 

hardness test. In the test, an indenter is pressed into the test sample with specific force 

values. The measured depth of indentation is inversely proportional to the Rockwell 

hardness number. 

The standard provides several scales by which hardness may be measured: for 

each, the indenter, initial load and final load are specified. The scales are arbitrary, but 

within one scale, values may be compared. For this research, the B and C scales as 

specified in Table 5.12 were used. 

Table 5.12 Prescribed indenter and test force for Rockwell hardness scales 

Scale 
Indenter Test Force (kgf) 

Material Tip Shape Initial Final 

B Tungsten 
Carbide 1/16 inch Ball 10 100 

C Diamond Spheroconical 10 150 
 
One reason to perform hardness testing on steel is its correlation to tensile 

strength: hardness testing can be considered a non-destructive strength-estimation 

technique. It should be noted, however, that strength values obtained through this 

procedure are “at best, an approximation” (E18). 

Hardness testing was performed on the previously tested CVN specimens using 

the Wilson Rockwell Series 2000 test machine, as depicted in Figure 5.20.  
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Figure 5.20 Hardness testing of previously tested CVN specimen  

using Wilson Rockwell machine 

5.3 TEST RESULTS 

Stress-strain curves are presented both for a particular method of cooling—CIA, 

CIB or CIW—and for each target temperature.  Figure 5.21 to Figure 5.35 were 

illustrated the variety of stress-strain curves after heating and cooling. 
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5.3.1 Stress-Strain Curve by Method of Cooling  

 
Figure 5.21 Full stress-strain curve for CIA 

 
Figure 5.22 CIA – Initial portion of stress-strain curve  
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Figure 5.23 Full stress-strain curve for CIB 

 
Figure 5.24 CIB – Initial portion of stress-strain curve  
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Figure 5.25 Full stress-strain curve for CIW 

 
Figure 5.26 CIW – Initial portion of stress-strain curve  



160 

 

5.3.2 Stress-Strain Curve by Temperatures  

 
Figure 5.27 Combined stress-strain curves for steel heated up to 200°C 

 
Figure 5.28 Combined stress-strain curves for steel heated up to 300°C 



161 

 

 
Figure 5.29 Combined stress-strain curves for steel heated up to 400°C 

 
Figure 5.30 Combined stress-strain curves for steel heated up to 500°C 
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Figure 5.31 Combined stress-strain curves for steel heated up to 600°C 

 
Figure 5.32 Combined stress-strain curves for steel heated up to 700°C 
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Figure 5.33 Combined stress-strain curves for steel heated up to 800°C 

 
Figure 5.34 Combined stress-strain curves for steel heated up to 900°C 
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Figure 5.35 Combined stress-strain curves for steel heated up to 1000°C 

5.4 MECHANICAL PROPERTIES 

In this section, mechanical properties derived from the results of tension, 

toughness and hardness testing are presented. Additional information on the definitions 

for the tension-test mechanical properties can be found in Section 4.4. Yield stress, for 

this room-temperature testing, was calculated by the 0.2% offset method. Data for a 

particular test value will be presented along with its associated retention factor: that is, 

the ratio of the test value to the corresponding value from testing performed on a virgin 

unheated coupon. 

5.4.1 Elastic Modulus  

The elastic modulus of the coupons after heating and cooling was estimated from 

the initial linear portion of the stress-strain curves. Results for the CIA, CIB and CIW 

cases are given in Table 5.13 and Figure 5.36.  
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Table 5.13 Elastic modulus (ksi) and associated retention factor  

Test 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

CIA 
29910 

1.00 

29900 29420 28780 28930 29510 29040 28830 29010 28200 

1.00 0.99 0.96 0.97 0.99 0.97 0.96 0.97 0.94 

CIB 
28720 29270 29360 29590 28800 28060 28080 29680 27610 

0.96 0.98 0.98 0.99 0.96 0.94 0.94 0.99 0.92 

CIW - - - 
29090 29690 30380 29380 29520 28650 

0.97 0.99 1.02 0.98 0.99 0.96 
   

 
 a) Elastic modulus  b) Retention factor  

Figure 5.36 Elastic modulus and associated retention factor 

Minor variations in the elastic modulus can be observed over the tested 

temperature range. Since strains were measured on one side of the coupon only, error at 

small strain levels can occur due to bending of the coupon. As such, the elastic modulus 

values derived from the stress-strain curves is subject to some error. The data are 

inconclusive as to whether the observed variations in elastic modulus resulted from 

structural changes to the coupons from heating and cooling, strain-measurement errors or 

some combination thereof. Even considering possible strain measurement errors, 
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however, the data shows no dramatic changes in elastic modulus after heating and 

cooling. 

5.4.2 Yield Stress  

The yield stress of the coupons after heating and cooling was determined by the 

0.2% offset method. Results for the three cooling conditions are given in Table 5.14 and 

Figure 5.37. The ratio of the test data to that of a virgin unheated coupon, the retention 

factor, is also given. 

Table 5.14 Yield stress (ksi) and associated retention factor 

Test 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

CIA 

51.9 

1.00 

50.1 52.1 51.3 53.1 52.9 50.8 47.1 46.0 44.6 
0.97 1.01 0.99 1.02 1.02 0.98 0.91 0.89 0.86 

CIB 
52.4 52.3 48.7 52.2 51.6 51.4 45.4 44.3 38.1 

1.01 1.01 0.94 1.01 1.00 0.99 0.88 0.85 0.74 

CIW - - - 
52.7 55.6 56.6 38.7 49.4 60.1 
1.02 1.07 1.09 0.75 1.26 1.16 

  

   
 a) Yield stress b) Retention factor  

Figure 5.37 Yield stress and associated retention factor 
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Reasonably significant reductions in yield stress, up to about 25 %, for CIA and 

CIB cooling are seen for coupons heated to temperatures of 800 to 1000°C. The CIW 

coupons also show significant changes in yield stress in the range of 800 to 1000°C, with 

the yield stress first dropping and then increasing within this temperature range. 

Specimens heated to temperatures higher than 727°C at least partially transform 

to austenite (γ-Fe), and subsequent cooling can produce microstructures different from 

the original material (Callister 2007). This is one reason that yield stress does not change 

significantly in specimens heated to 700°C and lower temperatures. The decrease in yield 

stress with increase in temperature at 800°C and higher in the CIB and CIA specimens 

results from increasing volume fractions transformed to austenite during heating. Upon 

subsequent cooling, the ferrite (α-Fe) produced may be coarser than that of the original 

material, leading to decreased yield stress. A992 steel has sufficient carbon to potentially 

form some pearlite following cooling from these temperatures. Pearlite consists of ferrite 

(α-Fe) and cememtite (Fe3C) in a lamellar configuration. The amount of pearlite possible 

increases with the amount of austenite transformed during heating, which should increase 

from 727°C up to a maximum near 900°C. The microstructures expected after cooling 

from 800°C or higher are a normalized microstructure with some coarse pearlite for slow 

cooling rates (e.g., CIB) and some slightly finer pearlite for moderate cooling rates (e.g., 

CIA). This may explain the slightly greater yield stress reduction observed for the CIB 

specimens compared to the CIA specimens. An increase in cooling rate (e.g., CIW) will 

reduce the pearlite interlamellar spacing, and in accordance with the continuous cooling 

transformation curve, will lead to an increase in yield stress, such as that observed for the 

CIW specimen heated at 1,000°C. Thus, the variations of yield stress with heating 

temperature and cooling rate, as seen in Figure 5.37, are consistent with the expected 

microstructural transformations. 
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5.4.3 Tensile Strength 

The tensile strength of the coupons after heating and cooling was taken directly 

from the stress-strain curves. In Table 5.15 and Figure 5.38, tensile strength data is 

presented for the various test conditions. The retention factor is also given: the ratio of 

the test data to the tensile strength of a virgin unheated coupon. 

Table 5.15 Tensile strength (ksi) and associated retention factor 

Test 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

CIA 65.9 

1.000 

 

65.9 66.8 66.2 67.4 66.7 63.1 63.91 63.8 64.9 

1.00 1.01 1.01 1.02 1.01 0.96 0.97 0.97 0.98 

CIB 
66.5 66.7 64.9 66.7 65.4 63.9 61.47 60.8 58.8 

1.01 1.01 0.99 1.01 0.99 0.97 0.93 0.92 0.90 

CIW - - - 
68.6 69.7 70.4 77.6 82.9 88.4 

1.04 1.06 1.07 1.18 1.26 1.34 

     

 
 a) Tensile strength b) Retention factor  

Figure 5.38 Tensile strength and reduction factor 

For the CIA and CIB cooling methods, there is a modest reduction in tensile 

strength for coupons heated above about 600°C. On the other hand, for the CIW cooling 

method, there is a large increase in tensile strength for coupons heated above about 

600°C due to the quenching effect which induced a martensite microstructure of metal 

with quick cooling process. A transformed martensite generally results in increased 
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strength and decreased ductility because of trapped austenite microstructures produced by 

rapid cooling (Callister 2007). 

5.4.4 Elongation   

The elongation of the coupons after heating and cooling was taken as the strain at 

fracture of the coupon. Elongation data is summarized in Table 5.16 and Figure 5.39. The 

retention factor given is the ratio of the elongation at failure under the test conditions to 

that of an unheated coupon. 

Table 5.16 Elongation at failure (in/in) and associated retention factor 

Test 

 

Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

CIA 
0.41 

1.00 

0.42 0.42 0.42 0.41 0.41 0.44 0.42 0.43 0.31 
1.03 1.02 1.02 1.00 1.00 1.08 1.03 1.05 0.77 

CIB 
0.41 0.41 0.41 0.41 0.41 0.41 0.47 0.43 0.36 
1.01 1.01 1.01 0.99 0.99 1.00 1.15 1.06 0.89 

CIW - - - 0.33 0.31 0.26 0.27 0.22 0.21 
0.81 0.77 0.63 0.66 0.53 0.52 

     

 
 a) Elongation b) Retention factor  

Figure 5.39 Elongation and associated retention factor 

For the CIA and CIB cooling methods, there is no significant change in elongation 

for temperatures up to 900°C. There is a reduction in the measured elongation for the 
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coupons heated to 1000°C. Even for this case, however, the elongation was still above 

30%. The CIW coupons, on the other hand, show a rather significant reduction in 

elongation over the 500 to 100° range of temperatures tested. 

5.4.5 Charpy V-Notch (CVN) Impact Test  

Charpy V-Notch impact test data is summarized in Table 5.17 and Figure 5.40. 

The values given are typically the average of four test values. The retention factor given 

is the ratio of the CVN data to that measured for a virgin unheated specimen. 

Table 5.17 CVN energy (ft-lbs) and associated retention factor 

Test 

 

Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

CIA 171 

1.00 

220 244 244 240 206 247 245 252 188 
1.28 1.42 1.43 1.40 1.20 1.44 1.43 1.47 1.09 

CIB 
233 238 226 219 250 247 259 251 239 
1.36 1.39 1.32 1.28 1.46 1.44 1.51 1.47 1.40 

CIW - - - 95 93 76 79 86 38 
0.55 0.54 0.44 0.46 0.50 0.22 

 

 
 a) CVN b) Retention factor  

Figure 5.40 CVN energy and associated retention factor 

The results for the CIA and CIB specimens show an increase in CVN values over 

the full temperature range tested. The CIW specimens, on the other hand, show a large 
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reduction in CVN values for the temperature range tested, which was 500 to 1000°C. 

Note that specimens heated to 1000°C and then cooled in water showed a CVN value that 

was only 20% of the original virgin specimen. 

5.4.6 Hardness Test  

The hardness test results are summarized in Table 5.18 and Figure 5.41.  

Table 5.18 Rockwell hardness numbers (HRB or equivalent) and retention factor 

Test 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

CIA 
89.0 

1.00 

90.7 87.2 83.5 84.3 86.3 83.3 84.0 81.6 88.5 
1.02 0.98 0.94 0.95 0.97 0.94 0.94 0.92 0.99 

CIB 87.8 88.0 89.3 89.4 88.6 86.2 83.5 80.7 83.7 
0.99 0.99 1.00 1.00 1.00 0.97 0.94 0.91 0.94 

CIW - - - 83.9 85.4 88.4 92.6 96.6 104* 
0.94 0.96 0.99 1.04 1.09 1.16 

*Converted from HRC measurement 

 
 a) Hardness  b) Retention factor 

Figure 5.41 Rockwell hardness and associated retention factor 
All values measured were within the B-scale range except for the 1000°C CIW 

coupon, which was too hard (HRB > 100). For this specimen, the Rockwell C scale was 

used. The measured C-scale value of 25.9 was converted to an equivalent B-scale value 

through consideration of the estimated tensile strength per ASTM A370 for each scale as 
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shown in Figure 5.42. While this converted strength data was for A36 steel, no similarly 

authoritative data is available for A992. The resulting value for 1000°C, 104, matched the 

trend otherwise observed for the CIW coupons. 

 
Figure 5.42 Approximate hardness – tensile strength relationship for A36 steel 

The trends in Rockwell hardness with heating temperature and cooling method 

are very similar to the corresponding trends in tensile strength. This is expected since 

there is typically a strong correlation between hardness and tensile strength (Figure 5.38). 

On the other hand, the correlation between hardness and yield stress (Figure 5.37) is 

rather poor. Consequently, when evaluating steel after a fire, hardness testing may not be 

effective in diagnosing loss of yield stress. Hardness testing, on the other hand, may be 

useful for diagnosing steel that has been exposed to high temperatures, and then rapidly 

cooled by water. 

5.5 SUMMARY 

This chapter has presented results of tension, toughness and hardness tests on 

samples of A992 steel subjected to heating and cooling. Three different test conditions 

were investigated: Cooled-in-Air (CIA), Cooled-in-Blanket (CIB) and Cooled-in-Water 
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(CIW). The CIA condition is intended to be representative of normal cooling after a fire; 

CIB representative of slower cooling due to the presence of insulating material; and CIW 

representative of very rapid cooling of steel by water from a fire hose or sprinkler.  

These tests were intended to provide insights into the post-fire mechanical 

properties of A992 steel. The trends in the data can be summarized as follows. In terms of 

yield stress, there was no significant reduction until the temperature exceeded 700°C. 

However, even up to 1000°C, the reduction in yield stress is only about 20%. For tensile 

strength, there is essentially no change, even for coupons heated to 1000°C. It is noted 

that the CIW case actually increased the tensile strength.  

The most significant effect of water cooling appears to be in fracture toughness, 

as represented by CVN values. Steel samples that were heated above 600°C and then 

cooled rapidly in water showed a large drop in CVN values. CVN values are indicative of 

fracture toughness, and the loss of fracture toughness due to heating and then rapid 

cooling in water may be of concern in some applications, for example in a steel bridge 

girder subjected to fire and then cooled rapidly by water from fire-fighting operations. It 

may be possible to detect hardening of steel in a structure that was subjected to fire and 

then cooled rapidly by the use of field hardness measurements.  

The data presented in this chapter can assist in assessing the post-fire condition of 

a steel structure. However, this data presumes that the maximum temperature achieved in 

the steel during the fire is known. This, of course, is rarely the case. A review of the 

literature suggests there are no simple and reliable approaches for estimating the 

maximum temperature achieved in a steel element during a fire. Some approaches for 

addressing this question are discussed in Banovic and Foecke (Banovic 2005). 

Nonetheless, the tests reported herein examined temperature exposures up to 1000°C, 

which would represent quite an extreme exposure. Even when exposed to such an 

extreme temperature, there was little degradation in mechanical properties after cooling, 

with the possible exception of steel cooled rapidly in water. It is important to note, 

however, that tests on high strength bolts have shown significant loss of strength after 
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heating and cooling (Yu and Frank 2009). Thus, when assessing the condition of a steel 

structure following a fire, the effect of the fire on the strength of bolts is likely to be a 

greater concern than the effect of the fire on the structural steel members. 
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CHAPTER 6 
Creep Testing at Elevated Temperatures 

6.1 OVERVIEW 

Experimental testing investigating the tensile creep behavior of ASTM A992 steel 

at elevated temperatures is described in this chapter. Creep of steel can be potentially 

significant in predicting the response of steel structures to fire (NIST 2005). The 

literature review revealed no previous investigations providing experimental data on the 

creep properties of A992 steel, however. As such, an extensive testing program was 

completed to develop elevated-temperature creep data for A992 steel. Tested 

temperatures (up to 1000°C) and time durations (up to 2 hours) were aimed at structural 

fire-engineering applications.  

In the first portion of this chapter, the experimental procedure followed for creep 

testing is discussed. The testing results are presented as creep curves, both of strain 

versus time and creep strain rate versus time, followed by analysis of these curves. Using 

these results as a basis, a creep model for A992 steel was developed: its parameters are 

described at the close of the chapter. 

6.2 EXPERIMENTAL INVESTIGATION 

Many techniques for creep testing at elevated temperatures were similar to those 

for elevated-temperature tension testing, described in detail in Chapter 3. Emphasis is 

placed in this section on ways in which the test procedures were different. 

6.2.1 Test Specimen 

The test specimen used for creep testing was a coupon taken from the flange of an 

ASTM A992 W4x13 section, and is shown in Figure 6.1. The coupons were cut and 
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machined as described in Section 3.4.2. It should be noted that the thickness of the 

coupon was ~0.35 inch, 30% less than tension coupons. 

 
Figure 6.1 Dimensions of coupon used in creep testing 

The chemical composition of the W4x13 material, as reported on the Certified 

Mill Test Report, is shown in Table 6.1. For testing purposes, this was designated 

material type MC. Tension-test results for the material, presented in Chapter 4, are 

summarized in Table 6.2. Yield stress was determined by the 0.2% offset method. 

Table 6.1 Chemical composition of test specimen 

Material 

Type 
C Cr Mo V Ni Mn Si P S Cu 

MC 0.08 0.10 0.026 0.002 0.09 0.91 0.23 0.011 0.025 0.24 

 
Table 6.2 Elevated-temperature tensile properties for Material MC 

Property 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

Fy (ksi) 51.8 46.7 48.9 35.4 28.9 16.8 9.0 5.3 4.5 2.8 

Fu (ksi) 68.3 89.4 77.4 60.0 39.2 18.9 9.7 6.1 5.3 3.3 

6.2.2 Determining Stress Levels for Creep Testing 

To characterize creep behavior at elevated temperatures, four stress levels were 

used for testing. Three of these (0.50Fy, 0.75Fy and 0.90Fy) were selected to investigate 

elastic creep behavior, with the last stress level (0.90Fu) selected to investigate inelastic 
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creep behavior. The terms elastic and inelastic creep behavior, as used herein, are 

intended to describe whether the stress level is in the elastic or inelastic range of the 

material’s stress-strain curve at the temperature of interest. These terms are not intended 

to suggest that the creep strain should be treated an elastic recoverable strain or an 

inelastic non-recoverable strain. 

The applied stress levels chosen for creep testing are given in Figure 6.2 and 

Table 6.3. It should be noted that while tension tests were run at elevated temperatures as 

low as 200°C, creep testing was performed only for temperatures in excess of 400°C. At 

temperatures below 40% of its melting point, steel does not show significant creep 

deformation under tensile loadings (Sherby and Burke 1967; Callister 2007). 

 

Figure 6.2 Scheme of selected stress levels for creep test 

Table 6.3 Stress levels used in creep test (ksi) 

Stress 

Level 

Temperature (°C) 

400 500 600 700 800 900 1000 

0.50Fy 17.7 14.4 9.4 4.5 2.7 2.2 1.4 

0.75Fy 26.5 21.6 14.1 6.8 4.0 3.4 2.1 

0.90Fy 31.8 26.0 16.9 8.1 4.8 4.0 2.5 

0.90Fu 54.0 35.3 17.0 8.7 5.5 4.8 3.0 
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6.2.3 Strain and Temperature Measurement 

During creep testing, strains were recorded every 0.5 seconds from measurements 

made using a one-inch pressure-standing (1PS) extensometer, shown in Figure 6.3. This 

extensometer, used for all tests performed at elevated temperatures, is discussed in 

greater detail in Section 3.6.  

 
Figure 6.3 1PS extensometer used for creep testing 

For measurement of coupon temperatures, three Type K wire thermocouples were 

installed over the reduced section of the coupon. Foil covering provided shielding for the 

thermocouples from radiation emanating from the heating elements of the furnace (Figure 

6.4). Again, this setup was similar to that performed for elevated-temperature tension 

testing; a detailed description was provided in Section 3.5. 

 
Figure 6.4 Thermocouples installed on coupons 
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6.2.4 Furnace and Test Machine 

Like tensile testing, creep testing at elevated temperatures was performed using an 

MTS 810 test machine fitted with an MTS 653 furnace. More information on the testing 

equipment, shown in Figure 6.5, can be found in Chapter 3.  

 
Figure 6.5 Tensile and creep test facility 

After allowing an hour of heating for the coupon to reach thermal steady state at 

the target temperature, the coupon was loaded. Unlike for tensile testing, conducted by 

crosshead displacement control at a rate of 0.01 inch/minute, creep testing was performed 

using force control. The initially applied loads were maintained throughout the entire test. 

For most of the test conditions, the target loads for creep tests were reached within 5 

seconds, as shown in Figure 6.6. 

MTS 653 
Furnace 

Temp  
Recording 
System 

Furnace 
Temp 
Controller 
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Figure 6.6 Time and loading curve at initial stage 

6.2.5 Repetitions of Creep Test and Repeatability 

Testing for a given temperature and stress level was repeated at least three times 

to obtain a representative result. Based on the experience of this testing, it was found that 

at elevated temperatures, creep test results can be very sensitive to a number of 

parameters, including the following:  

 success with which the control system and furnace maintained a target 

temperature within a given tolerance;  

 cycling (on/off) of the hydraulic pump in the MTS machine throughout the test;  

 vibration in test machine elements, especially apparent when the applied load was 

much less than machine capacity; and 

 eccentric loading induced despite efforts to center the coupon in the machine 

grips.  

 

The first three sources of error listed above could result in the measurement of 

strain values which would oscillate about the values obtained in a more reliable test, as 

shown in Figure 6.7a. Eccentric loading could lead to the result shown in Figure 6.7b, 

where repeated testing led to higher measured strains.  
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a) Oscillations in measured creep strains 

 
b) Higher values of creep strain determined through repeated testing 

Figure 6.7 Repeatability study for creep test results at 800°C 

Given the sources of error outlined above, creep testing was repeated until a 

reliable and representative result was obtained. What was considered reliable and 

representative was based on judgment guided by careful examination of variations in the 

test data. Furthermore, given that some test results seemed clearly affected by testing 
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errors, the final creep curve presented for a given stress level and temperature was the 

result of what was judged as a single e good test rather than data averaged from multiple 

tests. Despite these challenges, it should be noted that testing at most temperatures and 

stress levels showed good repeatability, e.g. Figure 6.8. 

 
Figure 6.8 Repeatable results for creep testing at 800°C-0.90Fu  

Two factors proved crucial in producing repeatable tests. First, the coupon 

temperatures needed to be controlled at its target temperature within close tolerance 

during the entire testing period. Second, the extensometer needed to be placed such to 

capture the necking of the reduced section. Tests that did not satisfy these two criteria 

definitely required repeating. 

6.3 TEST RESULTS 

Before discussing specific results from this research, a description of typical creep 

behavior is provided. After this discussion, test results are broken down by temperature 

and stress level. 
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6.3.1 Typical Creep Behavior 

A typical creep curve under steady state conditions (constant load and 

temperature) is shown in Figure 6.9. After the initial application of load and the 

associated instantaneous strain, three stages of creep may be present. The creep stages are 

characterized by their strain rate: primary creep occurs while the strain rate is decreasing; 

secondary creep while it is constant, and tertiary creep while it is increasing. Tertiary 

creep may lead to creep rupture with sufficient time. 

 
Figure 6.9 Typical steady-state creep curve (constant load and temperature) 

The term instantaneous strain, as used in this chapter, refers to the strain 

developed as the load value was increased from zero to achieve the target stress value. 

The time taken to perform the initial loading was generally less than 5 seconds, as is 

shown in Figure 6.10.  
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a) First 30 seconds   b) First 300 seconds 

Figure 6.10 Initial stages of time-strain curve (0.90Fy stress level) 

The instantaneous strain is differentiated from the creep strain, where the creep 

strain is taken to be all strain that is developed by the coupon once the target load (stress) 

level is reached. Generally, the amount of instantaneous strain depends on the value of 

applied loads relative to specimen properties. As illustrated in Equation (6.1), when the 

applied stress is less than the yield stress, the instantaneous strain is equal to the elastic 

strain; when the applied stress is greater than the yield stress, the instantaneous strain also 

includes an inelastic strain component. For testing conducted at room temperature, creep 

is minimal and the majority of the strain response is instantaneous. 

 

6.3.2 Creep Curves by Temperatures  

The creep curves at elevated temperatures from 400 to 1000°C are illustrated in 

Figure 6.11 to Figure 6.14. Note that the strain versus time curves presented here includes 

      when        

         when             (6.1) 

where  

  ,   ,    = Instantaneous, elastic and inelastic strains, respectively;   =Load;  

  = Section area of coupon;   = Yield stress;    = Tensile strength 
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both the instantaneous strain as well as the creep strain. Thus, the plots show total strain 

(instantaneous plus creep) versus time. Time equal to zero corresponds to the start of 

loading, so the load on the coupon is zero when the time is zero. For most cases, the test 

was continued for duration of 2 hours, which is the time duration of interest for typical 

structure fire problems. 

 Each plot shows the total strain and creep strain versus time for the four stress 

levels considered in these tests: 0.50Fy, 0.75Fy, 0.90Fy, and 0.90Fu, where Fy and Fu are 

the yield stress and tensile strength at the temperature of interest. The legend in each plot 

also lists the actual engineering stress values used for the tests. The total strain includes 

both the instantaneous strain and creep strain whereas the plot of creep strain does not 

include the instantaneous strain. 

 
a) 400°C creep curves                                       b) 500°C creep curves 

Figure 6.11 Creep curves at 400 and 500°C 

At 400°C, a large instantaneous strain was generated for 0.90Fu. Primary creep 

was also present, but at a value 20% that of the instantaneous strain. The creep strain was 

obtained from total strain by removing the elastic strain due to instantaneously applied 

loading. The large portion of elastic strain was involved at this stage. For 0.90Fu at 

500°C, the same two stages, instantaneous strain and primary creep, were similarly 

dominant, but the amount of instantaneous strain was decreased significantly for total 

strain and creep strain both. 
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a) 600°C creep curves                                       b) 700°C creep curves 

Figure 6.12 Creep curves at 600 and 700°C 

At 600°C, most of the creep measured was primary, except for the 0.90Fu loading. 

The instantaneous strain for 0.90Fu was much less as well as the gap between creep strain 

and total strain was less than that for 400°C. At 700°C, the secondary and tertiary creep 

stage governed the creep behavior without any significant instantaneous strain or primary 

creep strain. There is similar the total strain and creep strain at 700°C. 

  
a) 800°C creep curves                                       b) 900°C creep curves 

Figure 6.13 Creep curves at 800 and 900°C 

Creep rupture first occurred at 800°C and at the 0.90Fu stress level. The coupon 

fracture occurred 80 minutes into the test. For all stress levels, secondary and tertiary 

creep were dominant at this temperature. Two coupons experienced creep rupture at 
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900°C for the highest two stress levels. The behavior for the other two loading cases was 

governed by the secondary creep stage. There is specific difference between creep strain 

and total strain for 800 and 900°C. 

 
Figure 6.14 Creep curves at 1000°C 

Unlike the previous two temperature levels, no creep ruptures occurred at 1000°C. 

Secondary and tertiary creep still dominated. The creep strain and total strain at 1000°C 

were nearly the same. 

6.3.3 Creep Curves by Stress Level 

Creep curves with total strain for the varying stress levels are illustrated for the 

tests at 400 to 1000°C in Figure 6.15 to Figure 6.16. 

 
a) 0.50Fy creep curves                                   b) 0.75Fy creep curves 

Figure 6.15 Creep curves at 0.50Fy and 0.75Fy 
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Most of creep at the 0.50Fy stress level was primary except for 800°C, for which 

the majority was secondary. Secondary and tertiary creep was both observed to varying 

degrees at the 0.75Fy stress level. 

  
a) 0.90Fy creep curves                                   b) 0.90Fu creep curves 

Figure 6.16 Creep curves at 0.90Fy and 0.90Fu 

Except at temperatures below 600°C, tertiary creep governed the behavior at 

0.90Fy and 0.90Fu, sometimes resulting in creep rupture. The creep ruptures observed 

within the 2-hour duration of the test occurred at 800°C and 900°C of 0.90Fu. 

6.3.4 Creep Strain Rates by Temperatures 

Figure 6.17 to Figure 6.20 show the creep strain rate for the test temperatures. 

Creep strain rate is the slope of the strain versus time curve, and was obtained by dividing 

the incremental displacement by the incremental time. This type of curve is helpful in 

differentiating between the three creep stages of primary (decreasing strain rate), 

secondary (constant strain rate) and tertiary (increasing strain rate after secondary creep 

stage) creep.  
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a) 400°C creep strain rate                                b) 500°C creep strain rate 

Figure 6.17 Creep strain rate at 400°C and 500°C 

Secondary and tertiary creep were not encountered for either 400 or 500°C with 

one exception: 0.90Fu at 400°C. In all cases, the majority of the creep was primary. The 

discontinuities shown in the curves for 0.50Fy and 0.75Fy are an artifact of the accuracy 

of the extensometer, as the creep growth was especially slow for these cases. 

 
a) 600°C creep strain rate                                b) 700°C creep strain rate 

Figure 6.18 Creep strain rate at 600°C and 700°C 

Secondary creep was generated at 0.90Fu whereas all other stress levels exhibited 

only primary creep at 600°C. At 700°C, all three creep stages were seen at 0.75Fy, 

0.90Fy and 0.90Fu , but not for the 0.50Fy stress level. 
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a) 800°C creep strain rate                                b) 900°C creep strain rate 

Figure 6.19 Creep strain rate at 800°C and 900°C 

 

Figure 6.20 Creep strain rate curves at 1000°C 

All three stages of creep behavior can be seen in the creep strain rate curves for 

800 to 1000°C for all stress levels.  

6.4 ANALYSIS OF CREEP CURVES 

Based on the results presented above, the creep behavior of A992 steel at elevated 

temperatures can be examined in terms of the four categories described in Table 6.4.  
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Table 6.4 Classification of creep curve descriptions 

Stress 

Level 

Temperature (°C) 

400 500 600 700 800 900 1000 

0.50Fy Elastic loading at  
lower temperatures 

(Section 6.4.1) 

Elastic loading at  

higher temperatures  

(Section 6.4.2) 

0.75Fy 

0.90Fy 

0.90Fu 

Inelastic loading at  
lower temperature 

(Section 6.4.3) 

Inelastic loading at  
higher temperature  

(Section 6.4.4) 

6.4.1 Elastic Creep at Temperatures ≤ 600°C 

For elastic loading at temperatures of 600°C or less, only primary creep was 

observed. The amount of primary creep was typically less than the amount of 

instantaneous strain. The data for 0.75Fy is shown in Figure 6.21. The test data at 0.50Fy 

and 0.90Fy exhibited similar behavior except for the portion of instantaneous strain at 

initial time. 

 
Figure 6.21 Creep curves for elastic loading at lower elevated temperatures 
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6.4.2 Inelastic Creep at Temperatures ≤ 600°C 

For the inelastic loading condition (0.90Fu) at lower elevated temperatures, 

primary and secondary creep was observed. Most notable in the test data (Figure 6.22a), 

however, is a large temperature-dependent variation in recorded instantaneous strain. 

Instantaneous strain is highest for 400°C and decreases with increasing temperature to 

600°C. 

 
a) Creep curves                        b) σ-ε curves with local secant  modulus  

Figure 6.22 Creep curves for inelastic loading at lower elevated temperatures 

Though the elastic strain at the yield stress does decrease with temperature, the 

main source of the difference in instantaneous strain is the inelastic strain. This difference 

in inelastic strain comes from two sources: less stress applied after yield, and a stiffer 

response in the initial inelastic range. As Figure 6.22b shows, as the test temperature 

increases, the difference in stress (that is, 0.9Fu – Fy) decreases. As such, given a constant 

local secant modulus, the inelastic strain would decrease. However, the local secant 

modulus is affected by temperature (Table 6.5). As shown in Figure 6.23b, the response 

is stiffer at lower temperatures. The combination of these two effects is responsible for 

the instantaneous strain with temperature for the tests in this category. 
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Table 6.5 Local secant modulus under 600°C 

Parameter 
Temperature (°C) 

400 500 600 

Yield Stress Fy (ksi) 36.0 29.0 16.8 

90% Ultimate Strength 0.90Fu (ksi) 54.0 35.1 17.0 

Yield Strain εy (in/in) 0.00138 0.00121 0.00084 

90% Ultimate Strain ε0.90Fu (in/in) 0.03591 0.01605 0.00288 

Elastic Modulus E (ksi) 26,063 23,972 19,923 

Tangent Modulus Et (ksi) 523 414 107 

Modulus Ratio n=E / Et 50 58 186 

 

 
a) σ-ε curves at elevated temperatures               b) Trend of local secant modulus 

Figure 6.23 Local secant modulus and effect on instantaneous strain 

6.4.3 Elastic Creep at Temperature > 600°C 

The creep response for elastic loading at the highest elevated temperatures was 

characterized by secondary creep for most tests. In all cases, primary creep was 

negligible compared to the other stages. Three tests also showed significant tertiary creep: 
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0.75Fy and 0.90Fy at 800°C and 0.90Fy at 900°C, with the last of these ending in creep 

rupture. Tertiary creep was observed a minimal for tests conducted at 1000°C. 

 
a) Creep curves at 0.75Fy                            b) Creep curves at 0.90Fy 

Figure 6.24 Creep curves for elastic loading at higher elevated temperatures 

6.4.4 Inelastic Creep at Temperature > 600°C 

As seen in Figure 6.25, secondary and tertiary creep were the dominant phases of 

the creep response for testing conducted at high stress and high temperature. Creep 

rupture was observed during testing at 800 and 900°C but not 1000°C.  

 
Figure 6.25 Creep curves for inelastic loading at higher elevated temperatures 

As tertiary creep was observed for the inelastic loading at 1000°C, given enough 

time (testing was limited to 2 hours), creep rupture would likely have occurred. The time 
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to creep rupture was reduced slightly by the increase in temperature from 800 to 900°C, 

but then decreased significantly for the next temperature increase. 

6.4.5 Overview of Patterns in Creep Behavior 

The preceding sections have described the observed creep behaviors based on 

stress and temperature conditions. A summary is presented in Table 6.6. For each testing 

condition, the observed stages of creep are noted. It can be seen that creep behavior 

becomes more significant with increasing applied stress and temperature until 1000°C is 

reached. It should be noted, that while this behavior is expected to be similar to coupons 

taken from different steel sections, testing was limited to samples taken from a 

lightweight section (W4x13). 

Table 6.6 Stages of creep observed for each test condition 

Stress 

Level 

Temperature (°C) 
400 500 600 700 800 900 1000 

0.50Fy P P P P p, S, T p, S p, S 

0.75Fy P P P p, S p, S, T p, S, T p, S, T 

0.90Fy P P P p, S, T p, S, T p, S, T, R p, S, T 

0.90Fu P P P, S p, S, T p, S, T, R p, S, T, R p, S, T 

Legend: P=Primary creep, p=Negligible primary creep, S=Secondary creep,  

              T=Tertiary creep, R=Creep rupture 

6.5 ANALYSIS OF CREEP PROPERTIES  

In this section, two properties of creep behavior are discussed: steady-state creep 

rate and activation energy. The activation energy is a parameter included in some creep 

models from the literature; it is computed based, in part, on the steady-state creep rate. 

6.5.1 Steady-State Creep Rates  

The steady-state and minimum steady-state creep rates were examined for 

providing purpose of A992 steel at elevated temperatures by observation of creep test 
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results.  For the specimens that showed secondary creep (creep at constant strain rate), 

two distinct steady-state behaviors were noted. Coupons tested under lower applied stress 

tended to have longer periods of secondary creep; at higher applied stress, the time period 

for steady-state creep behavior was reduced. This pattern for steady-state creep is 

tabulated in Table 6.7. Here  ̇   denotes a long period of steady-state creep (Figure 6.26a) 

and  ̇   is a minimal period of steady-state creep (Figure 6.26b), for the purposes of this 

discussion, defined as less than 10 minutes.  

 
a) Steady-state strain rate                            b) Min. steady-state strain rate 

Figure 6.26 Two steady-state creep behaviors observed 

Table 6.7 Classification of steady-state creep 

Stress Level 
Temperature (°C) 

400 500 600 700 800 900 1000 

0.50Fy N/A N/A N/A N/A  ̇     ̇    ̇    
0.75Fy N/A N/A N/A  ̇     ̇     ̇     ̇    
0.90Fy N/A N/A N/A  ̇     ̇     ̇     ̇    
0.90Fu N/A N/A  ̇     ̇     ̇     ̇     ̇    

 
The minimum creep strain rate which is generally defined as less than 10 minutes 

steady state strain observed during the steady state phase, which in all cases was also the 

minimum observed throughout the test, is tabulated in Table 6.8. These minimum creep 
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strain rates are plotted against applied stress on a log-log scale in Figure 6.27. Linear 

behavior is this plot indicates a power-law relationship between the variables. The 

parameters for this model are tabulated in Table 6.9. 

Table 6.8 Creep strain rates (sec -1) 

Stress 

Level 

Temperature (°C) 
600 700 800 900 1000 

0.50Fy N/A N/A 1.08E-06 1.66E-06 2.26E-06 

0.75Fy N/A 8.19E-07 5.15E-06 5.55E-06 8.57E-06 

0.90Fy N/A 2.85E-06 1.03E-05 1.14E-05 1.92E-05 
0.90Fu 9.63E-07 5.76E-06 1.70E-05 3.11E-05 3.12E-05 

 

 
Figure 6.27 Steady-state creep strain rates 

Table 6.9 Creep strain rates based on curve fitting  

Curve-Fit 

Equation 

Temperature (°C) 
700 800 900 1000 

Power Law 3E-13σ7.77 2E-08σ3.90 7E-08σ3.95 6E-07σ3.63 
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6.5.2 Activation Energy   

Creep is a thermally-activated process, that is, an increased testing temperature 

leads to increasing rate of creep. In this section, activation energy is calculated from the 

test data for reference only. Creep rate can be described with an Arrhenius equation 

(Sherby and Burke 1967) shown in Equation (6.2), as follows: 

 
The activation energy for creep is a fundamental material property which can be 

calculated per Equation (6.3) if the creep rate is known at two arbitrary temperatures 

(Sherby and Burke 1967). 

 

 
The activation energy was calculated (Table 6.10) using the steady-state creep 

rates associated with the temperatures of 800 to 1000°C. As seen in Figure 6.27, the 

creep strain rate – stress curves at these temperature levels overlap. A stress within this 

overlap region, 2.8 ksi, was chosen for calculation, and its associated creep strain rate 

 ̇      ( 
  

   
) (6.2) 

where  

 ̇ = Steady-state creep rate (sec-1) 

  = Activation energy for creep (J / mol) 

  = Gas constant, 8.3145 J / mol-K 

  = Constant between creep rate and temperatures  

  = Absolute temperature (K) 

 

   |    
    (

  ̇

  ̇
)

(   ⁄     ⁄ )
⁄     (6.3) 

where  

  ̇,   ̇= Creep rate at arbitrary temperatures 1 and 2 (sec-1) 

T1, T2 = Absolute temperature at arbitrary temperatures 1 and 2 (K) 
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was calculated using the best-fit power law from Table 6.9. The activation energy was 

then calculated using the above equation. The calculated activation energy for A992 steel 

was 135.6 kJ/mol for 800 to 900°C and 226.0 kJ/mol for 900 to 1000°C shown in Table 

9.8. This is smaller than the A36 activation energy which is 323.3 kJ/mol (Harmathy 

1967). 

Table 6.10 Activation energy determined by experiment 

Temp 

(°C) 

T  
(K) 

Stress  
(ksi) 

Creep Strain Rate  
  ̇ (sec

-1
) 

Qc  

(kJ/mol) 

800 1073 2.80 2E-08σ3.90 1.113E-06 135.6  
900 1173 2.80 7E-08σ3.9 4.066E-06 

226.0 
1000 1273 2.80 6E-07σ3.63 2.509E-05 

6.6 DEVELOPMENT OF CREEP MODEL 

A creep model for the ASTM A992 steel tested in this research was developed 

based on the test results The model is a best fit for the creep strain found under the four 

stress levels (0.50Fy, 0.75Fy, 0.90Fy, and 0.90Fu) for a given temperature examined 

during testing (400 to 1000°C, at 100C° intervals). As such, it can be used directly to 

estimate the creep strain that would occur for any stress imposed at one of these 

temperatures. For a temperature within the test range, but not explicitly tested for, creep 

curves can be generated for the adjacent test temperatures, and interpolation conducted 

between two creep strain values. 

The model includes the consideration of instantaneous strain and the time-

dependent behaviors of primary creep, secondary creep, tertiary creep, and creep rupture 

(if any occurred), as shown in Figure 6.28. It is noted that the applicability of the 

suggested creep model may be limited by the particulars of the testing performed: two 

hours of testing performed on a coupon from an ASTM A992 W4x13 flange at elevated 

temperatures of 400 to 1000°C.  
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Figure 6.28 General form of creep curve  

6.6.1 Patterns in Creep Data 

After the occurrence of instantaneous strain, the typical creep curve provided in 

the previous figures shows two zones of exponential behavior (primary and tertiary creep) 

and one zone of linear behavior (secondary creep). It was determined that modeling the 

creep behavior as a linear combination of two exponential functions was appropriate. The 

first of these exponentials was parameterized for primary creep, and the second for the 

other creep phases. A generic strain power-law equation provided as shown in Equation 

(6.4).  

Most creep curves, shown in Section 6.3, were either dominated by primary creep 

or secondary creep. The first of these two cases is shown by example as Figure 6.29. 

Only one power-law function, parameterized for primary creep, was required. To account 

for the behavior of decreasing strain rate with time, the exponent n was less than one.  

       (6.4) 

where   = Constant depending on applied stress,   = Exponent  
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Figure 6.29 Creep pattern governed by primary or secondary creep 

Creep curves of the type shown in Figure 6.30 were dominated by secondary or 

tertiary creep and were modeled as the linear combination of two power laws. The 

primary creep was often small in comparison to other creep stages. 

 
Figure 6.30 Creep pattern governed by secondary or tertiary creep 

The first of the two power laws was typically parameterized for primary creep, 

with the second for secondary/tertiary. As such, the exponent for the first power law was 

less than one (decreasing strain rate) and the exponent for the second power law was 

greater than one (increasing strain rate). It should be noted that this pattern of behavior 

occurred only for tests conducted at least 600°C and/or high stress levels. 
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6.6.2 Suggested Constitutive Creep Model 

The suggested creep model combines two power law equations to represent 

primary and secondary creep or secondary and tertiary creep, and also includes the 

instantaneous strain. The suggested creep model is summarized in Table 6.11 and Figure 

6.31, and is applicable for tests of up to 2-hour length. 

Table 6.11 Constitutive creep model 

Stage Time Range Strain ε (in/in) 

Initial t = t0 

          

     {

 

 
                                

   
  

 
 

    

  
               

 

Creep t0 <  t  ≤ tr, t3             
       

   

Parameters & Functions 

For 500°C ≤ T ≤ 1000°C (illustrated in Figure 6.32), 
                   ,                   

For T = 400°C, 
      = 14,000 ksi,     = 900 ksi 

where 

  = Applied stress at steady-state creep test 
  ,   ,    = Instantaneous strain, elastic strain and inelastic strain 
  ,    = Yield stress and tensile strength at elevated temperatures (Table 6.12) 
 ,    = Elastic and local secant moduli for given applied stress (Figure 6.32) 
  ,   ,   ,    = Power-law parameters, determined empirically (Table 6.13) 

Table 6.12 Yield stress and tensile strength (ksi) for creep model 

Property 
Temperature (°C) 

400 500 600 700 800 900 1000 
Fy 35.4 28.9 16.8 9.0 5.3 4.5 2.9 
Fu 60.0 39.2 18.9 9.7 6.1 5.3 3.3 
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Figure 6.31 Creep strain-time relationships for constitutive model  

The elastic modulus and local secant modulus used for the suggested creep model 

were determined through consideration of the elevated-temperature stress-strain curves. 

Results from curve-fitting the elastic and initial inelastic region are shown in Figure 6.32.  

 
 a) Elastic modulus  b)Local secant modulus 

Figure 6.32 Temperature dependence of elastic and local secant moduli 
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Table 6.13 Parameters for creep model 

Temp 

(°C) 
σ (ksi) t1, tr, t3 

(min) A1 n1 A2 n2 

400 
0.50Fy 17.7 120 1.00E-04 0.050 - - 

0.75Fy 26.6 120 7.50E-04 0.045 - - 

0.90Fy 31.9 120 1.25E-03 0.040 - - 

0.90Fu 54.0 120 1.25E-02 0.052 - - 

500 

0.50Fy 14.5 120 5.00E-05 0.310 - - 

0.75Fy 21.7 120 2.50E-04 0.120 - - 

0.90Fy 26.0 120 1.00E-03 0.120 - - 

0.90Fu 35.3 120 2.00E-03 0.300 - - 

600 
0.50Fy 8.4 120 4.00E-05 0.440 - - 

0.75Fy 12.6 120 3.00E-04 0.230 - - 

0.90Fy 15.1 120 4.00E-04 0.355 - - 

0.90Fu 17.0 120 5.00E-04 0.544 1.00E-07 2.100 

700 
0.50Fy 4.5 120 1.50E-04 0.525 - - 

0.75Fy 6.8 120 2.00E-04 0.665 3.00E-08 2.310 

0.90Fy 8.1 120 3.00E-04 0.880 3.00E-08 2.720 
0.90Fu 8.7 120 4.00E-04 0.950 3.00E-08 3.000 

800 
0.50Fy 2.7 120 1.50E-04 0.770 2.00E-07 1.980 

0.75Fy 4.0 120 6.00E-04 0.800 2.00E-07 2.520 
0.90Fy 4.8 120 8.00E-04 1.000 2.00E-11 4.720 
0.90Fu 5.5 84 8.00E-04 1.170 2.00E-11 5.200 

900 
0.50Fy 2.3 120 2.00E-04 0.865 2.00E-07 1.770 
0.75Fy 3.4 120 5.00E-04 0.890 2.00E-07 2.250 
0.90Fy 4.1 118 1.00E-03 0.920 2.00E-18 8.100 
0.90Fu 4.8 53 1.50E-03 1.100 2.00E-18 9.630 

1000 
0.50Fy 1.5 120 3.00E-04 0.830 2.00E-07 1.880 
0.75Fy 2.2 120 6.00E-04 0.950 2.00E-07 2.280 
0.90Fy 2.6 120 2.00E-03 0.860 2.00E-08 3.050 
0.90Fu 2.9 120 2.00E-03 0.980 2.00E-08 3.230 

 
The parameters for the suggested creep model (A1, A2, n1 and n2) were developed 

as functions of the applied stress, using the creep data for a specific test temperature. To 

provide a better fit of the data, each parameter is defined piecewise for the two ranges: 0 

to 0.50Fy (stress of first test), for which linear behavior is assumed, and 0.50Fy to 0.90Fu. 

The second range included results for the four loading conditions considered, and as such 

a higher order polynomial fit was required. Table 6.14 to Table 6.17, list the equations for 
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each parameter. Figure 6.33 to Figure 6.35 provide plots for each parameter as a function 

of temperature and applied stress. 

Table 6.14 A1 parameter equations 

Temp 
(°C) 

Stress Range 
(ksi) 

                   

a b c d 

400 
       - - 3.394E-06 - 
        4.163E-08 -2.106E-06 3.554E-05 -1.402E-04 

500        - - 8.814E-06 - 
        - 7.002E-06 -2.293E-04 1.884E-03 

600       - - 7.139E-06 - 
       2.015E-07 -1.826E-06 7.568E-06 5.751E-06 

700 
        - - 3.329E-05 - 
        8.398E-06 -1.483E-04 8.832E-04 -1.586E-03 

800 
      - - 5.639E-05 - 

        -4.636E-05 4.890E-04 -1.356E-03 1.169E-03 

900 
        - - 8.932E-05 - 
        - 1.515E-04 -5.295E-04 6.163E-04 

1000 
        - - 2.133E-04 - 
        - 7.725E-04 -2.290E-03 1.992E-03 

  

 
Figure 6.33 Distribution of A1 parameter 
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Table 6.15 n1 parameter equations 

Temp 
(°C) 

Stress Range 
(ksi) 

                   

a b c d 

400 
  σ      - 6.000E-04 - 
         - 1.167E-02 -1.963E-01 

500   σ      - 1.560E-02 - 
         9.588E-04 -4.522E-02 6.779E-01 

600   σ      4.462E-02 - 
       8.845E-04 -2.607E-02 2.331E-01 -2.680E-01 

700 
  σ        1.154E-01 - 

           1.770E-02 -1.281E-01 7.364E-01 

800 
  σ        2.895E-01 - 

           7.445E-02 -4.564E-01 1.454E+00 

900 
          3.863E-01 - 

3.5        5.385E-02 -5.060E-01 1.573E+00 -7.235E-01 

1000 
          5.901E-01 - 

2.0         -8.691E-02 4.762E-01 3.321E-01 
 

 
Figure 6.34 Distribution of n1 parameter 
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Table 6.16 A2 parameter for different stress ranges 

Temp(°C) Stress Range 
(ksi)    Stress Range 

(ksi)    

600   σ      -    σ      1.00E-07 

700   σ       -     σ       3.00E-08 

800   σ       2.0E-07     σ       2.00E-11 

900          2.0E-07 3.5  σ       2.00E-18 

1000          2.0E-07 2.0         2.00E-08 

 

Table 6.17 n2 parameter equations  

Temp(°C) 
Stress Range 

(ksi) 
              

a b c 

600 
  σ     - - - 
        - 1.106E+00 - 

700 
  σ      - 3.418E-01 - 

          8.922E-02 -1.023E+00 5.150E+00 

800 
  σ      -8.479E-02 9.699E-01 - 

          -1.390E+00 1.496E+01 -3.504E+01 

900 
        -1.077E-01 1.032E+00 - 

3.5        -4.731E+00 4.367E+01 -9.104E+01 

1000 
        -3.640E-01 1.849E+00 - 

2.0        -1.646E+00 9.465E+00 -1.036E+01 
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Figure 6.35 Distribution of n2 parameter 

6.6.3 Validation of Suggested Creep Model with Test Data 

Validation of the suggested creep model was carried out by comparing the results 

of the creep model and the experimental tests. The suggested creep model was compared 

with measurements of total strain and creep strain temperatures from 400 to 1000°C, as 

shown in Figure 6.36 to Figure 6.42. The creep strain did not include the initial strain 

which was induced by applied loading at beginning of test. As shown in the following 

figures, the suggested model results matched well with the experimental results of total 

strain and creep strain for both from 400 to 1000°C. The points of maximum discrepancy 

were the cases where creep rupture occurred at the end of tertiary creep: at 800 and 

900°C for 0.90Fy and 0.90Fu.  
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 a) Total strain  b) Creep strain 

Figure 6.36 Creep model compared with tests at 400°C                      

 
 a) Total strain  b) Creep strain 

 Figure 6.37 Creep model compared with tests at 500°C 

  
 a) Total strain  b) Creep strain 

Figure 6.38 Creep model compared with tests at 600°C  
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 a) Total strain  b) Creep strain 

Figure 6.39 Creep model compared with tests at 700°C 

  
 a) Total strain  b) Creep strain 

Figure 6.40 Creep model compared with tests at 800°C                      

 
 a) Total strain  b) Creep strain 

Figure 6.41 Creep model compared with tests at 900°C 
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 a) Total strain  b) Creep strain 

Figure 6.42 Creep model compared with tests at 1000°C 

6.6.4 Comparison with Other Creep Models 

A variety of creep models has been developed by other researchers (Andrade 

1910; Bailey 1929; McVetty 1943; Dorn 1955; Walles and Graham 1955; Harmathy 

1967; Ahmadieh and Mukherjee 1975; Fields 1989; Poh 1998; Mukherjee 2002; 

Batsoulas 2003) . Typically these models approximate the shape of the creep curve using 

very simple equations, which typically fail to capture all three stages of creep, but can be 

quite accurate over certain temperature ranges. 

 

    (       
   )          :    Andrade (6.5) 

        
       :    Bailey (6.6) 

      (       )       :    McVetty (6.7) 
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where    = Creep strain,   = time, and   ,   ,   ,   ,   ,    = parameters 
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Two creep models from the literature were compared with the suggested creep 

model developed in this research. These models, Harmathy and Fields and Fields were 

developed for low-carbon structural steels similar to A992 and were developed 

specifically for structural-fire engineering analysis 

The Harmathy creep model (Harmathy 1967), shown in Equation 6.10, contains 

two parameters that require additional explanation. The first parameter,  , is temperature-

compensated time, an expression based on the activation energy. According to Dorn’s 

theory (Dorn 1955), under a constant applied stress, creep strain is a function of 

temperature-compensated time and the applied stress. The other parameter,  , is the 

Zenor-Hollomon parameter, which is the first derivative of creep strain with respect to 

temperature-compensated time during the steady-state creep stage. 

Harmathy developed this model for ASTM A36 structural steel for the 

temperature ranges of 400 to 700°C (750 to 1300°F). The model primarily captures the 

effects of secondary creep, the temperatures being too low to expect much tertiary creep. 

 
The other reference creep model is by Fields and Fields (Fields 1989), in which 

creep was modeled as a power-law equation of applied stress and time, as shown in 

Equation (6.11). The Fields and Fields creep model was developed for AS A149 steel 

    (       ) 
              (6.10) 

where  
  = Zenor-Hollomon parameter  
     Creep parameter of strain 
   Temperature-compensated time (hours) 

  {
                                                                 

                                          
  

                      

   ∫             (        )   
 

 
    

    activation energy  
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which is close to ASTM A36 for strains below 6% and temperatures of 350 to 650°C. 

Like the Harmathy model, this temperature range is below that maximum temperatures 

expected in actual fires, and below the range in which tertiary creep was seen in this 

testing. 

The final creep model for comparison is the Batsoulas creep model (2003). The 

Batsoulas creep model defines the total strain as he sum of an initial elastic strain with a 

creep strain, as shown in Equation (6.12). This model therefore includes initial plastic 

strain as part of the creep strain. 

Table 6.18 summarizes the conditions for which each of these four creep models 

was developed. The difference in temperatures is most evident. 

            (6.11) 

  {
 (             )                    
 (               )                

 

where  
             = Total strain, elastic strain, plastic strain, and creep strain 

   Applied constant stress (ksi)  
    Temperature (°C)  

   
    

(             )
   

       (             )    (           )   

        (             )  (            )  
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where  

  = Applied stress for creep test 

  = Elastic modulus of material  

       Curve fitting parameter from experimental results 
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Table 6.18 Applicable condition of creep model 

Creep Model Material Temperature  
Range 

Stress 
Range 

Harmathy Model A36 400–700°C σ ≤ 45 ksi 

Fields and Fields 
Model AS A149 350–650°C σ ≤ Fu 

Batsoulas Model X 8 CrNiMoNb 16 16 450–700°C σ ≤ 29 ksi 

Suggested Model A992 400–1000°C σ ≤ Fu 

 
 A realistic comparison between the predicted creep response of a given model 

and the experimental results can only be made if the stress and temperature conditions are 

similar to that for which the model was derived. As such, the four stresses and 

temperature values listed in Table 6.19 were selected. When applying the creep models, 

the stress value used in the model was scaled according to the yield stress of the steel 

used to develop the model. For example, the applied stress 27.0 ksi of 0.75Fy used in 

suggested model for A992 (Fy = 50ksi) steel was scaled down to 27.0 x 36/50 =19.44 ksi 

for A36 (Fy = 36ksi) steel in the creep models. The applied temperatures slightly exceed 

the applicable range of temperatures for Fields and Fields model only.  

Table 6.19 Selected stress and temperatures for comparison 

Applied 
Stress 

Temperatures (°C) 

400 500 600 700 

Stress Level 0.75Fy 0.90Fy 0.90Fy 0.90Fy 

Value (ksi)  
for A992 27.0 26.1 15.1 8.1 

 
 The comparison of the results of the existing three models to the suggested model 

is shown in Figure 6.43 to Figure 6.46 by plotting strains up to 30 minutes and up to two 

hours (the test duration) for 400°C to 700°C. It is noted that the comparison of creep 
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model results was carried out by creep strain only for all three previous creep models and 

for the suggested model. This means that there is no instantaneous strain included in the 

models. Although the test data is not plotted in these figures, the test data is very closely 

represented by the suggested model, as this model was closely fit to the test data. 

The most apparent observation is the large deviation between the predictions from 

the Harmathy, Fields and Fields, Batsoulas and suggested models. One reason for this 

difference may be that though the creep models had all been developed for low-carbon 

steel, they were developed for different steels with different creep properties. It is clear 

that the Harmathy and Fields and Fields models anticipate more secondary creep than 

was found at these temperatures for A992 steel. 

 
 a) Initial 30 min  b) Entire test 

Figure 6.43 Comparison between creep models at 400°C 

At 400°C where the measured tensile strength of the material is 27.0 ksi, the 

general shape of the initial portion of the creep curves by the Harmathy model, by the 

Fields and Fields, and by the Batsoulas model are similar but then diverge rapidly with 

increasing time. The Fields and Fields creep model and the suggested model converges 

around 90 minutes while the Batsoulas model runs parallel with these two models. The 

Harmathy model deviates significantly from the other models with increasing time. The 

main gaps between these three models and experimental creep test result on A992 steel 

were the differences of the secondary creep stage. There is relatively large primary creep 
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stage strain showing at 400°C and the secondary creep stage is governed by all the 

previous creep models except for suggested model. 

 
 a) Initial 30 min  b) Entire test 

Figure 6.44 Comparison between creep models at 500°C 

At 500°C and an applied stress of 26.1 ksi, a major discrepancy in the shape of 

the creep curves, like that at 400°C, is noted. There are two convergences occurred at 

500°C. The Harmathy and Batsoulas models has followed with similar pattern by 

converging around 50 minutes while the Fields and Fields model and the suggested 

model has converged around 120 minutes in spite of large differences at the initial stage. 

The deviation of the Harmathy and the Fields and Fields models is more severe at this 

temperature: the creep strain provided by Harmathy is five times larger than the Fields 

and Fields and suggested model. The primary creep of the Fields and Fields model were 

almost nothing by comparing with other two models and suggested model. However, the 

Harmathy and Batsoulas model’s creep curve are governed by the primary and secondary 

creep at this temperature. 
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 a) Initial 30 min  b) Entire test 

Figure 6.45 Comparison between creep models at 600°C 

At 600°C and the applied stress of 15.1 ksi, the Harmathy and Fields and Fields 

models are quite inaccurate. The Harmathy model moves beyond primary creep in the 

first five minutes and the Fields and Fields model engages in the secondary creep stage 

after the initial stage while the suggested and Batsoulas model’s creep curve stayed in the 

primary stage throughout the two-hour test. There are big gaps between creep models; 

Harmathy has two times higher strain than Fields and Fields model and eleven times 

larger than Batsoulas and the suggested models at 120 minutes. The Batsoulas and 

suggested model’s creep curve almost matched together after 30 minutes throughout to 

two hours.  

 
 a) Initial 30 min  b) Entire test 

Figure 6.46 Comparison between creep models at 700°C 
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At 700°C and 8.1 ksi tensile stress, all creep models generally matched well from 

beginning to end of testing up to two hours except for the Harmathy creep model. . The 

shape of the creep curve of three models except for Harmathy model are dominated by 

the tertiary creep. 

6.7 SUMMARY  

In this chapter, creep testing of A992 structural steel at elevated temperatures has 

been presented. Creep curves representing behavior at specified stress levels and 

temperatures have been shown. Based on these tests, a material creep model was 

suggested. This suggested model was compared with the experimental creep data, 

alongside other models from the literature.  

Several conclusions can be made from this work. First, the test data shows creep 

strains can be quite significant for temperatures, stress levels, and time durations 

representative of building structures exposed to fire. This suggests that ignoring creep 

may lead to highly inaccurate predictions of structural response for some classes of 

structural fire problems. Secondly, existing creep models may provide poor predictions 

for A992 steel. Interpretation of creep models is difficult, and it is unclear how far their 

applicability can be extended beyond the specific steels, temperature ranges and stress 

levels for which their model parameters were originally developed. Thus, the 

fundamental conclusion of the author is that the ability to accurately model creep in 

structural fire-engineering problems, at present, is quite poor. Considering the potential 

importance of creep in structural fire-engineering analysis, considerable work is needed 

to develop more robust and accurate creep models for commonly used grades of steel.  
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CHAPTER 7 
Relaxation Testing at Elevated Temperatures 

7.1 INTRODUCTION 

The behavior of steel at elevated temperatures is time dependent. Though this 

time dependence can be experimentally studied in different ways, the most common 

techniques are by creep testing or stress-relaxation testing. In creep testing, steel coupons 

are held at constant stress, and the increase in strain with time is measured. In stress 

relaxation testing, the steel coupon is held at a constant strain, and the reduction of stress 

with time is measured.  

The results of an extensive creep testing program were described in Chapter 6. To 

provide a more comprehensive picture of the time-dependent response of ASTM A992 

steel at elevated temperatures, a series of stress-relation tests were conducted. This 

chapter describes procedures used for the stress relaxation tests, presents the results of the 

tests and examines models for predicting this response.  

7.2 EXPERIMENTAL INVESTIGATION 

7.2.1 Test Specimen 

The test specimens for relaxation testing were identical to those used for creep 

testing (Chapter 6). The specimens were 18 inch long coupons (Figure 7.1) taken from 

the flange of W4x13 sections. Of the ASTM A992 materials used in this research 

program, the material for the creep and stress-relaxation testing was designated as type 

MC. The chemical composition, from the Certified Mill Test Report, is given in Table 7.1. 

More information on the material type, including its room-temperature mechanical 

properties, is provided in Chapter 3.  
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Figure 7.1 Coupon dimensions used in relaxation tests 

Table 7.1 Chemical composition of test specimen 

Material 

Type 
C Cr Mo V Ni Mn Si P S Cu 

MC 0.08 0.10 0.026 0.002 0.09 0.91 0.23 0.011 0.025 0.24 

 
In order to determine the initial strain levels for the relaxation tests, the stress-

strain curves at elevated temperatures were required. Tensile coupons were tested at 

temperatures ranging from room temperature to 1000°C; results of this testing were 

reported in Chapter 4. In Table 7.2, the values of yield stress found, determined using the 

0.2% offset method, are reported. 

Table 7.2 Yield stress of Material MC at elevated temperatures 

Property 
Temperature (°C) 

20 200 300 400 500 600 700 800 900 1000 

Fy (ksi) 51.8 46.7 48.9 35.4 28.9 16.8 9.0 5.3 4.5 2.8 

7.2.2 Determining Initial Strain Levels for Relaxation Testing 

Four initial strain levels were selected for the relaxation tests. The selected initial 

strain levels were 50, 75, 90 and 150% of the yield strain of the material at the specified 

test temperature. These values were selected somewhat arbitrarily, but were intended to 

provide stress-relaxation data for a fairly wide range of strain values. The initial strain 

levels are shown qualitatively for a typical elevated temperature stress strain curve in 
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Figure 7.2. Specific values for the initial strain levels are listed in Table 7.3 and shown 

graphically in Figure 7.3.  

 
Figure 7.2 Initial strain levels 

Table 7.3 Values of initial strain levels used in relaxation tests (in/in) 

Temp (°C) 
I II III IV 

0.50εy 0.75εy 0.90εy 1.50εy 

20 0.001900 0.002850 0.003420 0.005700 
400 0.001750 0.002625 0.003150 0.005250 

500 0.001600 0.002400 0.002880 0.004800 

600 0.001435 0.002153 0.002583 0.004305 

700 0.001420 0.002130 0.002556 0.004260 

800 0.001235 0.001853 0.002223 0.003705 

900 0.001225 0.001838 0.002205 0.003675 

1000 0.001210 0.001815 0.002178 0.003630 
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Figure 7.3 Values of initial strain levels for relaxation tests 

7.2.3 Test Equipment and Procedures 

The equipment used for loading and heating the coupons was the same as that 

used for the elevated-temperature tension and creep testing described in previous chapters. 

A description of this equipment is provided in Chapter 3 (Section 3.3). Strains were 

measured by using a one-inch gage length high temperature extensometer designated as 

type 1PS, described in Section 3.6. The coupon preparation was also the same as for the 

high temperature tensile and creep tests described in previous chapters. Coupon 

preparation included cleaning the coupon surface on the reduced section, grinding the 

surface on the coupon ends, punching pivots, marking letters on the coupon for 

identification, measuring dimensions of coupon, and installing thermocouples wrapped in 

steel foil. Full details of coupon preparation are provided in Section 3.4.2. 

The basic test procedure consisted of the following steps. First, the coupon was 

heated up to the target temperature under zero load. The target test temperatures varied 

from 400 to 1000°C. Once the coupon was at the target test temperature, load was applied 
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to impose an initial strain on the coupon, where the strain was measured using the 1PS 

extensometer. Once the initial strain level was achieved, the test machine was controlled 

to allow no further movement of the crossheads. Load was monitored as a function of 

time throughout this process, and the test was generally continued for a period of 2 hours. 

It should be noted that once the initial strain was imposed on the coupon and the machine 

crossheads held stationary, the strain within the one-inch gauge length of the 

extensometer was not truly constant. That is, instead of holding the strain constant, the 

machine crosshead displacement was held constant. This provided more stable control of 

the test machine. However, this procedure should be kept in mind when interpreting the 

test data. 

7.2.4 Test Repetitions 

In order to evaluate the repeatability and consistency of the relaxation test results, 

relaxation tests were conducted at least three times for every specific initial strain and 

temperature condition. Figure 7.4 shows an example of the results of repeated tests at 600 

and 700°C. As can be seen in this plot, there was some variability in the results of the 

three test repetitions. In some cases, the cause of anomalies in the test results could be 

surmised. Anomalies could be caused, for example, by small variations in coupon 

temperature during a test or variations in pressure of hydraulic fluid entering the test 

machine. To determine a final representative relaxation curve, the three test results were 

not averaged, since some of the test results were judged erroneous. Rather, judgment was 

used in choosing a single test result of the three repetitions as being most the most 

representative. This judgment was based on observations made during the testing of 

potential sources of error, and based on evaluations of repeatability. 
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Figure 7.4 Repeated relaxation test results at 600 and 700°C 

7.3 TEST RESULTS 

The results of the relaxation tests are presented in this section in various formats. 

Figure 7.5 to Figure 7.12 show results for each test temperature. Results are plotted two 

ways in this figure. For each temperature, the left plot shows the value of stress as a 

function of time. Time equal to zero corresponds to the point in the test immediately after 

the application of the initial strain. The right plot for each temperature shows retention 

factor as a function of time. The retention factor for a particular time was computed as 

the stress at that time divided by the stress at time zero. Figure 7.13 to Figure 7.16 show 

results according to the initial applied strain level. Finally, Figure 7.17 to Figure 7.24  

plot the stress rate versus time for each test temperature. The stress rate is the rate of 

change of stress with time, i.e. the slope of the stress versus time curve. The stress rate is 

shown two different ways for each temperature. In the left plot, the time is plotted using 

an arithmetic scale, and in the right plot, the time is plotted using a logarithmic scale.  
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7.3.1 Relaxation Curves by Temperatures 

 
 a) Relaxation stress  b) Retention factor 

Figure 7.5 Relaxation curves at 20°C  

 
 a) Relaxation stress  b) Retention factor 

Figure 7.6 Relaxation curves at 400°C  

 
 a) Relaxation stress  b) Retention factor 

Figure 7.7 Relaxation curves at 500°C  
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 a) Relaxation stress  b) Retention factor 

Figure 7.8 Relaxation curves at 600°C  

 
 a) Relaxation stress  b) Retention factor 

Figure 7.9 Relaxation curves at 700°C  

 
 a) Relaxation stress  b) Retention factor 

Figure 7.10 Relaxation curves at 800°C  
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 a) Relaxation stress  b) Retention factor 

Figure 7.11 Relaxation curves at 900°C  

 
 a) Relaxation stress  b) Retention factor 

Figure 7.12 Relaxation curves at 1000°C  

 
 a) Relaxation stress  b) Retention factor 

Figure 7.13 Relaxation curves at 0.50εy  
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 a) Relaxation stress  b) Retention factor 

Figure 7.14 Relaxation curves at 0.75εy  

 
 a) Relaxation stress  b) Retention factor 

Figure 7.15 Relaxation curves at 0.90εy  

 
 a) Relaxation stress  b) Retention factor 

Figure 7.16 Relaxation curves at 1.50εy  
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a) With regular scale                                           b) With log scale 

Figure 7.17 Stress rates at 20°C  

 
a) With regular scale                                           b) With log scale 

Figure 7.18 Stress rates at 400°C 

 
a) With regular scale                                           b) With log scale 

Figure 7.19 Stress rates at 500°C  
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a) With regular scale                                           b) With log scale 

Figure 7.20 Stress rates at 600°C 

 
a) With regular scale                                           b) With log scale 

Figure 7.21 Stress rates at 700°C  

 
a) With regular scale                                           b) With log scale 

Figure 7.22 Stress rates at 800°C  
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a) With regular scale                                           b) With log scale 

Figure 7.23 Stress rates at 900°C  

 
a) With regular scale                                           b) With log scale 

Figure 7.24 Stress rates at 1000°C  

7.4 OBSERVATIONS ON RELAXATION CURVES 

In examining the stress relaxation test results, several observations can be made. 

First, the magnitude of stress relaxation can be very large for temperatures and times that 

are representative of fire exposures. At 700°C, for example, the stress reduces to less than 

50% of its initial value in only 20 minutes. Like the observations made for the creep test 

results in Chapter 6, this suggests that time dependent material behavior can be very 

significant in structure-fire problems. In a structure-fire problem, stress relaxation may be 

important, for example, when evaluating the forces developed by thermally induced 

strains. These test results suggest that such forces will change very rapidly with time. At 
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the very high test temperatures of 900 and 1000°C, the stress relaxation is particularly 

dramatic, with the stress reducing essentially to zero in a period of about 20 to 30 minutes. 

Such high temperatures can be expected in unprotected steel members subject to a typical 

compartment fire. Interestingly, at these high temperatures, the coupons actually 

developed compressive stress after about 30 minutes. Based on information available in 

the literature, the development of compressive stress in a tensile relaxation test can be 

related to metallurgical transformations at elevated temperatures. 

A typical relaxation curve can be separated into primary, secondary, and tertiary 

stages similar to creep behavior. General patterns of relaxation behavior are shown in 

Figure 7.25 to Figure 7.26. The stress rate during the primary stage of relaxation is 

nonlinear and is decreasing with time. That is, during the primary stage, the initial tensile 

stress in the coupon deceases rapidly, but then the rate of decrease in stress reduces with 

time. During the secondary stage of relaxation, the stress rate again changes with time, 

and the coupon can develop a compressive stress. The tertiary stage of relaxation was 

only found in tests at 900 and 1000° C.  

 
Figure 7.25 Relaxation behavior 
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Figure 7.26 Relaxation curve patterns 

7.5 SUGGESTED CONSTITUTIVE RELAXATION MODEL 

In this section, a model is suggested for predicting stress relaxation of ASTM 

A992 steel based on the test data. This model is developed essentially through curve 

fitting to the test data. For this purpose, curve fitting is accomplished using the form of 

Equation 7.1 that includes a constant term and two exponential terms. In the initial part of 

the relaxation curve, the stress decreases rapidly. It then gradually decays within the 

testing period. The first exponential term represents the initial part and the second 

exponential term represents gradually decreasing part of the relaxation curve. A typical 

curve fitting example for the relaxation test at 700°C and an initial strain equal to 75% of 

the yield strain is shown in Figure 7.27. This example suggests that using a single 

exponential term is not adequate to develop a good fit to the test data, whereas using two 

exponential terms provides a much better fit over the full time range of the test data.  
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a) Initial part                                               b) Up to 2 hours 

Figure 7.27 Typical example of curve fitting (700°C-0.75εy) 

The selected curve fitting model for the relaxation curves is shown in Equation 

(7.1).  

 

 

Table 7.4 lists values of parameters yo, A1, A2, B1, and B2. 

Table 7.4 Curve fitting parameters  

Temp(°C) σo (ksi) yo A1 B1 A2 B2 

400 

0.50εy 30.21 27.30 2.0641 0.05143 0.6353 1.90560 

0.75εy 34.15 30.81 1.9257 0.04655 0.8532 0.90578 

0.90εy 35.91 32.22 1.6931 0.04104 1.1670 0.46040 

1.50εy 40.39 34.38 3.9062 0.01394 1.4988 0.74844 

500 
0.50εy 25.74 22.92 1.4074 0.08188 0.9627 1.17910 

0.75εy 31.69 23.80 4.3537 0.00702 2.3953 0.38887 

          (     )       (     ) (7.1) 

where 

  = Constant value, where   =   at initial time (t = 0) 

   ,    = Constants dependent on temperature and initial strain 
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0.90εy 32.05 26.15 2.0994 0.03938 2.3785 0.67039 

1.50εy 35.29 29.03 1.8504 0.03507 2.6865 0.72723 

600 

0.50εy 21.02 13.00 3.1284 0.03885 3.5972 0.78645 

0.75εy 21.53 13.04 3.6918 0.02509 3.5150 0.67996 

0.90εy 21.50 13.01 3.2369 0.03257 3.7483 0.97133 

1.50εy 23.00 13.48 3.5112 0.05159 4.1985 1.11450 

700 

0.50εy 12.96 3.06 4.1967 0.02525 3.6058 0.80173 

0.75εy 12.14 2.36 4.7663 0.04015 3.2635 1.08610 

0.90εy 13.00 0.95 6.0615 0.01385 3.8887 0.82071 
1.50εy 12.33 3.14 3.9628 0.03227 3.3765 0.95054 

800 

0.50εy 6.69 0.48 1.8805 0.03991 3.0715 0.74590 

0.75εy 7.69 0.42 2.8012 0.09258 2.9733 1.41200 
0.90εy 7.10 0.32 2.4097 0.04960 3.0674 0.94800 
1.50εy 7.46 0.46 2.2945 0.05769 3.3861 0.98084 

900 

0.50εy 4.31 0.08 1.4993 0.07756 2.2853 0.71759 
0.75εy 5.39 0.02 2.5022 0.13358 2.2803 1.81110 
0.90εy 5.44 0.06 1.8693 0.11285 2.6290 1.15170 
1.50εy 5.50 -0.02 1.8231 0.90928 2.8125 0.89057 

1000 

0.50εy 3.51 -0.04 1.0757 0.12507 1.9755 1.58970 
0.75εy 3.51 0.02 1.1950 0.15753 1.7324 1.65150 
0.90εy 3.94 -0.13 1.5382 0.16806 1.9643 2.05080 
1.50εy 3.74 -0.06 1.3019 0.14974 1.6833 1.69260 
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7.6 VERIFICATION OF SUGGESTED RELAXATION MODEL WITH TEST DATA 

In this section, the proposed relaxation model (Equation (7.1) and Table 7.4) is 

compared to the test data. These comparisons are shown in Figure 7.28 to Figure 7.34. As 

shown in these plots, the proposed model matches the test data quite well. This is 

expected, of course, since the model was based on curve fitting to the test data. In the 

future, it would be useful to compare this model with test results of other samples of 

ASTM A992 steel to further evaluate the applicability of this model. 

 
 a) Full view  b) Zoomed-in view 

Figure 7.28 Relaxation results at 400°C 

 
 a) Full view  b) Zoomed-in view 

Figure 7.29 Relaxation results at 500°C 
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 a) Full view  b) Zoomed-in view 

Figure 7.30 Relaxation results at 600°C 

 
 a) Full view  b) Zoomed-in view 

Figure 7.31 Relaxation results at 700°C 

 
 a) Full view  b) Zoomed-in view 

Figure 7.32 Relaxation results at 800°C 
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 a) Full view  b) Zoomed-in view 

Figure 7.33 Relaxation results at 900°C 

 
 a) Full view  b) Zoomed-in view 

Figure 7.34 Relaxation results at 1000°C 

7.7 STRESS-STRAIN-TIME PLOTS 

As is clear from the relaxation data presented in this chapter, as well as the creep 

data presented in the previous chapter, the stress-strain response of steel is dependent 

both on temperature and on time. It is therefore instructive to examine the relaxation data 

in the form of stress-strain-time plots at various temperatures. A qualitative 

representation of a stress-strain-time plot generated from relaxation data is shown in 

Figure 7.35. For any given temperature, it is possible to generate a three-dimensional plot 

of stress vs. strain vs. time using the stress versus time data collected for each of the 

initial strain values.  
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Figure 7.35 Stress-Strain-Time plots based on relaxation data 

 
The resulting three-dimensional stress-strain-time plots based on the relaxation 

test data are shown in Figure 7.36 for selected temperatures. These plots can be used to 

help judge the importance of including time-dependent material response in a structure-

fire analysis problem. For example, say an analysis of a fire scenario in a building 

suggests that a structural member will be exposed to high temperatures for a duration of 

about 30 minutes. These plots show that at 400°C, the stress-strain response is not 

strongly time-dependent for a 30-minute exposure. However, for higher temperatures, say 

600°C, the response is highly time dependent for a 30-minute exposure, and ignoring 

time dependence in the analysis may lead to significant errors in the structural response 

predictions.  
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 a) 400°C  b) 600°C 

 
c) 1000°C 

Figure 7.36 Examples of stress-strain-time plots 
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7.8 SUMMARY 

This chapter has described an extensive series of elevated-temperature stress-

relaxation tests on samples of ASTM A992 steel. The selected material for relaxation 

testing was the same as for the creep testing, and was taken from a flange of a W4x13 

hot-rolled section. Relaxation tests were carried out for temperatures ranging from 400 to 

1000°C with a time duration of 2 hours, to collect data pertinent to structure-fire 

applications.  

Results of the tests showed very significant stress relaxation for temperatures and 

times of interest in structure-fire problems. Like the creep data presented in the previous 

chapter, this relaxation data provides further evidence of the importance of time-

dependent material behavior in structure-fire analysis. 

A model was developed to predict stress relaxation of ASTM A992 steel based on 

temperature, time and initial strain level. This model was developed through a curve 

fitting process to the test data, and matches the test data quite closely. It is unclear how 

well this model would predict the behavior of other samples of ASTM A992 steel, and 

additional relaxation test data would be useful to further evaluate this model. Finally, the 

relaxation data was presented in the form of three-dimensional stress-strain-time plots, 

which provide further insights into the importance of time-dependent material response at 

elevated temperature. 
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CHAPTER 8 
Summary and Conclusions 

8.1 SUMMARY 

This dissertation has summarized a research program aimed at developing an 

extensive experimental database on the elevated temperature mechanical properties of 

ASTM A992 steel, for use in structural-fire engineering analysis. The major focus areas 

of research included the development of elevated temperature testing techniques, tension 

testing of A992 steel to obtain elevated temperature stress-strain curves, tension testing of 

A992 steel after heating and cooling to evaluate post-fire properties, creep testing of 

A992 steel to obtain data on creep strain versus time for various temperature and stress 

levels, and stress relaxation testing on A992 steel to obtain data on stress relaxation 

versus time for  various temperature and strain levels. All elevated temperature tests were 

conducted at temperatures ranging from room temperature up to 1000°C, to encompass 

temperatures of interest in structural-fire engineering analysis. Creep tests and stress 

relaxation tests were generally conducted for 2 hours, to encompass time frames of 

interest in structural-fire engineering analysis.  

A strong emphasis was placed in this research on collecting high quality 

experimental data. Considerable work was done in developing techniques to accurately 

control and measure temperatures of the steel specimens, as it was found that even small 

variations in temperature can result in large changes in mechanical response. A great deal 

of work was also done on strain measurement techniques using high temperature 

extensometers. In addition, for most types of tests conducted in this program, several 

replicate specimens were tested to evaluate repeatability of test results and to discern 

various sources of experimental error. Although the emphasis on this research has been 

the development of high quality experimental data, efforts were also made to develop 

constitutive relationships based on the experimental data. Constitutive relationships were 
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suggested for the tensile stress-strain behavior, creep behavior, and stress relaxation 

behavior of A992 steel at temperatures up to 1000°C. In some cases, these constitutive 

relationships were based on curve fitting to the experimental data, and so these 

relationships are strictly only applicable to the specific steels tested in this program. In 

the case of the tensile stress-strain relationships an attempt was made to develop more 

general constitutive relationships that are a function of room temperature yield stress and 

the specific elevated temperature of interest. 

Based on this research, a variety of findings have been presented throughout the 

main chapters of this dissertation. Here, the primary conclusions are repeated for 

emphasis. 

8.2 CONCLUSIONS 

8.2.1 Elevated Temperature Testing Techniques 

Elevated temperature testing of steel coupons is, in general, far more difficult than 

testing at room temperature. Testing techniques at elevated temperature are not as well 

established or standardized as they are for room temperature testing. Specialized 

equipment is needed to conduct the tests and specialized knowledge is needed to collect 

high quality data. One of the key difficulties is controlling and measuring the temperature 

of steel coupons, so that the steel temperature is uniform throughout the coupon, is close 

to the target test temperature, and remains constant through the duration of the test. To 

accomplish this goal, techniques were developed to control furnace temperature to 

achieve a desired specimen temperature, and these techniques are described in detail in 

Chapter 3. The temperature of steel coupons was measured using thermocouples attached 

to the coupons. It was found that various methods for attaching the thermocouples to the 

coupons could result in significantly different temperature measurements. Through an 

extensive trial and error process, a technique was developed for attaching thermocouples 
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to the steel coupons that is believed to provide accurate measurements of steel 

temperature. This technique is described in Chapter 3. 

An additional challenge in elevated temperature testing is the measurement of 

strain on the steel coupons. For this research, strain was measured by using high 

temperature contact type extensometers that attach to the specimen by pressure mounted 

ceramic rods. Considerable experience was needed to develop the appropriate tip profile 

for the ceramic rods, appropriate pressure levels between the rods and the steel coupon, 

and appropriate extensometer cooling techniques, in order to be able to collect accurate 

strain data. One of the objectives of this testing program was to collect very accurate 

strain data at low levels of strain, to be able to estimate elastic modulus, proportional 

limit, and yield stress. This required accurate measurements at strains less than 1%    An 

additional objective was to be able to characterize the full stress-strain curve of steel at 

elevated temperatures, which required measurements in excess of 100% strain. 

Commercially available high temperature extensometers are not able to do both. 

Extensometers that can measure small strains accurately have maximum strain capacities 

on the order of 10%. On the other hand, extensometers that can measures very large 

strains, on the order of 50%, cannot accurately measure small strains. To solve this 

problem, a high accuracy – small strain limit high temperature extensometer was used in 

this research. To then measure large strains, a technique was developed to reset the 

extensometer several times during a test. A methodology was then developed to 

reassemble the strain data into a continuous stress-strain curve.  

8.2.2 Tension Testing at Elevated Temperatures 

A series of tests were conducted to measure the uniaxial tensile stress-strain 

curves of A992 steel at temperatures from 20°C up to 1000°C. The objectives of these 

tests were to examine the fundamental changes in the stress-strain curves as temperature 

increases, and to measure changes in important mechanical properties with temperature, 

including yield stress, tensile strength, elastic modulus, proportional limit, and elongation 
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at fracture. For each of these properties, retention factors were developed that provide the 

ratio of the elevated temperature property to the same property measured at room 

temperature. An additional objective of these tests was to provide data to support the 

development of mathematical models of stress-strain response at elevated temperatures. 

One of the unique features of these tests is that the entire stress-strain curve, up 

through fracture, was measured and reported. Although a number of previous 

investigators measured elevated temperature properties of various steels, a review of the 

literature found few cases in which the entire stress-strain curve is reported. 

The test results showed the stress-strain behavior undergoes significant changes as 

temperature increases. In general terms, the steel loses strength and stiffness with 

increase in temperature. More specifically, at elevated temperatures, both the yield stress 

and the modulus of elasticity are reduced from their room-temperature values. Except for 

low temperatures, the tensile strength also reduces with temperature. In addition to the 

reduction in yield stress, tensile strength and modulus of elasticity, the shape of the 

stress-strain curve at elevated temperatures is fundamentally different from that at room 

temperature. At temperatures above 300° to 400°C, the stress-strain curve does not 

exhibit a well-defined yield plateau and becomes highly nonlinear at low levels of stress. 

That is, the proportional limit occurs at a stress significantly less than the yield stress. 

The greater nonlinearity exhibited by the stress-strain curves at high temperatures can 

have a significant influence on member behaviors governed by stability modes of failure, 

where tangent modulus is a critical material property. 

 Elongation, i.e., the strain at fracture, increased gradually for elevated 

temperature up to 800°C, and subsequently decreased for higher temperatures. Another 

property that was examined was the strain at the development of the tensile strength. This 

is the strain that occurs at the peak of the engineering stress-strain curve. The strain at the 

tensile strength showed a dramatic decrease with increasing temperature from 400 to 

800 °C. The lowest values of strain at the development of the tensile strength occurred at 
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temperatures of 700 to 800 °C. At these temperatures, the strains at the development of 

the tensile strength were on the order of 1 to 2%, representing a very large reduction from 

the ambient temperature values, which were on the order of 16 to 18%. Note also that the 

peak of the engineering stress-strain curve corresponds to the start of necking. These test 

results indicates that necking can begin at very low levels of strain at elevated 

temperatures. Thus, while the strain at fracture may be very large, the strain at the start of 

necking can be very small. For example, at 800°C the strain at fracture exceeds 100%, 

whereas the strain at the start of necking is about 1%. This trend further reinforces the 

observation that the basic shape of the stress-strain curve for steel at elevated temperature 

can be dramatically different than at room temperature. 

Using the test data, retention factors were computed for elastic modulus, 

proportional limit, yield stress, tensile strength, strain at the development of tensile 

strength, and strain at fracture. Eurocode 3 and the AISC Specification provide 

recommended retention factors for structural steel at elevated temperatures, for elastic 

modulus, proportional limit, yield stress, and tensile strength. Note that the retention 

factors in the AISC Specification were adopted directly from Eurcode 3, so the retention 

factors in these two design standards are identical. 

For elastic modulus, proportional limit, and tensile strength, the retention factors 

computed from the test data compared reasonably well with those recommended in 

Eurocode 3, although some differences were noted. For yield stress, on the other hand, 

large differences were seen between the computed retention factors for the A992 test data 

with those reported in Eurocode 3, especially for temperatures below 600°C. However, in 

examining the basis for the Eurocode 3 yield stress retention factors, it was found that the 

major differences with the test data was the result of the definition used for yield stress. 

For the A992 test data, the yield stress was first computed using the conventional ASTM 

definition for materials that do not exhibit a well-defined yield plateau, which was the 

case for these elevated temperature stress-strain curves. For such materials, ASTM 

defines the yield stress as the stress that occurs at 0.2% offset strain. Using the 0.2% 
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offset strain definition to establish the yield stress from the A992 test data, the computed 

retention factors were significantly smaller than recommended by Eurocode 3, for 

temperatures less than 600°C. For example, at 400°C, the measured yield stress retention 

factor for the tested A992 steel was 0.7 using the 0.2% offset definition. This indicates 

that at 400°C, the yield stress is 70% of its room temperature value. On the other hand, 

Eurocode 3 recommends a yield stress retention factor of 1.0 at 400°C, indicating the 

yield stress is the same at 400°C as it is at room temperature.  

In examining the literature, it appears that Eurocode 3 does not define yield stress 

using the conventional 0.2% offset definition. Rather, the literature suggests that 

Eurocode 3 defines yield stress at elevated temperature as the stress at a total strain (not 

offset strain) of 2% (not 0.2%). In examining typical elevated temperature stress-strain 

curves from this test program, it was found that defining the yield stress using 0.2% 

offset strain versus 2% total strain resulted in dramatically different values of yield stress. 

Consequently, the yield stress retention factors for the A992 test data were recomputed 

using the 2% total strain definition of yield stress. In this case, the yield stress retention 

factors computed for the A992 test data compared quite closely with those recommended 

in Eurocode 3. That is, as long as the same definition of yield stress is used, the yield 

stress retention factors from the test data compared very well with Eurocode 3.  

The comparison of yield stress retention factors raised an interesting question: 

what is the most appropriate definition of yield stress of structural steel at elevated 

temperature, for use in structural-fire engineering analysis and design? This question was 

beyond the scope of this research. It is noted, however, that a review of the literature 

found no clear rationale or justification for the definition of yield stress adopted by 

Eurocode 3. Consequently, further work appears justified in developing a rational basis 

for defining elevated temperature yield stress of structural steel for structure-fire 

applications. 

Lastly, using the test data, suggested models were developed for computing the 

elevated temperature stress-strain response of A992 steel. Two different models were 
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developed: a detailed model and a simplified model. The detailed model provides a fairly 

comprehensive set of equations to predict the full non-linear stress strain response at 

temperatures up to 1000°C. The detailed model is intended primarily for use in finite 

element analysis of steel structures subject to fire. A simplified model was also developed, 

using a tri-linear representation of the A992 stress-strain curves up to 1000°C. The 

predictions of the detailed model matched the test data closely. The simplified model did 

not match the data as well, but still captured the overall response in a reasonable manner. 

Since these models were based on curve-fitting this test data, it is unclear how 

representative these models would be for other samples of A992 steel or similar structural 

steels at elevated temperature. Additional test data would be desirable to further evaluate 

the applicability of the proposed models. 

 

8.2.3 Mechanical Properties after Heating and Cooling 

A series of tests were conducted wherein samples of ASTM A992 steel were 

heated to temperatures ranging from 200 to 1000°C, and then subsequently cooled. Three 

different cooling techniques were used, referred to herein as cooled-in-blanket (CIB), 

cooled-in-air (CIA), and cooled-in-water (CIW). These three different cooling techniques 

were intended to provide a wide range of cooling rates. After cooling, tensile tests, 

Charpy V-notch tests, and hardness tests were conducted on the steel samples. The 

purpose of this test series was to gain insights into the post-fire mechanical properties of 

steel. 

The test results showed that the process of heating and cooling caused no 

significant reduction in yield stress until the temperature exceeded 700°C. However, even 

up to 1000°C, the reduction in yield stress was only about 20%. For tensile strength, there 

was essentially no reduction, even for coupons heated to 1000°C. For coupons cooled-in-

water (CIW), there was an increase in tensile strength for heating temperatures greater 

than 500°C. 
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The most significant effect seen in this test series was a reduction in Charpy V-

notch (CVN) values for steel samples that were heated above 600°C and then cooled 

rapidly in water (CIW). These samples showed a large drop in CVN values. For example, 

for the sample heated to 1000°C and then cooled-in-water, the CVN value was only about 

20% of that for an unheated virgin sample. CVN values are indicative of fracture 

toughness, and the loss of fracture toughness due to heating and then rapid cooling in 

water may be of concern in some applications, for example in a steel bridge girder 

subjected to fire and then cooled rapidly by water from fire-fighting operations. It may be 

possible to detect hardening and loss of fracture toughness of steel in a structure that was 

subjected to fire and then cooled rapidly by the use of field hardness measurements.  

 

8.2.4 Creep Testing at Elevated Temperatures 

A series of creep tests were conducted on coupons of ASTM A992 steel, at 

temperatures ranging from 400 to 1000°C. For each test, the coupon was first heated to 

the target temperature under no load; that is, the coupon was free to expand. Once the 

coupon reached the target temperature, load was applied to the coupon and held constant 

for a period up to 2-hours. During the loading process and while holding the load 

constant, strain was measured as a function of time. For each target temperature, coupons 

were tested at four different load levels. The load levels were selected to provide 

engineering stress levels within the coupons equal to 0.5Fy, 0.75Fy, 0.9Fy, and 0.9Fu, 

where Fy and Fu were the measured yield stress and tensile strength of the material at the 

target temperature. For this test series, temperatures, stress levels, and time durations 

were selected to be representative of structure-fire problems. 

Test results were presented in the form of plots of strain versus time for each 

temperature and stress level. A creep model was developed by examining the 

experimentally observed patterns of creep behavior and then by curve fitting to the 
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experimental data. The experimental data was compared to this model, as well as to creep 

models for structural steel developed by other researchers. 

The results of this test series show that creep strains can be quite significant for 

temperatures, stress levels, and time durations representative of building structures 

exposed to fire. This suggests that ignoring creep may lead to inaccurate predictions of 

structural response for some classes of structure-fire problems. Existing models may 

provide poor predictions of creep when compared to experimental data for A992 steel.  

 

8.2.5 Relaxation Testing at Elevated Temperatures 

A series of stress relaxation tests were conducted on coupons of ASTM A992 

steel, at temperatures ranging from 400 to 1000°C. For each test, the coupon was first 

heated to the target temperature under no load. Once the coupon reached the target 

temperature, displacement was applied to the coupon and held constant for a period of up 

to 2 hours. While the displacement was held constant, the reduction in stress was 

measured as a function of time. For each target temperature, coupons were tested at four 

different displacement levels. The displacement levels were selected to provide 

engineering strain levels within the coupons equal to 0.5y, 0.75y, 0.9y, and 1.5y, 

where y is the measured value of yield strain at the target temperature based on the 0.2% 

offset strain definition of yield. Temperatures, strain levels, and time durations were 

selected to be representative of structure-fire problems. 

Test results were presented in the form of plots of stress versus time for each 

temperature and strain level. A model was developed to predict stress relaxation of 

ASTM A992 steel based on temperature, time, and initial strain level. This model was 

developed through a curve fitting process to the test data. Results of the tests showed very 

significant stress relaxation for temperatures and times of interest in structure-fire 
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problems. Like the creep data, this relaxation data provides further evidence of the 

importance of time-dependent material behavior in structure-fire analysis. 

8.3 RESEARCH NEEDS 

To further advance capabilities to predict the response of steel structures to fire, 

additional research is needed to better characterize steel material response at elevated 

temperatures. Following is a list of suggested research needs in this area. 

 Additional work is needed on the development of improved equipment and 

techniques for conducting elevated temperature tests on steel materials. Of particular 

value would be the development of better techniques for measuring strain at elevated 

temperatures. Improved strain measuring devices are needed that can measure very 

small levels of strain accurately to permit characterization of elastic modulus, 

proportional limit, and yield stress, all of which occur generally at strain values of 

less than 1 to 2%. At the same time, these devices should be capable of measuring 

very large strains, on the order of 120%, to allow characterization of the full stress-

strain curves and full creep strain-time curves without the need for resetting. It would 

also be desirable to measure strains on opposite sides of a steel coupon 

simultaneously, to minimize measurement errors due to bending of steel coupons 

during testing. Of further value would be the capability to measure the change in 

cross-sectional dimensions along the length of a coupon during testing at elevated 

temperatures. As seen in this test program, necking can initiate at very low levels of 

strain, say on the order of 1 to 2% at elevated temperatures, compared to 15 to 20% at 

room temperature. Being able to measure the reduction in coupon cross-section 

dimensions would allow better characterization of material response at elevated 

temperature, especially for better characterization and control of true stress during 

testing. In addition, well developed, validated and standardized methods for 

measuring the temperature of steel coupons are needed. As seen in this research, 

inadequate temperature measurement and control can be the source of significant 
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experimental error, and better temperature measurement techniques are needed to 

reduce such errors. 

 The experimental database on the elevated temperature stress-strain response of 

structural steels is still very limited. Additional testing on various heats of common 

grades of structural steel is needed to better characterize elevated temperature 

mechanical properties and variability in these properties. 

 A number of different definitions for yield stress at elevated temperature have been 

used by past researchers and by building standards such as Eurocode 3 and the AISC 

Specification. As shown in this research, the choice of definition of yield stress can 

have a very large effect on the reported value of yield stress, particularly for 

temperatures below 600°C. Further work is needed to examine the implications of 

using various definitions of yield stress in structural-fire engineering analysis and to 

support the adoption of a standardized definition of yield stress. 

 As shown in the creep and relaxation testing conducted in this research, time-

dependent effects can be very significant for steel material behavior at elevated 

temperatures, particularly for temperatures greater than about 500°C. Further, the 

amount of experimental data on time-dependent effects is very small. In general, the 

characterization and understanding of time-dependent material response for 

structural-fire engineering analysis is quite limited. For example, Eurocode 3 and the 

AISC Specification provide significant guidance on the analysis and design of steel 

structures subjected to fire. However, both of these building standards are completely 

silent on time-dependent effects. More experimental work is needed to characterize 

time-dependent response of steel materials at elevated temperatures. In addition, more 

comprehensive and robust models are needed to analytically predict time-dependent 

response. 
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APPENDIX A 
Curve-Connection Process 

A.1 OVERVIEW 

As discussed in Chapter 3, the primary extensometer used for elevated-

temperature testing, the 1PS extensometer had a limited measurement range (10% strain). 

As a result, this extensometer had to be reset multiple times during testing. In the most 

extreme circumstances (tension test at 800°C), the extensometer was reset over 10 times.  

A direct result of resetting the extensometer was discontinuous strain data. In 

Section 3.7, the procedure by which this raw data was fashioned into a continuous stress-

strain curve was discussed. The purpose of this appendix is to extend the general 

discussion contained in Chapter 3 with more particulars.  

This appendix contains a detailed step-by-step procedure for curve connection. 

The steps were engineered for three attributes: making the stress-strain curve continuous 

(Steps A.2 to A.5), smooth (Step A.6) and accurate (Step A.7). 

A.2 CREATE THE INITIAL STRESS-STRAIN CURVE FROM RAW DATA 

In Microsoft Excel, open the raw data file saved by the MTS program (a “.dat” 

file). From the recorded load and the measured coupon sectional area, calculate the stress. 

Graph the stress vs. strain as is shown in Figure A.1. 
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Figure A.1 Initial stress-strain curve from raw data 

A.3 DELETE THE STRAIN DATA RECORDED DURING THE RESETTING PROCESS 

Find the data that was collected during the process of resetting the extensometer 

and delete it as shown in Table A.1. The resetting process typically lasted 15–30 seconds. 

a. Find a region in which there appears to be a discontinuity in stress values. Hold the 

mouse near a data point in that region until a tooltip appears with the coordinates 

(strain, stress). Creating an alternate graph with only a portion of the data and altered 

axes may help if you are having trouble finding a single point.  

b. Find that point in the tabulated data.  

c. Select all nearby strain values which do not agree with a near-constant strain rate and 

delete them.  

d. Repeat process until all strains recorded during resetting have been deleted as in 

Figure A.2. 
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Table A.1 Invalid strain data: found and deleted  

 

 
Figure A.2 Stress-strain curve after deleting strains recorded during resetting periods 
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A.4 REPLACE THE DELETED STRAIN DATA 

In order to create a curve more representative of the material response during the 

extensometer-reset period, extrapolate the strains from nearby data. This process is 

completed through use of the average increment of strain increase over the adjacent data.  

As a note, since the time interval between data points was constant (2 seconds for 

tension testing), generating strain data using the average strain increment is functionally 

equivalent to assuming that a constant strain rate (calculated from the adjacent data) was 

acting on the coupon during resetting. 

a. Calculate the strain increment.  

i. First, find the strain immediately adjacent to the deleted region.  

ii. Calculate the difference between this strain and a strain a specified number of 

intervals away (e.g. 100, 200, 300).  

iii. Divide this difference by the number of increments separating the two strains. 

Data collected after resetting the extensometer to capture the necking region will 

generally be more representative of the actual strain, and should therefore be used by 

default. Notes for choosing a proper strain increment are given in Section A.5. 

b. In a separate column, create substitute strain data. 

i. Add/subtract the strain increment from the first strain after the deleted region 

to get the last missing strain values. 

ii. Repeat this process, adding/subtracting the strain increment from the strain 

listed below, until reaching the first strain in the deleted region. 

c.  Copy and paste the values of the generated strain data to the deleted region, using the 

“Paste Special: Values” function. 
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Table A.2 Copying generated strain to deleted region  

 

A.5 MOVE CURVE SEGMENTS, ONE BY ONE, TO THE END OF THE EXISTING CURVE 

To make the stress-strain curve continuous, the individual curve segments must be 

shifted so that they appear in order of increasing strain. This process is shown in Figure 

A.3 and Figure A.4. 

a. Calculate the amount of shift necessary to make the curve continuous. 

i. Find the difference between the first strain in the curve segment being shifted 

and the end of the portion of the currently continuous stress-strain data.  

ii. Add to this difference one strain increment (equal to the difference between 

the second and first strain in segment being shifted). 

b. Add the resulting strain value (labeled as “Constant” in Table A.3) to each of the data 

points in the segment. 
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c. Copy and paste the generated strain values over the previous strain values for the 

segment, again using “Paste Special: Values.” 

Table A.3 Strain data points before shift 

 
Table A.4 Strain data after pasting  
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Figure A.3 Curve after moving first segment to the end of the graph 

 
Figure A.4 Stress-strain curve after shifting all segments 
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A.6 SMOOTH OUT STRESS-STRAIN CURVE 

At this point, all discontinuities in stress values have been eliminated from the 

stress values of the entire curve. However, there may still be discontinuities in the slope, 

like that shown in Figure A.5. These slope discontinuities can arise if the extensometer is 

placed such that it only partially captures necking. 

 
Figure A.5 Bump in stress-strain curve due to necking 

The smoothing of the curve can be accomplished by the following steps: 

a. Find the point in the data where the slope discontinuity exists. 

b. Determine an average strain increment from the data immediately after reset of the 

extensometer as per Section A.4. Use of the strain rate after resetting will generally 

yield better results because each time, to the best of the experimenter’s ability, the 

extensometer would be reset to a position so that it would be capturing the necking 

behavior. 
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c. Apply that strain increment to the data preceding the slope discontinuity up to the 

point where the slope appears is more continuous. This step is shown in Figure A.6 

and Figure A.7. 

d. Shift the newly generated discontinuous curve segment (Figure A.8) as done in 

Section A.5. 

 
Figure A.6 Delete the data during missed necking part 
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Figure A.7 Recover the strain around missed necking part 

 
Figure A.8 Completed stress-strain curve after data recovery 
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In tests where the extensometer must be reset multiple times, the strain data from 

some portions may be inaccurate due to problems setting the extensometer into place. In 

such cases, the strain rate from data collected immediately before or after the affected 

portions may more accurately reflect the strain rate, and can be used in a similar 

procedure to replace the data in question.  

However, data collected during different periods of the test will have different 

rates of strain increase due to necking and other factors, so discretion should be used 

when altering data. In the following steps for data deleting, recovering and shifting 

process shown in Figure A.6 to Figure A.8. 

A.7 IMPROVE ACCURACY BY CONSIDERING MEASUREMENTS OF FAILURE COUPONS 

With the stress data and its derivative (slope) both made continuous, the last step 

in the process is to improve the accuracy of the strain data. Due to the possibility of 

partially missed necking and assumptions made during data post-processing (also the 

stretching of previously instrumented lengths of the coupon, discussed in Section 3.7.2), 

some error is inherent in the final strain generated through this curve-connection process. 

As discussed in Section 3.6, direct measurement of the failure strain was performed for 

every coupon. This was done using calipers and punch marks on the coupon surface. 

In order to improve the accuracy of the completed stress-strain curve, then, the 

strains should be adjusted by the caliper-measured failure strains. This was done through 

use of an adjustment factor, as shown below. 

a. Calculate the strain from the caliper measurements as is shown in Table A.5. 

Table A.5 Measured strain using calipers  

Temp (°C) 
Measurement between Punch Marks 

Initial (in) Final (in) Strain (in/in) 

400 0.975 1.452 0.4892 
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b. Multiply all strain data greater than 0.10 in/in by the correction factor given by 

Equation (A.1). Strains before the first resetting at 10% need not be changed since 

they were not altered by the resetting process and are assumed to be correct. 

 

In this case, the last strain after completing the curve-connecting process is 0.4308 

in/in and the final strain from the measurement of the fractured coupon is 0.4892 in/in. 

The adjustment factor was applied to the data as shown in Table A.6. 

With adjustment of strain to the measured value from the fractured coupons, the 

curve-connection process is complete. The resulting stress-strain curve is as shown in 

Figure A.9. 

       (       ) (
    

    
) (A.1) 

where 

εi = Arbitrary strain greater than 0.10 in/in (that is, 10%) 

εf  = Final strain measured after failure with calipers 

εl = Last strain from raw data, after completing curve connecting 
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Table A.6 Correction factor after 10 % strain  

 

 
Figure A.9 Completed full stress-strain curve after correcting 
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APPENDIX B 
Tension Test Results at Elevated Temperatures 

This appendix presents representative tension test results of ASTM A992 steel at elevated 

temperatures which were discussed in Chapter 4.  

B.1 HEATING CURVES 

 
Figure B.1 Temperature profile  

 
Figure B.2 Heating rate  
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B.2 STRESS-STRAIN CURVES BY MATERIAL TYPE 

 
Figure B.3 Full stress-strain curves for MA material   

 
Figure B.4 Initial stress-strain curves for MA material   
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Figure B.5 Full stress-strain curves for MB material   

 
Figure B.6 Initial stress-strain curves for MB material   
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Figure B.7 Full stress-strain curves for MC material   

 
Figure B.8 Initial stress-strain curves for MC material   
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B.3 STRESS-STRAIN CURVES BY TEMPERATURE 

 
Figure B.9 Combined stress-strain curves at 20°C   

 
Figure B.10 Combined stress-strain curves at 200°C   
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Figure B.11 Combined stress-strain curves at 300°C   

 
Figure B.12 Combined stress-strain curves at 400°C   
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Figure B.13 Combined stress-strain curves at 500°C   

 
Figure B.14 Combined stress-strain curves at 600°C   
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Figure B.15 Combined stress-strain curves at 700°C   

 
Figure B.16 Combined stress-strain curves at 800°C   
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Figure B.17 Combined stress-strain curves at 900°C   

 
Figure B.18 Combined stress-strain curves at 1000°C   
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B.4 CONSTITUTIVE MODEL  

 
Figure B.19 Initial stress-strain curve of constitutive model at 20°C 

 
Figure B.20 Full stress-strain curve of constitutive model at 20°C 
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Figure B.21 Initial stress-strain curve of constitutive model at 200°C 

 
Figure B.22 Full stress-strain curve of constitutive model at 200°C 
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Figure B.23 Initial stress-strain curve of constitutive model at 300°C 

 
Figure B.24 Full stress-strain curve of constitutive model at 300°C 
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Figure B.25 Initial stress-strain curve of constitutive model at 400°C 

 
Figure B.26 Full stress-strain curve of constitutive model at 400°C 
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Figure B.27 Initial stress-strain curve of constitutive model at 500°C 

 
Figure B.28 Full stress-strain curve of constitutive model at 500°C 
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Figure B.29 Initial stress-strain curve of constitutive model at 600°C 

 
Figure B.30 Full stress-strain curve of constitutive model at 600°C 
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Figure B.31 Initial stress-strain curve of constitutive model at 700°C 

 
Figure B.32 Full stress-strain curve of constitutive model at 700°C 
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Figure B.33 Initial stress-strain curve of constitutive model at 800°C 

 
Figure B.34 Full stress-strain curve of constitutive model at 800°C 
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Figure B.35 Initial stress-strain curve of constitutive model at 900°C 

 
Figure B.36 Full stress-strain curve of constitutive model at 900°C 
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Figure B.37 Initial stress-strain curve of constitutive model at 1000°C 

 
Figure B.38 Full stress-strain curve of constitutive model at 1000°C 
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APPENDIX C 
Tension Test Results after Heating and Cooling 

This appendix presented representative tension test results after heating up to specific 

target temperature and cooling down to room temperature and discussed in Chapter 5.  

C.1 STRESS-STRAIN CURVES BY TEMPERATURE 

 
Figure C.1 Combined full stress-strain curve at 200°C 

 
Figure C.2 Combined initial stress-strain curve at 200°C 
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Figure C.3 Combined full stress-strain curve at 300°C 

 
Figure C.4 Combined initial stress-strain curve at 300°C 
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Figure C.5 Combined full stress-strain curve at 400°C 

 
Figure C.6 Combined initial stress-strain curve at 400°C 
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Figure C.7 Combined full stress-strain curve at 500°C 

 
Figure C.8 Combined initial stress-strain curve at 500°C 
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Figure C.9 Combined full stress-strain curve at 600°C 

 
Figure C.10 Combined initial stress-strain curve at 600°C 
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Figure C.11 Combined full stress-strain curve at 700°C 

 
Figure C.12 Combined initial stress-strain curve at 700°C 
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Figure C.13 Combined full stress-strain curve at 800°C 

 
Figure C.14 Combined initial stress-strain curve at 800°C 
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Figure C.15 Combined full stress-strain curve at 900°C 

 
Figure C.16 Combined initial stress-strain curve at 900°C 
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Figure C.17 Combined full stress-strain curve at 1,000°C 

 
Figure C.18 Combined initial stress-strain curve at 1,000°C 
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APPENDIX D 
Creep Test Results at Elevated Temperatures  

This appendix was presented representative creep test results at elevated temperatures as 

well as the figures of used in Chapter 6.  

D.1 TOTAL- AND CREEP-STRAIN CURVES BY TEMPERATURE 

 
Figure D.1 Creep curves at 400°C  
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Figure D.2 Creep curves at 500°C  

 
Figure D.3 Creep curves at 600°C  
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Figure D.4 Creep curves at 700°C  

 
Figure D.5 Creep curves at 800°C  
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Figure D.6 Creep curves at 900°C  

 
Figure D.7 Creep curves at 1000°C  
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D.2 CREEP CURVES BY STRESS LEVEL  

 
Figure D.8 Creep curves by 0.50Fy stress level  

 
Figure D.9 Creep curves by 0.75Fy stress level 
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Figure D.10 Creep curves by 0.90Fy stress level 

 
Figure D.11 Creep curves by 0.90Fu stress level 
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D.3 VERIFICATION OF SUGGESTED CREEP MODEL BY CREEP STRAIN  

 
Figure D.12 Creep model verification at 400°C  

 
Figure D.13 Creep model verification at 500°C 
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Figure D.14 Creep model verification at 600°C 

 
Figure D.15 Creep model verification at 700°C  
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Figure D.16 Creep model verification at 800°C 

 
Figure D.17 Creep model verification at 900°C  
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Figure D.18 Creep model verification at 1000°C 

D.4  CREEP MODEL COMPARISON  

 
Figure D.19 Creep model comparison at 400°C-0.75Fy 
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Figure D.20 Creep model comparison at 500°C-0.90Fy 

 
Figure D.21 Creep model comparison at 600°C-0.90Fy 
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Figure D.22 Creep model comparison at 700°C-0.90Fy 
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APPENDIX E 
Relaxation Test Results at Elevated Temperatures 

This appendix was presented representative graphs of relaxation test conducted at 

elevated temperatures which were discussed in Chapter 7. 

E.1 RELAXATION CURVES BY TEMPERATURE 

 
Figure E.1 Relaxation curves at 20°C  
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Figure E.2 Relaxation curves at 400°C  

 
Figure E.3 Relaxation curves at 500°C  
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Figure E.4 Relaxation curves at 600°C  

 
Figure E.5 Relaxation curves at 700°C  
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Figure E.6 Relaxation curves at 800°C  

 
Figure E.7 Relaxation curves at 900°C  
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Figure E.8 Relaxation curves at 1000°C  

E.2 RETENTION FACTOR BY TEMPERATURE 

 
Figure E.9 Retention factor at 20°C  
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Figure E.10 Retention factor at 400°C  

 
Figure E.11 Retention factor at 500°C  
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Figure E.12 Retention factor at 600°C  

 
Figure E.13 Retention factor at 700°C  
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Figure E.14 Retention factor at 800°C  

 
Figure E.15 Retention factor at 900°C  
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Figure E.16 Retention factor at 1000°C  

E.3 RELAXATION CURVES AND RETENTION FACTOR BY LOADING STRAIN 

 
Figure E.17 Relaxation curves at 0.50εy  
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Figure E.18 Relaxation curves at 0.75εy 

 
Figure E.19 Relaxation curves at 0.90εy 
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Figure E.20 Relaxation curves at 1.50εy 

 
Figure E.21 Retention factor at 0.50εy 
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Figure E.22 Retention factor at 0.75εy 

 
Figure E.23 Retention factor at 0.90εy 
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Figure E.24 Retention factor at 1.50εy 

E.4 RELAXATION MODEL COMPARISONS  

 
Figure E.25 Comparison curves at 400°C 
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Figure E.26 Comparison curves at 500°C 

 
Figure E.27 Comparison curves at 600°C 
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Figure E.28 Comparison curves at 700°C 

 
Figure E.29 Comparison curves at 800°C 
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Figure E.30 Comparison curves at 900°C 

 
Figure E.31 Comparison curves at 1000°C
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