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Abstract 

 

Evaluation of Redundancy in Trapezoidal Box-Girder Bridges 

Using Finite Element Analysis 

 

 

Catherine Grace Hovell, M.S.E. 

The University of Texas at Austin, 2007 

 

SUPERVISOR:  Eric B. Williamson 
 

The AASHTO Bridge Design specifications define a fracture-critical member as a 

component in tension whose failure is expected to result in the collapse of a bridge.  The 

tension flanges of twin box-girder bridges are thus labeled as fracture-critical.  In order to 

avoid the catastrophic collapse suggested by the AASHTO specifications, fracture-critical 

bridges, constituting 11% of all steel bridges in the country, are subjected to frequent and 

stringent evaluation and inspection.   

The Texas Department of Transportation, interested in reducing the cost of an 

otherwise attractive bridge design, is now questioning the validity of the original 

statement by AASHTO.  In particular, it is not clear whether or not a single localized 

fracture can lead to the collapse of a bridge.  Contrary to this belief, there have been 

multiple instances of fracture-critical bridges with two tension flanges that have 

experienced fracture without collapse.  This project was designed to determine the level 

of redundancy that can be found in twin box-girder bridges. 

To achieve this goal, a full-scale test specimen of a box-girder bridge was built at 

the Ferguson Structural Engineering Laboratory in Austin, Texas.  In unison, a finite 

element model of the bridge was built using ABAQUS/Standard.  A fracture was initiated 



vii 

in one bottom flange of the test specimen.  The data gathered during the test were 

compared to the calculated response from the model to verify the predictive capabilities 

of the model.  If able to predict response accurately, a computer model could be used 

during design to indicate the presence of redundancy and the decreased need for frequent 

inspection of a bridge. 

The computer model was used to simulate a full-depth web fracture event in the 

exterior girder of a twin-girder bridge with a very large horizontal radius of curvature.  

The model was then modified to consider the influence of several parameters, including 

radius of curvature, structural redundancy through continuous spans, and external 

bracing.  Results obtained from the finite element model indicate that adequate 

redundancy exists in the bridge design to maintain stability after the fracture of one 

girder.  The most significant design change is to add continuity through spans, as adding 

structural redundancy greatly reduced the expected deflections and stresses that would be 

induced in the system. 

Further study using the modeling techniques presented in this thesis should begin 

by verifying or improving upon the assumptions that were made.  Specifically, the 

concrete material model and the shear stud modeling method should be examined in more 

detail and should be used to predict the response of smaller-scale laboratory tests.  With 

further refinement, this model could be utilized during the design phase to verify the 

presence of redundant load paths and thus reduce the necessity for frequent inspections. 
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CHAPTER 1  
Introduction and Scope of Research 

 

1.1 INTRODUCTION 

In recent years, an increasing interest has developed in designing bridges to be 

aesthetically pleasing, in addition to functional and cost-efficient.  One of the most 

popular designs that has come out of this movement are steel trapezoidal box-girder 

bridges.  In terms of capacity, a single steel box girder effectively replaces two plate 

girders.  To maintain a clean and smooth external appearance, the girders feature a hidden 

interior space where structural bracing can be located, out of sight of passing motorists.  

Especially in the design of elevated flyovers at highway interchanges, steel box girders 

present a streamlined look from below while still achieving tight radii of curvature.  A 

typical box-girder design, in use in Austin, TX, is shown in Figure 1-1. 

 
Figure 1-1: A typical twin box-girder overpass in Austin, TX 
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Highway flyovers usually include one or two lanes of traffic; the necessary deck 

width can be handled by four plate girders or two trapezoidal box girders.  The main 

difference between the two exists in what the American Association of State Highway 

and Transportation Officials (AASHTO) considers to be the most critical location: the 

tension flange.  Four plate girders have four tension flanges while two box girders only 

have two. 

The AASHTO Load and Resistance Factor Design (LRFD) Bridge Design 

specifications define a fracture-critical member (FCM) as a “component in tension whose 

failure is expected to result in the collapse of the bridge or the inability of the bridge to 

perform its function” (AASHTO 2004).  In the case of a two-girder bridge, both bottom 

flanges (as well as the webs and the weld between the two) are labeled fracture-critical.  

Because of this classification, a twin box-girder bridge is a fracture-critical bridge (FCB); 

a four plate-girder bridge is not. 

In order to avoid the catastrophic collapse suggested by the AASHTO 

specifications, fracture-critical bridges, constituting 11% of all steel bridges in the 

country, are subjected to frequent and stringent evaluation and inspection (Connor et al. 

2005).  The goals of the inspections include finding cracks in the tension members and 

evaluating the remaining life in a bridge with fracture-critical members.  These 

inspections, however useful in finding defects, are extremely expensive for the bridge 

owner, adding an estimated increase in cost between 200% and 500% (Connor et al. 

2005). 

1.2 PROJECT MOTIVATION 

Owners of fracture-critical bridges (e.g., state departments of transportation), 

interested in reducing the cost of an otherwise attractive bridge design are now 

questioning the validity of the original statement by AASHTO.  In particular, it is not 

clear whether or not a single localized fracture can lead to the collapse of a fracture-

critical bridge.  Contrary to this belief, there have been multiple instances of fracture-

critical bridges with two tension flanges that have experienced fracture without collapse.  
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In the United States, only two catastrophic failures have been attributed to a lack of 

redundancy.  In both cases (the Point Pleasant Bridge in West Virginia and the Mianus 

River Bridge in Connecticut), the bridges were found to have additional problems with 

poor material properties and corrosion, respectively, which helped lead to their collapse 

(Connor et al. 2005). 

In response to the uncertainty associated with the role of fracture-critical members 

on overall bridge behavior, the Texas Department of Transportation (TxDOT) and the 

Federal Highway Administration (FHWA) have funded the current project to evaluate 

methods of assessing the redundancy of steel bridges.  The project includes the 

construction of a full-scale twin steel trapezoidal box-girder experimental test specimen 

and the development of analytical models to determine the redundancy within these 

structures.  Both the experimental test setup and the analytical models feature a fracture 

event similar to what might occur during a fatigue failure.  Data from the experimental 

test specimen were used to validate the accuracy of the finite element model. 

A major objective of the research project is to determine whether an AASHTO-

defined fracture-critical bridge can withstand a full-depth fracture under load without 

collapse.  The analyses presented in this report provide methods of predicting 

performance of a bridge in a fractured state.  Results showing redundancy in trapezoidal 

box girders could allow TxDOT and other owners to reduce the frequency or stringency 

of their fracture-critical inspections, saving money every year.   

1.3 SCOPE OF PROJECT 

This project, TxDOT 0-5498, began in the fall of 2005 with a proposed three-year 

test plan.  At the conclusion of the second year, great progress has been made towards 

completing the objectives set forth at the beginning.  Specifically, to this point, the 

project has included: 

 building a full-scale test specimen, including TxDOT-approved deck and 

rails; 

 instrumentation of the bridge in locations of interest in a fracture situation; 



 4

 application and detonation of an explosive to simulate the fracture of the 

bottom flange, which potentially could create a fracture that would 

propagate through the webs of the exterior girder, under load; 

 experimental investigation of the pullout strength of shear studs (detailed 

by Sutton (2007)); 

 development of a finite element model of the test specimen;  

 comparison of data between the model and the structure under live loads 

and during the fracture situation; and 

 performing parameter studies using the model to consider the effects of 

various typical bridge details. 

The upcoming year will include further modifications to the analytical model and 

possibly a second fracture event of the test specimen.  More details of and suggestions for 

future research can be found in later chapters. 

1.4 OVERVIEW OF REPORT 

The remainder of this report includes details of the programming and use of a 

finite element model of the constructed full-scale steel trapezoidal box-girder test 

specimen.  Chapter 2 provides background information on fracture-critical bridges, 

including examples of previous incidents.  The specifics of the test specimen, including 

geometry and instrumentation locations, are given in Chapter 3.  Chapter 4 introduces the 

finite element analysis program ABAQUS, while Chapter 5 details the specifics of the 

model written in ABAQUS for this project, including material models and load step 

definitions.  Chapter 6 presents comparisons of the calculated and measured deflections 

and strains during various loading situations and at multiple locations on the girders.  

Chapter 7 summarizes the research and conclusions within the scope of this project and 

suggests further research to be completed. 
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CHAPTER 2  
History of Fracture-Critical Bridges 

 

2.1 INTRODUCTION 

The failures of the Point Pleasant Bridge in 1967 and the Mianus River Bridge in 

1983 led to the development of federal regulations for bridge maintenance and inspection 

of publicly-owned bridges (Lovejoy 2003).  Of particular concern were nonredundant 

bridges, or those bridges without multiple load paths, which were given the classification 

of “fracture-critical.”  Since the development of the regulations, fracture-critical bridges 

(FCBs) have been subjected to special “fracture-critical” inspections, which are more 

intensive and thus more expensive than the inspection required for redundant structures. 

In an effort to reduce inspection costs, bridge owners have begun questioning the 

appropriateness of the fracture-critical classification.  Specifically, twin trapezoidal box-

girder bridges are classified as fracture-critical, as there are only two tension flanges; 

however, considering load-carrying details of the design (Figure 2-1), the response of the 

structure after a fracture event may be more similar to that of a four plate-girder bridge 

than a two plate-girder bridge.  Previous events and research, detailed further in this 

chapter, and the research done for this project aim to determine the proper classification 

of twin box-girder bridges. 

 



(a) 

(b) 

(c)  

Figure 2-1: Comparison of internal redundancy in (a) a box-girder design, (b) a four plate-girder 
design, and (c) a twin plate-girder design 

In the past twenty years, the National Cooperative Highway Research Program 

(NCHRP) has released three reports focusing on redundancy in steel bridges.  The first, 
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NCHRP Report 319 (Daniels et al. 1989), suggests guidelines for redundant design and a 

rating system for two-girder steel bridges.  The second, NCHRP Report 406 (Ghosn and 

Moses 1998), discusses redundancy in bridge superstructures.  The third, NCHRP Report 

458 (Liu et al. 2001), applies the same thoughts and theories from Report 406 to bridge 

substructures. 

Following these three reports, NCHRP released Synthesis 354 (Connor et al. 

2005), which summarizes the history of the fracture-critical designation and the resulting 

specifications.  Additionally, Synthesis 354 suggests changes to current practices as well 

as ideas for future research, some of which overlap the intended goals of this project, 

TxDOT 0-5498.   

This chapter provides an overview of what was presented in these four NCHRP 

publications and gives an introduction to other completed research relating to the 

inspection, maintenance, and failure of fracture-critical bridges, including studies of 

FCBs using finite element analysis.  The history of the development of current 

specifications is also discussed, explaining the state of current inspection requirements.   

2.2 FRACTURE-CRITICAL BRIDGES 

Steel bridge design in the United States is governed by the Load and Resistance 

Factor Design (LRFD) specifications, developed by the American Association of State 

Highway and Transportation Officials (AASHTO).  Within the LRFD specifications, 

bridges with less than three tension flanges are referred to as fracture-critical.  These 

bridges are believed to be without redundancy, where redundancy is defined as “the 

capability of a bridge to continue to carry loads after the damage or failure of one of its 

main structural elements” (AASHTO 2006).  FCBs constitute approximately 11% of all 

steel bridges in the United States (Connor et al. 2005). 

Damage to, or failure of, a structural element can be caused by either sudden 

(often man-made) attack or by long-term degradation.  The former includes instances of 

damage to a bridge girder or pier by such things as a vehicle collision, a seismic event, or 
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an explosive charge.  The latter includes damage due to causes such as corrosion, scour, 

or fatigue. 

To ensure against failure due to natural degradation of a bridge and its constituent 

materials, fracture-critical bridges are inspected frequently and in great depth (detailed 

further in Section 2.4).  Despite the high cost, FCBs are being constructed in increasing 

numbers: Texas alone has built close to two hundred in the past twenty years (Connor et 

al. 2005).  Bridge owners, such as the Texas DOT, are now interested in determining if 

the fracture-critical classification is appropriate for all types of two-girder bridges. 

2.3 FATIGUE CRACKING 

The fabrication of steel bridge girders results in many minor imperfections, 

particularly in welded areas.  Under repetitive loading (e.g., truck traffic across a bridge), 

fatigue cracks can form from these imperfections.  With each repeated load cycle, the 

imperfection grows slightly.  After enough cycles, the damage reaches a threshold size 

and the crack grows uncontrollably (Frank 2007). 

The detectable initial flaw size is dictated by the technology available for 

inspection both prior to installation and over time.  The critical flaw size, which is 

defined as the threshold at which a crack will grow unabated, is a function of the material 

properties, specifically, the toughness.  The relationship between fatigue cycle and flaw 

size is shown graphically in Figure 2-2.  The expected remaining fatigue life dictates 

inspection frequency, as to allow multiple inspections between when the crack is detected 

and when it nears the critical length. 
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Figure 2-2: Flaw growth through repeated loading (modified from Frank 2007) 

2.4 DEVELOPMENT OF SPECIFICATIONS 

On a cold day in 1967, the Point Pleasant Bridge over the Ohio River collapsed 

(Figure 2-3).  The bridge, constructed of eyebar chains, failed when one of the eyebars 

fractured and there was no alternative load path.  A post-collapse investigation 

determined that the steel used – 1928 vintage, heat-treated AISI 1060 steel – was of very 

low toughness, especially at low temperatures (Scheffey 1971).  The collapse of the Point 

Pleasant Bridge, which caused forty-six deaths, initiated the first developments of 

material and inspection requirements against fracture in steel bridges. 
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  (a)   (b)  

Figure 2-3: The Point Pleasant Bridge, (a) pre- and (b) post-collapse (unknown, Connor et al. 2005)  

In the following years, the Federal Highway Administration began establishing a 

fracture control plan to improve safety in nonredundant structures.  Two main features of 

this original plan were to limit defects in steel structures and ensure certain levels of 

material toughness (Dexter 2004).  These requirements were satisfied through proper 

fabrication and inspection practices, and use of the Charpy V-notch toughness test, 

respectively. 

In 1968, the National Bridge Inspection Standards (NBIS) were established.  The 

current NBIS (1988) dictates two-year inspection cycles for highway bridges.  The 

inspection conditions depend on the bridge type and can be as simple as a visual 

assessment from the ground (Dexter 2004) or may require a thorough “hands-on” 

inspection (described below). 

In 1983, one span of the Mianus River Bridge in Connecticut collapsed (Figure 

2-4).  As with the Point Pleasant Bridge, where poor material properties contributed to 

the failure, the Mianus River Bridge did not fail solely because of fatigue loading or 

cracking.  The failure was determined to have been caused by corrosion in a 

nonredundant, improperly designed pin and hanger assembly (Failla 1985).   
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Figure 2-4: Mianus River Bridge, post-collapse (Fisher 2005) 

In response to this second catastrophic failure, in which three deaths occurred, the 

NBIS was modified in 1988.  The modifications included increasing the stringency of 

fracture-critical member inspections.  Specifically, the inspections were required to be 

“hands-on”.  For box girders, this requirement means the inspector must get inside the 

box (likely a small, dark, and uncomfortable space) and use non-destructive testing 

(NDT) methods to determine if observable flaws exist.  Due to the resources needed for a 

fracture-critical inspection – traffic control, equipment for bridge access, man-hours, 

NDT equipment – owners of FCBs estimated in an NCHRP survey a 200% to 500% 

increase in inspection costs over non-fracture-critical bridges (Connor et al. 2005). 

In summary, the current requirements to ensure the safety of fracture-critical 

bridges include four major features.  The first places a requirement for toughness on the 

steel, which increases with the critical flaw size.  The second reduces the allowable 

fatigue stress ranges, which slows crack growth.  The third implements stricter quality 

control of weld details, which decreases the number and size of flaws.  Lastly, in-field, 

hands-on inspections of critical tension sections are mandatory every two years, which is 

sufficiently frequent to allow for deflection of flaws. 

2.5 SPECIFICATION SHORTCOMINGS 

One of the existing limitations in current design and inspection codes is a lack of 

specificity.  For instance, in considering bridge geometry, there is no distinction between 
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two-girder bridges made of plate girders versus box girders, even though it has been 

shown that boxes have much higher torsional rigidity and multiple load paths through 

internal bracing and connections with the composite deck (Dowling 1975, Ghosn 1998).  

Rather, a bridge is considered as a whole and requires frequent inspection if the tension 

(i.e., critical) sections are not great enough in number to be thought redundant.  Looking 

solely at individual members or components ignores system effects such as structural 

redundancy, as would occur in a multi-span continuous girder bridge, and internal 

redundancy, which would consider the internal bracing in a box girder.  These two design 

alternatives are discussed more fully in Section 2.8. 

As is pointed out in NCHRP Synthesis 354 (Connor et al. 2005), the lack of a 

clear definition of requirements extends to the loads expected to be resisted.  Considering 

what is currently required, the authors highlight that “these definitions are not clear about 

what load type, magnitude, distribution on the bridge, dynamic amplification, and load 

factors are supposed to be resisted by the damaged structure.”  A change in applied load 

in a damaged state could be the difference between resisting collapse and failing to do so. 

The redundancy provisions given by AASHTO also fail to give credit to material 

improvements that have occurred since the codes were first developed.  Unlike the steel 

of the Point Pleasant Bridge, most ordinary steels manufactured currently outperform the 

required notch toughness criteria, especially in warmer climates (Dexter 2004).  High-

performance steels respond even better than ordinary steels, thus further decreasing the 

chance of a fatigue crack that would not be noticed prior to collapse. 

The lack of clarity in current specifications, combined with events that show 

redundancy in structures classified as non-redundant (as described in the next section), 

have led to research projects such as the current one and pressure by owners for 

inspection requirements to be loosened.  A better understanding of what loads must be 

resisted by a structure and whether redundant load paths exist are needed to ensure the 

safety of steel bridges before inspection cycles are lengthened. 



 13

2.6 PREVIOUS FRACTURE EVENTS 

The NCHRP report on redundancy in highway bridge substructures (Liu et al. 

2001) defines collapse as “a major change in the geometry of a bridge rendering it unfit 

for use.”  With the exception of the two failure events mentioned above (the Point 

Pleasant and Mianus bridges), both caused by a combination of factors including, but not 

limited to, fatigue, there have not been any collapses of major steel bridges with fractured 

superstructures (Connor et al. 2005).  There have, however, been multiple bridges, some 

with only two girders, which have been able to withstand partial- or full-depth cracks 

without collapse.  These instances include: 

 US-52 Bridge over the Mississippi River, 1976 

This incident involved a two-girder bridge that experienced a full-depth 

fracture through the web and tension flange of one girder.  Deflections of 

2.5 in. were noticed relative to an adjacent span 48 days before the 

fracture was found.  During those 48 days, the fractured span deflected an 

additional 4-6.5 in. (Fisher 1977). 

 I-79 bridge in Pittsburg, Pennsylvania, 1977 (Figure 2-5) 

This incident involved a two-girder bridge that experienced a full-depth 

fracture through the web and tension flange of one girder.  The deflections 

were so slight that the fracture was not noticed until a passing ship captain 

noticed light through the girder (Schwendeman 1978). 

 US-422 Bridge near Pottstown, Pennsylvania 

This incident involved a two-girder bridge that experienced a partial-depth 

fracture of one web and tension flange.  The fracture was approximately 9 

in. deep.   
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Figure 2-5: Full-depth fracture in I-79 bridge in Pittsburg, PA (unknown) 

2.7 CONTROLLED FRACTURE TEST 

In addition to fractures that occur during the service life of a bridge, testing has 

been done on twin-girder fracture-critical bridges.  In 1993, researchers from New 

Mexico State University tested a twin plate-girder bridge on I-40 in New Mexico.  The 

bridge was a straight, continuous, three-span unit with two parallel plate girders, shown 

in Figure 2-6.  Transverse floor beams were spaced at 20.4 ft to 21.7 ft longitudinally, 

and angles were used for cross-bracing, shown in Figure 2-7 (Idriss et al. 1995).  The 

change in brace spacing corresponds with the locations of the intermediate supports. 
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Figure 2-6: Cross-section of the I-40 bridge tested by Idriss et al. (1995) 

 

Figure 2-7: Transverse bracing profile for the three-span bridge tested by Idriss et al. (1995) 

The test, run statically, involved cutting the bottom flange and web of one girder 

of the central span.  Before one girder was cut, temporary supports were erected to help 

keep both girders in position.  After the cuts were made, the supports were slowly 

released, allowing the researchers to measure the deflections and stresses during the 

“fracture event”. 

The fracture event occurred in four stages, illustrated in Figure 2-8.  The first step 

removed a two-foot section in the middle of the web.  The second continued the fracture 

of the web down to the flange.  The third step involved cutting a quarter of the bottom 

flange from each exterior edge, resulting in the bottom flange being half the design width.  

Finally, the remainder of the bottom flange was removed.  The measured strains at 

various points on the girders showed little change until the final step.  It was only after 

both the flange and the web were severed that the load had to redistribute fully.  The 

measured deflection at the fracture location was 1.2 in. 



 (a) (b) (c) (d)  

Figure 2-8: Fracture steps in New Mexico test; hashing indicates fractured area  

One limitation with this test set-up is that it does not mimic the staging of an 

actual fracture event.  While a fracture could initiate near the center of the web (in this 

case, where the floor beams framed in), a possible worse-case could be if the crack began 

at the weld between the web and bottom flange.  In that case, the fracture could continue 

up the web and out the bottom flange at the same time.  Additionally, a static test does 

not capture dynamic effects of a fracture event.  Idriss et al. (1995) mention that 

fracturing the web and half of the flange did not cause crack propagation through the 

remainder of the flange; however, dynamically applied loads could have caused such 

damage.   

According to basic dynamics principles, dynamically applied loads can induce 

stresses comparable to those experienced from twice the statically applied load (Chopra 

2000).  Research, specifically in progressive collapse of buildings, has shown that 

damping, inelastic material response, and loading rate effects reduce the increase from 

dynamic load redistribution to closer to 1.5 times the static load (Ruth et al. 2006).  

Considering either dynamic amplification factor, the stresses in the bottom flange of the 

New Mexico test could have been high enough to propagate the fracture through the 

flanges. 
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2.8 RESEARCH USING FINITE ELEMENT ANALYSIS 

Finite element analysis (FEA) has been used since its inception to analyze the 

response of bridges and many other types of structures under loads.  This section 

highlights a few studies of twin-girder bridges run in SAP2000 (Computers and 

Structures, Inc. 2006), a commercially-available structural analysis program.  

Additionally, a brief overview of the trapezoidal box-girder analysis program UTrAp 

(Popp et al. 2004) is given. 

Crampton et al. (2006) used SAP2000 to evaluate the structural redundancy of the 

I-70 Poplar Street Complex.  The two-girder bridge experienced brittle fractures in three 

girder webs over five years.  The analysis was geared towards determining loads that 

would need to be resisted in a retrofit shear plate designed to recover the strength lost 

with the fractures.  A non-linear analysis allowed for a reduction in the number of 

fasteners and a decreased plate depth compared to the original elastic design. 

Elastic models were also run to determine the redundancy in two-girder structures 

post-fracture.  The pre-fracture shear and moment demands were calculated and 

compared to the post-fracture capacity.  The research also considered the two-girder I-

435 bridge spanning the Missouri River after fatigue cracks were discovered there.  A 

SAP2000 analysis was written and run (Figure 2-9) considering elastic and inelastic 

behavior.  The results showed the bridge to be unable to withstand a full-depth fracture 

(Crampton et al. 2006).   
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Figure 2-9: Finite element analysis in SAP2000 of the I-435 bridge (Crampton et al. 2006) 

In 2002, a research team at the University of Texas at Austin released the 

trapezoidal box-girder analysis program UTrAp (Popp et al. 2004).  UTrAp was designed 

to calculate the elastic and buckling responses of box-girder bridges during construction 

loading.  The program uses shell elements for both the girder sections and the deck 

elements, truss elements for internal and external bracing, and linear spring elements for 

the shear studs (Topkaya and Williamson 2003).  Calculated values from UTrAp are used 

later in this research project to make comparisons between computational methods and 

between analytical and experimental data.  In its present state, a post-construction 

fracture module could be added. 

2.9 ALTERNATIVE REDUNDANCIES 

The wording of the definition for redundancy in the AASHTO specifications does 

not give engineers a clear method for determining redundant load paths in the structures 

they design.  Especially for two-girder bridges, there are two main load-carrying 

members: each of the two girders into which the deck and bracing are framed.  However, 

the NCHRP reports have pointed towards alternative sources of redundancy that might 



not be initially evident upon considering a structure.  Specifically, transverse bracing 

systems and structurally indeterminate designs can create alternative load-transfer 

capabilities (Daniels et al. 1989).  While most design methods ignore the contribution of 

bracing members, the researchers showed through finite element analysis that 

redundancies do exist in these additional structural systems. 

The following sections highlight two of the redundancies that can exist in a bridge 

design that are not accounted for in the AASHTO specifications.  The first is structural or 

longitudinal redundancy, as exists in a continuous structure.  The second is internal or 

transverse redundancy, which considers the bracing systems and composite deck 

connecting the two girders. 

2.9.1 Structural Redundancy 

All the fractured bridges mentioned in Section 2.6 had continuous spans, unlike 

the test specimen studied in TxDOT 0-5498.  To illustrate the effects of redundancy, 

consider a continuous beam with three spans and a centralized fracture (Figure 2-10).  

For this scenario, the end spans become similar to two overhung cantilevers.  Although 

the transverse profile may not seem redundant, the longitudinal system with a centralized 

fracture is statically determinate and could be stable.  The change in structural geometry 

is shown in Figure 2-10, with an exaggerated approximation of the deflected shape shown 

as a dashed line. 

(a) 

(b)  

Figure 2-10: Structural redundancy in (a) a continuous span, and (b) a double-cantilevered response 

A simply-supported structure does not necessarily have structural redundancy.  

For a single-girder bridge, all forces would have to be resisted by the deck and rails, 
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which is unlikely to be possible.  A second girder could create transverse redundancy, 

adding an alternative load path through the deck to the second, unfractured girder. 

2.9.2 Internal Redundancy 

It is important to note that the previous fracture events occurred on plate girders, 

rather than box girders.  While a twin box-girder bridge does have only two tension 

flanges, the two girders include four webs and four top flanges, as was shown in Figure 

2-1.  Within each girder, the internal bracing, designed to resist deformation during 

construction loading (prior to composite behavior being established), connects the two 

webs together.  This bracing makes one tub girder with a fractured flange comparable to 

two fractured plate girders connected with stability bracing. 

AASHTO does not consider bridges with more than two girders, or two 

independent load paths, to be fracture-critical.  There have been several cases of multi-

girder bridges with partial- or full-depth fractures that have not resulted in collapse.  One 

such bridge is the Hoan Bridge in Wisconsin (Connor et al. 2005).  In the winter of 2000, 

fractures were found in the Hoan Bridge, a continuous three-span structure with three 

girders.  Two of the three girders were fully fractured; the third was partially fractured.  

Even so, the structure remained stable, although deformed (Figure 2-11). 

 

Figure 2-11: The Hoan Bridge in Wisconsin, post fracture of two of the three plate girders (Connor 
et al. 2005) 
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Another less severe example is the Brandywine River Bridge on I-95 in Delaware 

(Quiel 2003).  The three-span continuous bridge has six haunched 8-ft deep plate girders.  

An unnoticed weld flaw grew through fatigue into a seven foot fracture of the fascia 

(outermost) girder of the center span.  Like the I-79 bridge in Pittsburg, the fracture was 

not noticed by the state DOT nor drivers, but by a citizen walking below the bridge. 

Internal redundancy can also refer to the connection details of a built up member, 

depending on whether a crack can propagate between two adjoining pieces of steel (Liu 

et al. 2001).  A plate or box girder with bolted connections would have this type of 

internal redundancy.  Welded connections, as are used on the bridge studied in this 

project, do not.  Bolted continuity plates have been used to create redundancy or repair a 

bridge after a fracture event, such as by the Illinois DOT at the Poplar Street Complex 

(Crampton et al.).   

2.10 SUMMARY AND CONCLUSIONS 

The classification of some steel bridges as fracture-critical, while necessary in 

some cases, may have been applied too broadly to all twin-girder bridges.  Unlike twin 

plate-girder bridges, twin box-girders have webs and internal bracing that is similar to a 

four plate-girder structure.  Considering the high cost that is spent on bi-annual 

inspections of fracture-critical bridges and the necessity for safe bridges, there is a need 

to more fully understand the redundancies that exist in twin box-girder bridges.   

In this project, a full-scale test specimen was constructed and tested.  The results 

were compared and combined with those from a finite element analysis model of the 

bridge that was designed considering previous research using FEA.  The next chapter 

presents details of the test specimen. 
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CHAPTER 3  
Test Specimen Details 

 

3.1 INTRODUCTION 

This project was originally proposed as one based on analytical modeling and 

small-scale laboratory tests.  The scope was expanded when a full-scale twin steel box-

girder bridge became available to the research team.  The girders were in use in a high-

occupancy vehicle (HOV) bus lane in Houston that was dismantled in the fall of 2005.  

During demolition of the previously existing deck in Houston, the girders suffered some 

damage and were repaired at Trinity Industries, Inc. in Houston, TX.  In January, 2006, 

the girders were shipped to the University of Texas at Austin. 

Between June and August, 2007, the bridge was reconstructed following current 

TxDOT design and construction practices, with an outside contractor building the deck 

and rails.  TxDOT engineers developed the plans, and a TxDOT inspector oversaw the 

contractor’s work.  The result was a full-scale test specimen similar in design and 

construction to one that could exist in the field.  A sketch of the bridge cross-section is 

given in Figure 3-1. 

 

Figure 3-1: Cross-section of the trapezoidal box girders, deck, and rails 
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In parallel with the specimen construction, a finite element model matching the 

real bridge was created in ABAQUS (HKS, Inc. 2006).  The following sections detail the 

physical structure, and Chapter 5 provides a detailed description of the ABAQUS model 

that was developed.  Each chapter focuses on specific areas of interest that arose during 

the investigation. 

3.2 FULL-SCALE TEST SPECIMEN 

Before the girders arrived in Austin, the research team constructed concrete piers 

to act as supports for the structure.  During this time, the girders were at Trinity 

Industries, Inc., being repaired from the damage done during demolition.  The repairs 

included heating and straightening parts of the top flanges, webs, and internal bracing.  

Additionally, many deformed shear studs were replaced.  In January, 2006, the girders 

arrived in Austin and were erected.  A local contractor began forming the deck in late 

June.  By late September, instrumentation had been placed along and within the girder 

and deck, the deck and rails were cast, and the concrete had cured sufficiently to be ready 

for testing. 

The following sections present further details to the construction and 

instrumentation.  A more complete description of the test specimen can be found in 

Barnard (2006).   

3.2.1 Girder Geometry 

The test specimen consists of two trapezoidal girders with a slight horizontal 

curvature.  The centerline length is 120 ft and the width from flange tip to flange tip is 19 

ft (Figure 3-2).  The girder depth is 4 ft-9 in., constructed with inclined webs.  The 

bottom flange is 3 ft-11 in., and the top flanges are 6 ft apart at their centers.  The cross-

sectional dimensions of the girders can be found Figure 3-2. 
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Figure 3-2: Box girder cross-sectional geometry 

3.2.2 Plate Thicknesses 

The girder webs and flanges are made up of constant-thickness plates.  The design 

calls for a bottom flange thickness of 0.75 in., web thicknesses of 0.5 in., and top flange 

thicknesses of 0.625 in.  These values were confirmed with spot testing along the girders; 

a comparison of the designed and measured averages can be found in Table 3-1. 

Table 3-1: Measured and designed plate thicknesses (Barnard 2006) 

 Average Measured 
Thickness, in. 

Plan Thickness, 
in. % Difference 

Top Flange 0.646 0.625 3.3% 

Web 0.503 0.500 0.5% 

Bottom Flange 0.757 0.750 0.9% 
 

3.2.3 Longitudinal Design 

The bridge has a radius of curvature of 1365.4 ft, meaning the interior girder has a 

centerline length of 119.5 ft and the exterior girder has a centerline length of 120.5 ft.  

Each girder has a solid 0.5-in. plate internal diaphragm at the support points, located 1 ft-

1.5 in. from the end of the girder.  Another diaphragm connects the two girders to one 

another.  The original design used pot bearings bolted to the bent caps for support; the pot 

bearings were removed and destroyed during the deconstruction of the bridge in Houston.  

As an alternative, elastomeric bearing pads were used when the bridge was reconstructed 
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outside the Ferguson Structural Engineering Laboratory (FSEL) at the University of 

Texas at Austin.  The pads are made of approximately 3-in thick neoprene pads with nine 

1/16th-in. embedded steel plates (Barnard 2006).  

Along the length, the girders feature four different types of bracing: vertical 

stiffeners, internal stiffening trusses, top lateral braces, and external construction braces.  

The function and structural design of each of these braces are detailed below. 

3.2.3.1 Vertical Stiffeners 

Vertical stiffeners are welded perpendicular to the webs and provide bracing 

against local buckling of the webs under construction and service loads.  On the test 

specimen, the vertical stiffeners measure 0.625-in. thick by 7-in. wide and are located 

every twelve feet down the length of the girder. 

3.2.3.2 Internal Braces 

During construction, unrestrained webs can bend outwards, distorting the cross-

section (Figure 3-3) (Gilchrist 1997).  In an effort to prevent or limit this mode of 

deformation, internal K-frame braces are used down the length of each girder with one 

placed every twelve feet.  On the test specimen, the K-frames consist of three steel angles 

forming a downwards-facing K, as shown in Figure 3-4.  The top member is a L5×5×3/8, 

and the two angled members are L3×3×1/4s.  The orientation of the vertical stiffeners is 

also shown. 

 

Figure 3-3: Bending distortion in unrestrained webs (Gilchrist 1997) 
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Figure 3-4: Internal brace structural design 

3.2.3.3 Top Lateral Braces 

One of the strengths of trapezoidal box girders is that, once fully constructed with 

a composite deck, the section is closed.  Closed geometries are extremely stiff against 

torsion and are thus excellent in curved bridge structures (Salmon and Johnson 1980).  

However, before the composite deck hardens, an unbraced tub girder is an open section 

and has very low torsional stiffness.  Top lateral braces, which span across the open top 

of the box, create a semi-closed section and add significant resistance against torsion and 

warping during deck placement. 

The largest stresses the braces should experience occur during construction, as, 

once the deck is cast, the concrete deck closes the section.  A lack of bracing has been 

cited as the cause of multiple failures during construction (Sennah and Kennedy 2001).  

The top lateral braces in the bridge tested in this project consist of an alternating pattern 

of steel L-sections that connect the flanges every twelve feet.  A plan view of the bridge 

and top bracing can be seen in Figure 3-5. 
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Figure 3-5: Designed and built bracing locations 

The top lateral bracing on the bridge highlights the importance of confirming the 

as-built status of the bridge to the plans: the original plans showed the top bracing 

alternating direction between the inside and outside girder.  When the girders arrived, 

however, it was noted that the constructed design did not match the original design as 

seen in Figure 3-5. 

3.2.3.4 External Braces 

With two girders, each can rotate independently from the other, creating a 

differential between the exterior top flange on the interior girder and the interior top 

flange on the exterior girder (Figure 3-6).  Unchecked, the differential displacement will 

result in a non-uniform deck.  The analysis program UTrAp (Popp et al. 2004) was used 

to compute the rotations at midspan for a single girder under load (i.e., half of the bridge 

used in this study).  The rotation across the girder was then used to project an expected 

differential between the interior and exterior girders for the two-girder bridge.  The 

differential was between 0.25 in. and 0.5 in, or enough to warrant the use of external 

braces. 
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Figure 3-6: Rotation differential during construction (Barnard 2006) 

The original bridge was built in Houston with four external brace locations, one 

every 24 ft down the length.  The results from UTrAp showed this bracing layout to be 

more conservative that what was needed; two would be adequate.  The braces were 

installed 12 ft north and south of the centerline where bolt holes already existed in the 

web.  The two brace points lined up with the internal stiffeners, which minimized web 

distortion while restricting independent rotation of the girders.  The external brace 

location can be seen in Figure 3-5, and the structural details can be seen in Figure 3-7. 

 

Figure 3-7: External brace structural design 

3.2.4 Deck Design 

To ensure that the test specimen would closely parallel in situ conditions, the 

constructed deck and rails matched the original design, were built by an outside 
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contractor, and were inspected as is standard in the field.  The result is a bridge deck and 

rail system typical of what exists on constructed trapezoidal box girder bridges across the 

state. 

The overall deck dimensions are 23 ft-8 in. in width and 120 ft in length.  The 

design depth is 8 in. with a 3 in. haunch over each flange.  This haunch is a typical detail 

to account for differences in the flange thickness and superelevation of the bridge along 

its length.   

The deck concrete is reinforced with two layers of rebar placed transversely and 

longitudinally.  The rebar profile can be seen in Figure 3-8.  The haunch can also be seen 

above the flange.  

 

Figure 3-8: Rebar profile in cast-in-place concrete deck 

3.2.5 Rail Design 

The constructed rails are TxDOT T501 safety rails (TxDOT 2003), measuring 2 

ft-8 in. high on the backside and 1 ft-5 in. in total width.  As was the TxDOT requirement 

until recently, expansion joints were included along the length, placed every 30 ft.  

Meeting this requirement meant placing an expansion joint in the rails at the centerline of 

the bridge, above the fracture initiation point.  The rail profile can be seen in Figure 3-9.  
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Figure 3-9: Dimensions of T501 cast-in-place rail (TxDOT) 

3.2.6 Shear Studs 

In composite bridge construction, shear studs are welded to the top flange of the 

steel bridge girders, and they project into the concrete deck.  The primary function of the 

shear studs is to resist lateral and longitudinal differential movement between the deck 

and girder.  In the case of a full-depth fracture, however, the shear studs are a part of the 

primary load path for the gravity loads acting on the fractured girder, and they need to 

resist high tension forces. 

The shear studs on the girders used in this project are grouped in threes (Figure 

3-8) every 22 in. and are 5 in. in height.  Considering the 3-in. haunch, the studs protrude 

past the top of the haunch and into the deck but do not fully overlap with any of the rebar.  

The interaction is seen in Figure 3-8, where the top of the shear studs is nearly level with 

the bottom layer of rebar.   

The influence of shear stud interaction with the concrete and rebar of the deck, as 

well as the tensile pullout capacity, was studied within this TxDOT project.  The series of 

tests run indicate that with a 3 in. haunch and three shear studs across the flange, low 

tensile strength and very little ductility should be expected (Sutton 2007).    
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3.3 LIVE LOAD APPLICATION 

Current bridge design codes require live load considerations equal to that of one 

truck, thought to be characteristic of typical loads in length and weight (AASHTO 2004).  

Because the AASHTO fracture-critical specifications do not clearly state what type, 

magnitude, or distribution of load must be withstood (Connor et al. 2005), the research 

team decided with TxDOT engineers that the AASHTO design truck would be an 

acceptable amount of load. 

Because the test specimen was built with the goal of capturing a worst-case 

loading situation, the variable axle spacing (given as 14 to 30 ft in the AASHTO 

Specifications (2004)) was set at 14 ft to apply the maximum moment attainable from the 

truck.  The equivalent “truck” was placed 2 ft from the base of the rail, the minimum 

distance for lane painting as set by AASHTO.  Longitudinally, the worst location (in 

terms of moment induced) was determined using a beam bending equation from the 

American Institute of Steel Construction (AISC) LRFD design manual (AISC 2001).  

The manual states: 

 

the maximum bending moment produced by moving 

concentrated loads occurs under one of the loads when that load 

is as far from one support as the center of gravity of all the 

moving loads on the beam is from the other support (pg 3-226). 

 

The bridge specimen was loaded with concrete girders and blocks, representative 

of the AASHTO HS-20 truck.  Using the equation that can be derived from the statement 

in the AISC manual, the equivalent “truck” was placed with the center axle load 3 ft 

north of the longitudinal centerline of the bridge.  The lighter front axle load was 

positioned towards the south, 11 ft off centerline; the equivalent rear axle load was placed 

17 ft from the centerline.  The HS-20 truck is shown in Figure 3-10, and a picture of the 

concrete girders that provide essentially the same load is provided in Figure 3-11. 
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Figure 3-10: Standard AASHTO HS-20 truck (AASHTO 2004) 

 

Figure 3-11: Concrete used to represent the AASHTO truck on the test specimen 

3.4 FRACTURE EVENT 

A major focus of this research project is to study the response of a steel 

trapezoidal box-girder bridge during and after a fracture event.  The critical step in 

constructing and running a test is creation and propagation of the fracture. 

Most research on fracture uses repetitive loading to mimic the cyclic effects of 

fatigue: namely, small fatigue cracks at critical locations.  Because of the size of the test 
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specimen and the loads required to create such cracks, creating a fatigue fracture with 

cyclic loading was not a viable option for this test. 

As a relatively easy and repeatable alternative, an explosive charge was placed on 

the bottom flange of the exterior girder to create a fracture.  Although an explosive would 

cut the steel much faster than a cleavage crack would propagate (by an order of 

magnitude), both situations create an impulse load over a duration much less than the 

natural frequency of the bridge, producing a similar fracture load scenario (Williamson 

2007, Washabaugh 1994).  Once the fracture was initiated, the response of the structure 

under load in a fractured state could be observed.   

3.4.1 Expected Response 

The belief of the research team was that the explosive would extend slightly into 

the bottom of the webs and the increase in stress around the tip of the deformation would 

propagate the crack through the webs until either the bridge fell or equilibrium was 

reached.  To create an appropriate fracture, the research team worked with explosives 

consultants from Southwest Research Institute (SwRI), located in San Antonio, to design 

a test setup.  A trial was run with a sample plate and the same explosive intended for the 

actual test, resulting in a cleanly-cut plate, shown in Figure 3-12.  The gold color comes 

from the copper backing that surrounds the charge before detonation. 

 

Figure 3-12: Cut edge of the trial plate 



Because of the shrapnel that results when using such explosives, a containment 

shield was built around the charge.  The day of the fracture event, the area was secured, 

reducing any chance of injury to persons in the area.  The test specimen immediately 

prior to the fracture event is shown in Figure 3-13.  The containment shield, located at the 

point of fracture, is painted orange. 

Explosive with 
shield 

 

Figure 3-13: Test specimen, with containment shield in place, 21 October 2006 

3.4.2 Actual Response 

As expected, the shaped charge had the capacity to cleanly and quickly cut the 

bottom flange of the exterior girder.  What was not expected was the toughness of the 

web steel and the extra strength that existed in those plates: the fracture did not propagate 

through the webs.  The explosive was designed to cut one inch of steel; this depth was 

achieved, as both the 0.75-in. bottom flange and 0.25-in. weld were completely severed, 

as shown in Figure 3-14. 
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Figure 3-14: Bottom flange, post-fracture 

More details of the response of the girders will be given in later chapters; 

however, it is important to note that the fracture of the bottom flange occurred without 

the webs fracturing.  This fracture event, with the flange but not the webs being severed, 

is represented in the finite element model detailed in Chapter 5 and influenced the data 

comparisons given in Chapter 6. 

3.5 INSTRUMENTATION 

Prior to performing any tests on the specimen, strain gauges were applied on the 

webs and flanges of the girders and in the deck.  A full description of the locations and 

types of gauges can be found in Barnard (2006), but a brief overview follows. 

3.5.1 Girder Gauges 

Three cross-sections along the specimen length were instrumented with strain 

gauges.  At two of the cross-sections, there were twelve single-directional foil gauges and 

six rectangular 0-45-90 rosette gauges; at the third, there were only the rosette gauges.  

Data were collected on both sides of each plate and then averaged to remove the effects 

of local plate bending.  The cross-sections were located six feet north and six feet south 
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of centerline.  On the south side, both girders were instrumented, whereas on the north, 

only the interior girder was instrumented.  The north cross-section did not include foil 

gauges.  Figure 3-15 shows the longitudinal locations of the three cross-sections; Figure 

3-16 illustrates the location around the girder, as well as a sample numbering system for 

the gauges.  

 

Figure 3-15: Foil and rosette gauge locations, presented in plan view (Barnard 2006) 

 

Figure 3-16: Foil gauge (F) and rosette gauge (R) locations within cross-section (Barnard 2006) 

Additionally, rosette gauges were placed at the north- and south-end diaphragms 

in the middle of the plate between the two girders.  Two gauges were again used at each 

location to capture the effect of local plate bending. 
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3.5.2 Deck Gauges 

Prior to casting the deck, members of the research team applied single-direction 

strain gauges to the reinforcing steel.  The gauges were located on the top and bottom 

layers of rebar, which allows for calculation of the bending forces through the depth of 

the deck.  The gauge locations are shown in Figure 3-17. 

 

Figure 3-17: Rebar strain gauge locations (Barnard 2006) 

Because the shear studs were determined to be a potentially critical detail of the 

design, there was an interest in gathering tensile data within the studs.  These strains were 

captured using 6-mm bolt gauges that were placed within selected shear studs.  The 

instrumented gauges were located within 22 ft of centerline, with the majority on the 

exterior flange of the interior girder.  The exact locations are given elsewhere, including 

in Barnard (2006), but the general locations can be seen in Figure 3-18. 
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Figure 3-18: Shear stud bolt gauge locations (Barnard 2006) 

The correlation between the gauges on the test specimen and elements in the 

analytical model can be found in detail in Chapter 5.  Comparisons of the data from the 

two sources are in Chapter 6. 

3.6 SUMMARY AND CONCLUSIONS 

Constructing, installing instrumentation, and testing the full-scale test specimen 

detailed in this chapter took significant time and expense.  Even more so, at the time of 

this writing, a complete failure state has not yet been achieved, so further resources will 

be needed to complete the testing plan.  Considering the capital needed for a single full-

size test, it is clear that repeated trials cannot be performed easily. 

Alternatively, a computer model can be used to vary parameters and make 

predictions of bridge response.  During the construction of the test specimen, a finite 

element model of the bridge was developed in ABAQUS/Standard.  Deflections and 

strains during various stages of construction and testing were compared between the test 

specimen and the model, verifying the accuracy of the model.  The following chapters 

introduce the finite element analysis program ABAQUS, discuss the formulation of the 

finite element model, and present the data gathered. 
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CHAPTER 4  
Using ABAQUS for Structural Analysis 

 

4.1 FINITE ELEMENT COMPUTER PROGRAMS 

Finite element analysis was developed to estimate the response of a complex 

structural system under load.  While a simple structure can be analyzed accurately using 

basic mechanics principles, a more intricate problem results in equilibrium, kinematics, 

and constitution equations that are difficult to solve in closed form.  To approximate the 

response, such a structure can be broken into small, discrete elements whose behavior is 

well-known (a further explanation of which can be found in Appendix A).  Finite element 

computer programs are designed to combine the effects of the individual elements to 

estimate overall structural response. 

There are several commercially-available finite element modeling packages, 

including ABAQUS, ANSYS, and LS-DYNA.  This project was modeled using 

ABAQUS/Standard. 

4.2 SELECTION OF ABAQUS FOR USE IN THIS STUDY 

ABAQUS is a three-dimensional finite element software package consisting of 

multiple solvers, a graphical user interface, and a post-processor.  The programs were 

developed in their most basic form in the 1980s and have increased in capability since.  

The most recent large-scale addition occurred in 1999, when the graphical user interface 

(GUI) ABAUS/CAE (Computer Aided Engineering) was introduced.  The programs are 

in a state of constant enhancement based on feedback from engineers in industry. 

One of the primary goals of this project is to develop an accurate model of bridge 

response that would be reasonable for a practicing engineer to develop.  To achieve this 

goal, many powerful but not widely-used analysis programs and methods were not 

considered to be viable options.  ABAQUS, a commercially-available program that can 
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run on a Windows-based computer and has been used successfully in other trapezoidal 

box-girder projects at the University of Texas (e.g. Topkaya 2002) was chosen. 

The analyses in this research project were run on a single processor personal 

computer using ABAQUS 6.6-1, released March 2006, produced by ABAQUS, Inc. in 

Providence, RI. 

4.3 ABAQUS PROGRAMS 

There are three main components of the ABAQUS package that work together to 

process problem statements, run calculations, and present data in an accessible manner: 

the CAE, the Command, and the Viewer.  Each can be accessed from the Start menu on a 

computer running Windows, as can be seen in Figure 4-1.  

 

Figure 4-1: ABAQUS menu under Programs in Windows XP (Microsoft 2001) 

4.3.1 CAE 

The most user-friendly form of ABAQUS is the CAE.  The user defines each part 

of a structure, including material and section properties, then one or more part instances 

are gathered to form the system.  The processor meshes each part based on desired 

element type and size.  The benefit of the program comes from the graphical ability to see 

each component as it is built. 

Behind the visual layer, the CAE assembles an input file that can later be located 

and modified by the user if necessary.  As an alternative, a previously-created input file 

(.inp) can be imported to the CAE program using File >> Import >> Model.  Because the 
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CAE doesn’t have the capacity to handle specific keywords that were desired for this 

analysis, it was deemed inappropriate for this project. 

4.3.2 Command Prompt 

There are two solvers available under the ABAQUS heading.  ABAQUS/Standard 

uses an implicit integration method, such as Newmark’s method, and is numerically 

stable for all time step values (although accuracy is lost with large time steps).  During 

each equilibrium calculation, the global stiffness matrix is reassembled, considering 

material and geometric nonlinearities.  ABAQUS/Explicit uses an explicit integration 

method.  Explicit integration considers the contribution of each element individually, thus 

allowing varying element contributions in each step without iterations.  However, explicit 

integration can be unstable if the time step is not small enough.  Further explanation of 

the difference between implicit and explicit solving can be found in a finite element text 

such as Belytschko et al. (2006).  When using ABAQUS, each solver is called through 

proper step definitions in the input file. 

When running analyses directly from input files, the jobs are started through the 

ABAQUS Command Prompt, available on the Start menu.  The Command Prompt runs 

like a DOS prompt.  The details of running ABAQUS analyses through the Command 

Prompt are given in Section 4.5.8. 

ABAQUS/Standard and ABAQUS/Explicit take text-based input files and run 

them through a preprocessor and the solver directly.  There is no visual representation of 

the project, so a much more direct knowledge of how the project is defined and how the 

solver calculates the response is necessary for an accurate and acceptable model.  An 

overview of how to write such an input file can be found in Section 4.5. 

4.3.3 Viewer 

ABAQUS/Viewer is a subset of the CAE.  It does not contain the processing 

capabilities needed to create a model, but it does include all post-processing options.  The 

Viewer can also be accessed from within the CAE, under the Visualization module. 
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The Viewer allows for full three-dimensional inspection of the model, graphical 

presentation of output values at nodes or elements, and animations of response through 

different load conditions.  The calculated values for individual nodes or elements can be 

found, or the model can be viewed as a whole with ranges expressed through color 

palettes.  

4.4 GENERAL RULES FOR USING ABAQUS 

As a starting point towards learning to use ABAQUS, it is a good idea to read 

through and replicate example problems available in the ABAQUS Example Problem 

books or study previously written input files on a similar project.  When writing code, the 

ABAQUS User’s Manual and Keyword Manual are invaluable tools. 

4.4.1 Unit Consistency 

ABAQUS has no fixed system of units, requiring the user be vigilant regarding 

consistency.  Establishing a set of units before beginning is important for continuity and 

accuracy of the model and the results.  If starting with an input file that was written by 

another programmer, it is important to confirm that the units are correct should additions 

or changes be made. 

4.4.2 Project Folder  

The ABAQUS solver creates multiple temporary files while running.  If using the 

CAE, these files are generally saved in a temporary folder on the local hard drive.  When 

using Standard or Explicit, the temporary files are located in the same folder as the input 

file, which is dictated by the user.  Of the files ABAQUS writes while running a job, 

most are deleted when the analysis is complete.  There are three important files for 

monitoring and post-processing, which are detailed further in Section 4.5.9.  The first 

step in running ABAQUS is to create a project folder through which files will be run.   

Experience has shown that ABAQUS will run fastest off a local hard drive, so the 

project folder should not be on a network drive.  The folder must also contain an 

ABAQUS environment file (.env), which can be found on the hard drive of a computer 
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with ABAQUS installed.  Among other things, the environment file defines how much 

memory the program will ask of the computer.  If this amount of memory is less than 

what the project needs to run, the pre-processor will quit with an error.  For this project, it 

was required to change the default value (512 MB) to a higher value (1024 MB). 

4.4.3 Input Files 

When using ABAQUS/Standard or ABAQUS/Explicit, the user submits an input 

file to the solver.  The different sections of the input file, described in greater detail in 

Section 4.5, contain all the specifications of the model and the job to be run.  As one 

character can greatly change an input file (perhaps causing or fixing an error), it is 

recommended that each draft is saved under a new name.  By keeping older drafts, the 

programmer decreases the chance of losing a functional input file while trying something 

new.  

When keeping each iterative input file, an excellent first step to creating a new 

file is to distinguish the new version.  One way of achieving this distinction is with 

*heading, which assigns a heading to the file that will be printed on all output files and 

can be used to describe what is being analyzed.  The single associated data line can 

contain up to 80 characters that will be the published heading from the file. 

4.5 OVERVIEW OF THE MAJOR STEPS INVOLVED IN USING ABAQUS 

Because this project was written and run directly through input files, the methods 

of writing such a file will be detailed here.  This section focuses on the main sections of 

model definition; specific details and uncommon model keywords for this project will be 

given in Chapter 5. 

To create a physical structure using ABAQUS input files, the main steps are as 

follows: 

 Create a file and folder for the model (described previously) 

 Create Nodes 

 Create Elements 
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 Define Section Properties 

 Define Material Models 

 Define Boundary Conditions 

 Enforce Physical Constraints 

 Write Load Steps 

 Submit the Job 

 Monitor Progress of the Job 

ABAQUS input files are run using keywords, each of which is prefaced by an 

asterisk (*) and are marked within this report in bold.  Each keyword has required and 

optional parameters that must be included for the program to understand the command.  

The required parts can be found in the ABAQUS Keywords Manual.  Each step discussed 

below includes keywords that should be used for the necessary definitions. 

Certain keywords within a model definition may require certain ordering with 

others, but in general the preprocessor combines the model information in a way that is 

compatible with what is needed for calculations.  Good programming practice suggests 

being logical in definitions (for instance, defining nodes before defining elements to 

connect those nodes), but definitions such as material models can be located before or 

after elements are created that use the material.  The order of sections that follow match 

those in the input file for this particular project, but they are not necessarily what must be 

done for the job to run successfully. 

4.5.1 Create Nodes 

Nodes are defined using *node.  Especially when analyzing a straight structure, it 

is generally a good idea to define the model in plane with the global axes.  If the global 

axes are undefined, ABAQUS will use default axes with global 1 being horizontal, global 

2 being vertical, and global 3 being into the page.  If elements align off the axes, output 

values will have to be resolved to determine the direct stresses through the element.  This 

situation is shown (for two dimensions) in Figure 4-2.  For models where elements do not 
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align with the default axes, or polar or cylindrical coordinate systems would be more 

appropriate, the *system keyword should be used. 

 

Figure 4-2: Global (1 – 2) and local (1' – 2') axes along an element 

In a small model, the coordinates of every node can be included in an input file 

without much effort or space.  However, if the programmer is interested in reducing the 

clutter in the input file, there are several ways to condense the number of lines needed to 

define the nodes.  One simple and necessary way of grouping nodes and elements is to 

use the *nset and *elset keywords to create sets.  In creation and manipulation, defining 

sets removes the need to list every element when defining other properties common to 

many objects.  For node generation alone, *ngen, *nfill, and *ncopy can be used. 

4.5.1.1 *ngen, *nfill 

The keywords *ngen and *nfill are used to create nodes based on the locations of 

certain other nodes.  For each keyword command, two nodes or lines of nodes are given, 

and between them, nodes are created.  For instance, the command for *nfill might be: 

*nfill 

line1, line2, 5, 100 

These lines in the input file would result in five lines of nodes being defined 

between line1 and line2.  The last definition in the card (100) refers to an increase in node 

number with each additional node.  Thus, if the nodes in line1 are numbered 1 through 

20, the next rows will be numbered 101 through 120, 201 through 220, and so on.  The 
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location of the nodes will be determined as a percentage of the space between the original 

nodes, so as to make even divisions. 

Both *ngen and *nfill can define different sets of non-linear nodes – nodes on a 

circle, for instance, or nodes that geometrically bias towards one end of the set.  As one 

may work better than the other in a given situation, both should be considered. 

4.5.1.2 *ncopy 

The keyword *ncopy copies nodes and is highly useful in the case of a radially 

swept node layout such as in this project.  The first plane of nodes can be defined and 

then repeated as many times as desired with a given angle between each new plane of 

nodes.  The *ncopy command can also be used to extrude an element longitudinally, but 

*nfill requires fewer parameters to do the same thing. 

4.5.1.3 *node, input= 

One of the optional parameters under the *node keyword is the option to input a 

file of nodes.  In a model where many nodes will have to be defined exactly, as opposed 

to en masse using the previously explained methods, this option can remove hundreds of 

lines of code from an input file.  However, it becomes necessary to maintain an additional 

file that includes the nodes to be added to the model.  A copy of this file must be in the 

same folder through which ABAQUS will run the job. 

4.5.2 Create Elements 

Elements are created and generated using *element and *elgen, respectively.  The 

*element keyword parameters include defining the element type and element set.  The 

latter then calls back to section and material definitions, which can be defined anywhere 

in the input file.  It is helpful to gather all material and section property definitions 

together, rather than with the specific element definition, as each section or material is 

often used for more than one element set within the model. 

There are several different element types available in ABAQUS and most finite 

element programs.  The response of an element type should be considered when choosing 
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how to model a part of the structure being studied.  For more information, see Appendix 

A, where the response of linearly- and quadratically-modeled beams is presented. 

4.5.2.1 Element Type Nomenclature 

The nomenclature in ABAQUS reflects the type of element and the order of the 

approximating equation.  For instance, a beam element in three-dimensional space (as 

opposed to planar) with two nodes would be labeled a B31 element (the 1 referring to the 

linear behavior calculated between the nodes), as detailed in Figure 4-3. 

 

Figure 4-3: Element type nomenclature (HKS, Inc. 2006) 

4.5.2.2 Element Definition 

An individual element is defined using the nodes that comprise it.  The most 

important detail is keeping the order of node definition correct.  Incorrect numbering can 

result in an element that is invalid.  Examples of correct and incorrect node numbering 

schemes are given in Figure 4-4. 

 



 

 

 

 

 (a) (b) (c)  

Figure 4-4 Correct and incorrect numbering schemes for a 4-noded element 

While Figure 4-4(a) shows clear problems in the defined geometry of the element, 

Figure 4-4(b) might not be as clear.  Both elements defined, while geometrically correct, 

could cause a problem when applying loads or understanding calculated stresses.  Each 

element type has an “outward normal” associated with it, defined by the node numbering 

scheme.  For beam elements, the normal is perpendicular to the tangent of the element, as 

shown in Figure 4-5(a).  For a shell element defined as those in Figure 4-4(c), the normal 

comes out of the page. 

 
  (a) (b)    

Figure 4-5: Outward normal directions for (a) beam and (b) shell elements (HKS, Inc. 2006) 

The normal definitions essentially dictate what direction is considered positive for 

a certain element.  To apply a pressure into the page on the shell elements in Figure 

4-4(c), the applied load value would have to be negative.  However, for the right-hand 

element in Figure 4-4(b), the load value would have to be positive.  When assigning loads 
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to a group of elements, consistent normal definitions prevent against alternating global 

load directions. 

4.5.2.3 Element Generation  

Once one element is created, it can be copied multiple times with two simple lines 

of code, so long as the numbering scheme allows for it.  It is thus important to determine 

a logical numbering scheme for nodes and elements.  If the numbering scheme is well-

established, elements can be generated using *elgen.  This keyword requires the parent 

element number, the number of copies desired, and an explanation of how to translate 

from one to the next through nodes.  For instance, consider the following command line: 

*elgen 

1001, 180,100,1 

This command tells ABAQUS to take element 1001 and copy it 180 times 

(including the original).  The first copy is defined using nodes 100 above those used for 

element 1001, and the element number of the copy is 1 larger than the original, or 1002.  

So, if element 1001 was defined using nodes 1-2-3-4, element 1002 would connect nodes 

101-102-103-104, element 1003 would connect nodes 201-202-203-204, and so on. 

4.5.2.4 Meshing 

Unlike when using the meshing tool within the CAE, a written input file requires 

the user to define individual elements.  Thus, to make a ten-foot beam with one-foot 

elements, the first element would be defined and then nine more generated down the 

length.  When creating the element mesh, it is particularly important for the programmer 

to consider how many elements will be needed for accurate results. 

A model with few elements will run faster than one with a larger number because 

the total number of degrees of freedom, and hence equations that need to be solved, is a 

function of the total number and type of elements employed.  However, like a circle 

being drawn with a series of straight lines, fewer elements mean a less accurate 

approximation of the true response.  To confirm that the mesh density is high enough, 
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multiple trials should be run, each with increasing mesh densities.  When successive trials 

return essentially the same results, the programmer can be satisfied with the chosen 

number of elements. 

It is also important to consider the aspect ratio of individual elements.  The aspect 

ratio compares the longest dimension to the shortest dimension of a given element.  For 

example, a solid element, or brick, with dimensions 2 in. × 4 in. × 12 in. would have an 

aspect ratio equal to 12 in. / 2 in., or 6.  If the aspect ratio gets too large, numerical 

integration of the stiffness matrix will introduce inaccuracies in element stiffness and thus 

structural response.  To prevent inappropriate aspect ratios, when the mesh density is 

increased in one dimension, it must also be increased in the other dimensions to protect 

against these numerical inaccuracies. 

4.5.3 Define Section Properties 

Once an element type is chosen, the section must be defined separately from the 

element formulation.  Section properties are defined using keywords that reflect the type 

of element assigned to that section.  For instance, solids, beams, and shell sections are 

defined using *solid section, *beam section, or *shell section, respectively.  These 

keywords require parameters such as the material for the section, the element set (*elset) 

that contains all elements assigned to that section, and the cross-sectional properties of 

the section (e.g., area, thickness, or geometry). 

4.5.4 Define Material Models 

The selection of material models is one of the most critical aspects of defining a 

structural model for finite element analysis.  Especially in cases when loads strain a 

structure into an inelastic state, it is important to be able to define the material properties 

appropriately.  If doing so is not possible, the results will not accurately predict the 

response of the real structure, making the model unreliable and of limited use. 

That considered, it is also preferable to use materials in their elastic range for 

computational considerations.  An inelastic model requires more time to run than one that 
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is elastic because nonlinear iterations must be performed, so it is beneficial to only use 

inelastic material properties when the structure is in fact going to be stressed into this 

range. 

There are no parameters directly required under the *material keyword heading.  

However, the keyword should be immediately followed with others defining the 

behavior, such as *elastic, *plastic, and *density.  Respectively, these keywords define 

the elastic response, the plastic response, and the density of the material.  The lattermost 

is required if the model load steps will include gravity loading or the inertial effects of 

self-weight in dynamic analyses.  For elements with variations through the depth, as 

occurs with nonlinearity or composite materials, *orientation must be used to define 

directions for the material and associated elements. 

4.5.5 Define Boundary Conditions 

Boundary conditions are most often defined using individual nodes (or small node 

sets).  The *boundary keyword parameters are the nodes included and the global 

direction or directions in which a restriction has been placed. 

4.5.6 Enforce Physical Constraints 

There are other constraints that can come into play in a model besides supports.  

For instance, springs (defined using *element, type=spring and *spring) are often used 

to restrict motion while not preventing it entirely.   

4.5.6.1 Contact 

One of the most calculation-intensive yet frequently necessary parts of a model is 

the inclusion of contact between surfaces.  In a structure, when two surfaces touch one 

another, forces and stresses develop, and resulting deflections change.  Numerically, in a 

finite element model, planes can pass through each other, unless it is specified by the 

analyst that they cannot. 

The *contact keyword establishes boundaries between elements, preventing 

overlap from occurring.  The required parameters are the surface names and an indication 
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of which surface is the master and which is the slave.  Consider a flexible ball hitting a 

concrete wall: the ball will deflect while the concrete does not.  Thus, the concrete wall is 

the master surface and the ball is the slave.  In the case where the two surfaces are of the 

same material and have equal chances of deforming, it is appropriate to define two 

matching contact pairs, with each surface acting as the slave and as the master in one.  

Further discussion on contact pairs can be found in the ABAQUS Theory Manual (2006) 

or a text such as Belytschko et al. (2006). 

4.5.6.2 Multi-Point Constraints 

Multi-Point Constraints (MPCs) are most often used in the case of increasing 

mesh density.  Consider the plane where one element comes in from one side, and two go 

out on the other.  For the second side, there will need to be a node in the middle of that 

plane; for the first there will not.  MPCs constrain the midside node so that it moves with 

the first element, even though the first element does not actively engage the node.  This 

situation is shown in Figure 4-6, where node p has been constrained to move with nodes 

a and b.  

 

Figure 4-6: Multi-point constraints (type linear) (HKS, Inc. 2006) 

To save space in an input file, the MPCs can be written in a separate text file and 

imported using the input= command with *mpc.  An example multi-point constraint file 

is provided in Appendix E. 
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4.5.7 Write Load Steps 

The final section of an input file deals with the actual loading of the structure 

being analyzed.  A simple analysis will have one or maybe two load steps; a more 

complex model could have hundreds, each building off the results of the one before. 

The keyword *step has several optional parameters.  Some of the most important 

are amplitude, nlgeom, and inc.  Both static and dynamic loads can be applied in ramped 

fashion, or all at once.  In modeling, the loading speed is determined with 

amplitude=ramp or =step, respectively. “Nonlinear geometry,” or nlgeom=yes, indicates 

that large deflections are expected; the default is nlgeom=no.  In the case of a load step 

with a long total time but a small initial time step, inc= should be used to increase the 

total number of increments allowable.  The default is 100, and the job will stop at that 

point, regardless of step completion. 

The main keywords below *step are the definition of the type of loading, the 

loads applied, and the outputs.  At the end of the step, *end step must be included. 

4.5.7.1 Static and Dynamic Loading 

The first keyword under *step should be the way loads are applied; specifically, 

whether the loads are static or dynamic.  Both *static and *dynamic need initial and total 

time steps for calculation; if not defined by the user, the program will use defaults.  

Appropriate time steps are dependent on the model characteristics (such as stiffness and 

mass) and the response that is desired.  The initial and total time steps determine how 

quickly loads are applied; when non-linear material response is expected, the time step 

must be small enough to capture all features of the response curve. 

In the case where the model cannot converge to a solution with a given initial 

time step, ABAQUS will automatically change the step in an effort to find a converging 

solution.  The number of times it will sub-increment in this fashion, and the factor by 

which the time step is decreased, depends on the convergence characteristics of a given 

case and are problem dependent.  The programmer has the option of changing these 

defaults using *controls, if it is necessary. 
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4.5.7.2 Load Types 

The most common types of loads are accessed through *dload, *dsload, and 

*cload, or distributed, distributed surface, and concentrated loads, respectively.  With 

these keywords, an element or node set on which the loads are applied is given, along 

with a reference direction for the load and a magnitude.  In the case of distributed surface 

loading, a surface is required, which must be defined separately using the *surface 

command.  Defining surfaces is one time when the global orientation and proper element 

node-ordering become particularly important.  The former defines what direction positive 

and negative values refer to, and the latter defines the surface number of an element. 

ABAQUS has built in the ability to define certain loads in given directions, such 

as BY being a load in the global Y direction, and grav for gravity loading.  The load types 

available are particular to a type of element, and they can be found in the User’s Manual 

definitions of each element.  The magnitude and direction of the gravitational 

acceleration is provided by the programmer, and the solver uses the previously-defined 

density to apply the correct loads. 

4.5.7.3 Request Outputs 

Upon running a job, multiple files are created.  The largest of them, the output 

database, or .odb file, contains all default outputs available for a given element type, 

unless it is specified to omit them.  However, these results are only viewable through a 

post-processor like ABAQUS/Viewer.  In a load step, the programmer can request certain 

outputs be written to the data file (.dat).  These data can then be accessed directly in a text 

editor such as Notepad (Microsoft Corp. 2001). 

Additionally, simple data collection programs can be written in C++ or another 

programming language to return desired data from the .dat file.  Data will not be written 

to the .dat file unless directly requested by the user.  These requests are made using *el 

print and *node print.  The required parameters are the element or node set for which 

data should be returned and the data set desired (such as stresses or deflections in the Y 

direction).   
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4.5.8 Submit the Job 

When using ABAQUS/Standard or ABAQUS/Explicit, the program is sent to the 

solver through the DOS prompt shown in Figure 4-7.  The simplest manner of doing so is 

to navigate to the folder where the input file is located (along with all supplementary 

files, such as the environment file and text files of nodes or MPCs).  Then, in the DOS 

prompt, type: 

abaqus job=jobname 

If the job name is the same as the input file (saved as .inp), the solver will 

automatically read the information from this file.  If the job name is different from the 

input file name, the user will then be prompted for the input file name. 

 

Figure 4-7: ABAQUS Command Prompt window (DOS interface) 

4.5.9 Monitor Progress of the Job 

While the solver works, there are several files constantly being updated with the 

progress of the job.  Most are illegible to the user, but there are two of importance: the 

message (.msg) and data (.dat) files.  Both can be read using Notepad.  The data file 

details the initial reading of the input file through the preprocessor.  If there are problems 

in the input file, they will be noted here.  Additionally, while the solver runs, the data file 

will be appended with the requested output values.  The message file updates with each 
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iteration within load steps; this file contains information on convergence and completion 

of the analysis.  If the solver aborts with an error, details of the error source can be found 

in the message file. 

4.6 SUMMARY AND CONCLUSIONS 

Using a finite element analysis package such as ABAQUS gives an engineer the 

ability to approximate the response of complex, indeterminate structural systems.  This 

chapter included details of the basic programming information needed to analyze a 

structure such as a twin steel box-girder bridge.  The discussed keywords can be used to 

define nodes and elements, material models, boundary conditions, constraints, loading 

steps, and output variables.  In Chapter 5, the details of the input file written for this 

project are given, including material constants, numbering schemes, and load 

progression. 
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CHAPTER 5   
Details of the Finite Element Model 

 

5.1 INTRODUCTION 

When studying system response, multiple full-scale tests are often outside the 

budget of a single project.  Developing an accurate analytical model allows for 

generalizations and predictions of behavior.  In this study, a finite element analysis (FEA) 

model was programmed in ABAQUS/Standard and calibrated against the full-scale test 

specimen that was built (discussed in Chapter 3).  Once verified, the model can be used to 

make predictions about the response of other, similar bridges.  This chapter details the 

analysis, including presenting material model definitions, explaining node and element 

numbering schema, and summarizing the sequencing of the load steps. 

Because the long-term goals of this project include creating analysis methods that 

can be used by an engineer in practice, several restrictions were placed on the FEA 

design.  The first was that the model was to be written in a program that is commercially 

available and frequently used by engineers.  The second was that the analysis would run 

in a reasonable amount of time (in the range of hours rather than days) on a typical 

personal computer (PC).  A related goal was to model the inelastic material behavior and 

dynamic load effects simply, so as not to significantly increase the run time of the project 

or require details of design that are not always easily available.  These goals were 

considered while making decisions regarding modeling techniques, as will be mentioned 

in the following sections. 

5.2 SPECIFICS OF THE ABAQUS MODEL 

Two concerns governed the design of the finite element model: appropriate 

characterization of the real structure and calculation expense, or time needed to run the 

job.  The primary goal was to create a model that would be simple enough to run quickly 
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on a typical PC, while being complex enough to capture the intricate details of the 

physical structure.  This section explains the model that resulted.  The section ordering 

approximately matches the order of definitions within the final ABAQUS input files.  A 

complete input file can be found in Appendix B. 

Significant detail is given in the following sections regarding the numbering 

methodology for both the nodes and the elements defined in the analysis.  The scheme for 

the nodes was designed to take advantage of *elgen in element definition as well as 

indicate the spatial location of nodes.  The elements are numbered to easily identify the 

part of the structure being defined (webs, bracing, deck, etc.) and again, the spatial 

location of the element. 

5.2.1 Define Nodes 

A finite element model is constructed of elements spanning between nodes.  The 

first step in an analysis is thus to define the nodes, or the geometry for each element in 

the model.  In a three-dimensional analysis, each node introduces three or six degrees of 

freedom, or equations, to the problem.  To reduce the number of equations the program 

must solve, it is desirable to have as few nodes as possible.  However, a higher mesh 

density (smaller elements) requires more nodes.  The analyses performed in this research 

have been designed to reach a balance where the mesh density is high enough to capture 

an adequate approximation of response while being low enough for the job to run 

quickly. 

In each direction – vertical, longitudinal, and transverse – nodes are defined to 

replicate the geometry of the full-scale structure and allow for accurate calculations 

within ABAQUS.  The number of nodes needed in each direction and the spacing of each 

is dependent upon the geometry of the section and the element density required.  For 

instance, nodes were needed along an inclined plane to represent each web, and four to 

sixteen elements were required through the height of each web to adequately capture 

bending and fracture response. 
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The nodes were originally defined using one vertical plane and then sweeping it 

radially down the length of the bridge using *ncopy.  When it was determined that the 

mesh density would have to increase in all directions at the rail gap locations and the 

fracture site, the programmer switched to individual node definitions: certain nodes were 

defined in Microsoft Excel (Microsoft Corp. 2003) based on physical position, then the 

remainder were filled in using formulas in Excel and the *ngen feature in ABAQUS.   

In the system adopted for this research, individual node numbers are seven digits 

long, in the form LLLVVTT, where L represents a longitudinal locator, V vertical, and T 

transverse.  The transverse node numbers increase from left to right (with left being the 

inside of the interior girder) from 00 to 37, as shown in Figure 5-1.  Thus, for instance, all 

nodes on the most interior web will be defined with a transverse node number 08. 

 

Figure 5-1: Node numbering scheme transverse to the girder profile 
(girder boundaries marked with a bold blue line) 

Vertically, the nodes increase by one hundred with each row through the haunch, 

deck, and rails.  In the girders, the nodes increase by 50, meaning the number in the tens 

location can also change with vertical location.  There are two levels of nodes where the 

top flanges and deck haunches intersect that to allow for shear studs to be placed between 

the two surfaces.  For example, using this scheme, all nodes with 19 in the vertical 

placeholders (hundreds) can be found on the top surface of the deck.  A cross-section 

showing some of the boundary lines is given in Figure 5-2.   
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Figure 5-2: Node numbering scheme vertically through the girders, deck, and rails 

The longitudinal location is reflected in the first three digits of the node number.  

In this direction, the node numbering is less straightforward than in the transverse and 

vertical directions.  With each plane of nodes, the node numbers increase by 10,000.  

Initially, node numbering corresponding directly with length (i.e., node 54xxxx would be 

located 54 ft down the length of the bridge).  As the need for increased mesh density 

developed, this system of numbering became impractical.  With 180 node locations down 

a 120 ft bridge, the longitudinal locations of each node can be found in Appendix C.  

Using Appendix C and the numbering schemes given above, a node can still be located 

using just its number.  For instance, node 0710373 is located at 51 ft-0 in. longitudinally, 

just below halfway up the internal web of the external girder: 

LLL = 071, or 51 ft-0 in. 

VV = 03, or approximately mid-height 

TT = 73, or 23 + 50, indicating the internal web of the external 

girder, one line of nodes above the 03 line shown in Figure 5-2. 

The leading zero does not need to be included; node 0710373 is the same as node 

710373. 
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5.2.2 Restrain Movement 

The test specimen is supported on four neoprene pads that allow for rotation and 

small longitudinal movement.  Rather than model the stiffness of the bearing pads 

exactly, the model is supported on a pin at one end and a roller at the other.  This support 

mechanism allows the modeled bridge to elongate without inducing stresses.   

As a precaution against numerical problems due to transverse instability, a 

horizontal spring (element type spring1) connects the outside of the exterior girder with a 

fixed node in space.  The stiffness of the spring is enough to prevent the girder from 

effectively pushing off its support, without being large enough to draw forces to it. 

5.2.3 Assign Section Properties 

As described in Section 4.5.3, section properties define the characteristics of a 

group of elements.  In section property definitions, element sets are assigned to a material 

type and given a common geometry.  Thus, solid elements of material concrete and 

railconc must have unique section property definitions, as must shell elements of 

thickness 0.5 in. and 0.75 in. 

The finite element model presented here used seventeen different section 

definitions.  Although some could have been combined, keeping the groups separate 

allows for transparency in the coding: section properties are easily associated with the 

corresponding elements.  The specific section definitions and related properties used in 

this analysis are given in Table 5-1. 
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Table 5-1: Section properties definitions 

elset Elements involved Element 
Type Material Properties 

webs Four girder webs s4r steel t = 0.5 in. 

botflange Two bottom flanges s4r steel t = 0.75 in. 

topflange Four top flanges s4r steel t = 0.625 in. 

diaphragms 

End diaphragms on both 
girders, including top 

flanges and between the 
girders 

s4r steel t = 0.5 in. 

diaphvert Vertical stiffeners on four 
end diaphragms s4r steel t = 0.625 in. 

vert Vertical stiffeners welded 
to webs s4r steel t = 0.625 in. 

deck Deck elements, including 
haunches c3d8r conc – 

fakedeck Spacer elements used for 
accurate deck definition c3d8r fakeconc – 

rails Rail elements c3d8 railconc – 

fakerails Spacer elements used for 
accurate rail definition c3d8 fakeconc – 

inttruss Interior K-frames b31 steel Geometry of 
steel angle 

toptruss Top bracing frames b31 steel Geometry of 
steel angle 

exttruss External bracing frames b31 steel Geometry of 
steel angle 

bigtrans 
Truss elements accounting 

for two transverse 
reinforcing bars 

t3d2 rebar A = 0.62 in.2

smalltrans 
Truss elements accounting 

for a single transverse 
reinforcing bar 

t3d2 rebar A = 0.31 in.2

botlong Longitudinal bottom rebar t3d2 rebar A = 0.31 in.2
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Table 5-1: Section properties definitions (cont’d) 

elset Elements involved Section 
Type Material Properties 

toplong Longitudinal top rebar t3d2 rebar A = 0.20 in.2

railrebar Longitudinal rebar in the 
rails t3d2 rebar A = 0.20 in.2

fakedeckrebar Spacer elements for deck 
rebar definition t3d2 fakerebar A = 0.01 in.2

fakerailrebar Spacer elements for rail 
rebar definition t3d2 fakerebar A = 0.01 in.2

 

5.2.4 Define Material Models 

This analysis uses three key materials: concrete, steel, and a spacer material.  The 

definitions of each aim to match the true properties of the bridge; details are given in the 

following sections.  A summary of the properties of the material models is given in Table 

5-2.  The *elastic keyword parameters are the elastic modulus of elasticity and the 

Poisson’s ratio.  A curve defining the relationship between inelastic stresses and strains is 

given under *plastic, with the first term being stress (in ksi) and the second term, plastic 

strain.  These curves are shown graphically in each material section (Figure 5-3 Figure 

5-4).  The density of the material is the only parameter given for *density.  To maintain 

unit consistency, densities are given in slug/in.3. 



 

Table 5-2: Material model definitions 

Material *elastic 
(ksi, in./in.) 

*plastic 
(ksi, in./in.) 

*density 
(slug/in3) 

conc 

3875, 0.2 3.09, 0 
3.77, 0.0004 
4.28, 0.0008 
4.84, 0.0018 
4.50, 0.0027 
3.05, 0.0034 

2.4576 × 10-7

railconc 3000, 0.2 – 1.9225 × 10-7

rebar 29000, 0.3 –  7.33863 × 10-7

steel 

29000, 0.3 50.086, 0 
51.0, 0.01804 
62.4, 0.03707 
70.2, 0.07454 
71.5, 0.09284 

65.0, 0.4 

7.33863 × 10-7

fakeconc 0.1, 0.2 – 1 × 10-15

fakerebar 0.1, 0.3 – 1 × 10-15

5.2.4.1 Concrete 

The properties of the concrete used in the full-scale test specimen were obtained 

using 6 in. × 12 in. test cylinders.  During the deck and rail pours, concrete taken from 

each truck and was used to cast twelve cylinders per truck.  The cylinders were then 

broken at various times after the casting, including after 28 or 29 days.  Each cylinder, 

made from concrete designed to be 4,000 psi in compressive strength, tested above 4,600 

psi (Barnard 2006).  The modulus of elasticity was calculated from the compressive 

strength using the equation given in 8.5.1 of ACI 318-05 (ACI 2005): 

 cfE ′⋅= 57000  (1) 

where  

E = modulus of elasticity of the concrete, in psi 
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fc' = compressive strength of the concrete, in psi 

Because reinforced concrete does not behave linear-elastically, with the concrete 

easily cracking in tension and load being transferred to the reinforcing steel within, there 

are two general ways of modeling the behavior.  The first is to use smeared properties, 

giving the material strength in compression and in tension that represents the overall 

behavior, but not the exact response of the concrete or rebar individually.  The second is 

to model each material on its own, allowing the concrete to fail in tension and the rebar to 

hold the tension forces. 

Most simply-supported composite bridges will never have tension in the deck; the 

neutral axis lies below the top flange of the girder.  In the fractured state, however, it is 

expected that the girder will be completely compromised, moving all response into the 

deck and rail system.  Because the deck will then experience both tension and 

compression because of localized bending, the stresses in the transverse and longitudinal 

rebar were a point of interest and thus needed to be modeled individually.  Details of the 

rebar modeling and the material model can be found in Sections 5.2.5.4 and 5.2.4.3, 

respectively. 

Multiple concrete models were evaluated during this research project, including 

the elastic-plastic model detailed in Table 5-2 and a more detailed, cracked concrete 

model that used the keywords *concrete damaged plasticity, *concrete compression 

hardening, *concrete tension stiffening, *concrete compression damage, and 

*concrete tension damage in an attempt to capture the cracked response more accurately 

than the simplified smeared model.  The elastic-plastic model was eventually chosen 

because of the transparency it provided within the input file code.  The stress-strain curve 

defined by the *plastic model is shown in Figure 5-3. 



 66

 

Figure 5-3: Concrete material model stress-strain curve for plastic response 

While the plastic behavior shown in Figure 5-3 is a simplified approximation of 

the concrete response, the zero stiffness that occurs beyond a strain of 0.0018 is 

appropriate for cracked concrete, which can hold no additional load.  The result of using 

this model for the concrete response will be that the loads can not be resisted by the 

concrete elements and will be resisted by the rebar, which is the desired phenomenon that 

the model attempts to capture. 

Further study and modification to the concrete model is of paramount importance 

to this research, as the concrete deck will likely be the contributing component able to 

provide redundancy for the fractured structure.  If the concrete cracks or crushes and the 

rebar is unable to hold the forces that result, it is doubtful that the structure will remain 

standing.  Continued discussion on the future of concrete modeling within this analysis 

can be found in the recommendations for future research presented in Chapter 7. 
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5.2.4.2 RailConc 

The concrete material model used for the rails is slightly different than the one 

used for the deck.  Rather than using the actual material properties, an adjustment was 

made to account for geometry differences in the model relative to the actual rail.  The 

actual rail profile, shown in Figure 3.9, is complex geometrically and would require a 

very fine mesh to capture its intricacies.  Instead, the rail was modeled as a rectangular 

box, as is detailed in Section 5.3.1.  However, the goal was to have an overall response 

equivalent to that of the real rail. 

To account for the differences, an equivalent Young’s Modulus was assigned to 

the material railconc.  The modified modulus was calculated using the stiffness of the 

real rail (using the true moment of inertia and the true modulus of elasticity) and dividing 

by the moment of inertia of the modeled rail section: 

 
equivalent

realreal
equivalent I

IE
E

×
=   (2) 

Considering the location of the centroid and the geometries of the sections, the 

equivalent railconc modulus of elasticity used was 3,000 ksi.  Like in the deck, the rebar 

was defined explicitly, as preliminary analyses with an elastic rail showed that cracking 

was likely around the expansion joints.  While it is expected that the rebar will alter the 

overall stiffness of the rail section, the influence was assumed to be small and was thus 

not considered in calculating the equivalent modulus of elasticity. 

5.2.4.3 Rebar 

The rebar was modeled using three-dimensional linear truss elements, explained 

further in Section 5.2.5.4.  The material model definition matches that of rebar samples 

that were tested in the laboratory following the casting of the deck (see Barnard 2006).  

The modulus of elasticity measured just over 30,000 ksi; a conservative value of 29,000 

ksi was used per Section 8.5.2 of ACI 318-05.  Inelastic material properties were not 

considered because the stresses in the rebar were not expected to exceed the measured 

yield stress of approximately 70 ksi. 
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5.2.4.4 Steel 

Obtaining accurate properties for the steel in the test specimen was more difficult 

than for concrete, as running tests would involve cutting a sample from the girders.  Not 

wanting to compromise the structural integrity of the bridge, these tests were not 

performed.  Instead, design values for steel strength and plastic response were used.  The 

stress-strain profile defined in the input file is shown in Figure 5-4.  The plastic behavior 

definition comes from a preliminary study of fracture response at the University of Texas. 

 

Figure 5-4: Steel material model stress-strain curve for plastic response 

Because the inelastic behavior of a steel member varies with the manufacturing 

and fabrication process (considering, for instance, residual stresses from welding), the 

plastic properties of the steel in the test specimen are not known exactly.  Thus, the steel 

model in the analysis is not based on the test specimen.  
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5.2.4.5 Spacer Material 

The execution of the analytical model begins with dead load application of the 

girder upon itself and steps through to the fracture of the bottom flange.  In between are 

steps involving the casting of the deck and rails.  Because these elements cannot 

contribute to the overall stiffness of the structure before the concrete hardens, the 

elements cannot be in place while the load is applied.  However, with no elements in 

place, the nodes involved in the deck definition do not move with the rest of the structure.   

To shift the nodes appropriately, “fakedeck” and “fakerail” elements were used.  

These elements were defined from the beginning of the model, with the same nodes that 

define the “real” deck elements.  Thus, when the “fake” elements deflected with the 

girder below, the nodes displaced compatibly with the girder.  The material fakeconc was 

defined with almost no stiffness (E = 0.1 ksi) and very low density (1 × 10-15 slug/in.3), so 

that the elements do not influence the response of the structure.  Had this step been 

omitted, upon reactivation, the deck elements would connect the top flange nodes – 

which moved with the dead load deflection of the girder and deck – with the originally 

defined nodes.  The resulting stretched elements can be seen in Figure 5-5, where the 

bottom haunch elements reflect the parabolic shape of the deflected girder below. 

 

Figure 5-5: Stretching of the deck elements upon reactivation without using fakedeck elements  
(scale factor = 10) 
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Alternatively, the model could have been written and run in a series of individual 

jobs, each outputting the coordinates of each node.  For instance, the first job would run 

through the dead load application of the girders and uncured deck.  The displacement 

values would then need to be post-processed to alter the original node locations and input 

into the next job (through the curing of the rails).  The nodes constituting the deck 

elements would be extrapolated from the girder nodes by adding the appropriate height 

differential. 

One drawback of this method is the time and attention needed to ensure the nodes 

are modified correctly.  The current model nodes are created using a Microsoft Excel 

spreadsheet with approximately 100,000 nodes explicitly defined.  If even one node is 

redefined incorrectly, the resulting elemental geometries could cause an error in 

processing (e.g., if a misplaced node created an element with a zero volume or a distorted 

geometry).  A second drawback is that the second job would need to include the strains 

accrued during the first job, so as to reach plastic strain levels at the appropriate time.  

This compatibility concern would again require significant post-processing and additional 

lines of code. 

The fake element system thus becomes a simple way of capturing the response of 

the bridge during various load stages.  To ensure the fake elements were not influencing 

the data, multiple models were run with and without the fake elements and with various 

values for the modulus of the spacer material.  The deflections and stresses calculated 

with and without the fake elements, and with multiple values for modulus of elasticity in 

the fakeconc material model were compared, and the method was determined to be 

acceptable (see Chapter 6). 

While not necessary in the deck, where the rebar aligns with existing nodes 

throughout (and thus with fakedeck elements), the rail rebar includes nodes not always 

used in rail element definition, thus requiring the use of spacer elements for the rebar, as 

well.  The method described above was used again; the material definition “fakerebar” 

was included, with similar (non-influential) material properties, and assigned to the 

“fake” rebar elements. 
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5.2.5 Define Elements  

As explained in Section 4.5.2, element sets can be created by defining a single 

element and then generating additional similarly oriented elements using *elgen.  This 

method was used extensively for girder, bracing, and deck element definitions.   

One of the more difficult things to recognize upon looking at the input file written 

by a different programmer is learning the node scheme used.  The node numbers were 

explained in Section 5.2.1; the following sections include the schema for the element sets 

forming the structure.  The longitudinal locations again require referencing the table of 

locations given in Appendix C.  This table will be useful for future data analysis from the 

output and data files, where results are given in terms of element or node number. 

5.2.5.1 Girders 

Considering trapezoidal box girders are welded thin plates, using shell elements to 

represent the girder webs and flanges is an appropriate choice.  Both eight- and four-

noded elements were considered.  Small parametric studies showed deflections varied 

negligibly between eight- and four-noded elements, so four-noded elements were selected 

for this study. 

One of the drawbacks of finite element modeling is that a continuous section is 

being represented with a finite number of elements.  Consequently, because of this 

constraint, finite element models are stiffer than the actual structure they represent.  In 

contrast, reduced integration elements, which intentionally introduce numerical 

inaccuracies in approximating response, underestimate the stiffness of a given element.  

The underestimation of stiffness introduced by reduced integration occurs in similar 

proportions to the overestimation of stiffness inherent in all finite element models, and 

these two phenomena are generally accepted to offset each other (Belytschko et al. 2000).  

When initial deflection calculations from the model were less than what was observed, 

the decision was made to switch to s4r elements, four-noded shells with reduced 

integration. 
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Initial model definitions included two elements across each top flange, four down 

the webs, and seven across the bottom flange.  The webs were soon altered to include 

seven elements, and then further changed to include a mesh density increase near the 

fracture site, changing from eight elements at the ends to sixteen in the midsection. 

As with the node numbering, each element must be numbered individually.  A 

node and element can have the same number, as the two will be referenced separately.  In 

general, the element numbering scheme includes at least two leading digits that represent 

the location across the cross-section, then three digits at the end indicating the 

longitudinal location.  This scheme can be represented by TTVVV, where the T’s 

indicate cross-sectional or transverse location (a top flange element, for instance) and 

VVV indicate longitudinal location.  The longitudinal location numbers are the same as 

for the nodes, and can be found in Appendix C.  It should be noted that Element 001 

connects nodes 0 and 1; the element number is reflected in the second node number. 

The element numbering longitudinally for the girders increased by one with each 

element.  The numbers vertically and transversely for the interior girder can be found in 

Figure 5-6.  The values given refer to two T’s in the definition above.  The exterior girder 

elements are increased by 100,000.  For demonstration, an element in the middle of the 

external web of the external girder 29 ft down the length would be numbered 130034. 

 

Figure 5-6: Element numbering around internal girder; the interior edge is to the left 



 73

5.2.5.2 Stiffeners and Bracing 

The vertical stiffening plates, being constructed of steel plates welded to the webs, 

are modeled the same way as the main girder elements, with s4r shell elements.  The 

number of elements vertically matches the number of web elements, for continuity in the 

shared nodes.  The same elements were also used for the end diaphragms of each girder 

and between the girders, as well as the vertical stiffening braces that exist on the 

diaphragms. 

The three brace types – internal K-frames, top lateral bracing, and external braces 

– are modeled using beam elements.  As explained in Appendix A, beam elements should 

be much longer down their length than in any other dimension, so a single element was 

used to span between three and seven feet.  The cross-sectional dimensions of the angles 

and T-sections that constituted these frames were used to define beam cross-sections 

(section = arbitrary).  While not exactly the same as what exists in construction, this 

modeling method was considered accurate enough considering the focus of the study was 

not on the response of bracing, and the beams were not expected to be strained 

excessively during construction or loading.  Truss elements were also considered, as the 

main loads on the members will be axial.  However, truss elements have no out-of-plane 

stiffness, which could have caused numerical problems during the fracture step.  The 

authors of UTrAp (Popp et al. 2004) chose to create stiffness by including springs out-of-

plane at each brace member end; in the analysis presented here, beam elements were 

chosen to capture more detail of the response of the elements, including bending across 

the girders and through the depth. 

The numbering scheme for the stiffeners and bracing was designed to incorporate 

location, but more so, to group elements within the same system together.  Thus, the 

internal truss elements begin with 58,000, the top truss elements with 59,000, and the 

web stiffeners with 60,000 and 61,000.  Again, the elements in the external girder used 

the same numbers, except increased by 100,000.  The external brace elements, which 

exist between the girders, are indicated with element numbers starting with 63,000. 
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5.2.5.3 Deck 

Using previously-written models of similar bridges as a guide, preliminary 

models of this box-girder system were written using shell elements for the deck.  Because 

of their similar formulation, shell elements would allow easy use of beam elements for 

the rails and would correspond well with the shell elements forming the girders.  When 

the deck haunch was determined to be a detail of interest, the shells were no longer able 

to appropriately model the response, and the deck was defined with solid “brick” 

elements. 

As in modeling the girder, both linear and quadratic approximations of deflection 

through the element were considered.  When the girder elements were reduced from 

eight- to four-node elements, the deck was changed from twenty-node to eight-node 

bricks, or c3d8 elements.  The two element types (solids and shells) do not use the same 

order functions to define their edges, so the boundary between the two elements will not 

correspond exactly without adding constraint equations to the problem.  However, by 

placing nodes at the same location, the deflections at those nodes are the same and the 

differences along the boundaries are minimized. 

To capture the response within the haunch, two elements were used through the 

three-inch depth.  The deck, another eight inches in thickness, was modeled with eight 

elements.  Although this geometry resulted in an aspect ratio as high as 12, the thin solids 

were used to capture the bending behavior through the depth.  Fewer elements would 

have created a stiffer section that could not bend the way the true deck was expected to 

deflect under failure loading.  At each expansion joint location, the longitudinal spacing 

of elements was reduced, decreasing the maximum aspect ratio to about 6.  The ratio 

could be decreased further if more elements were added across the width. 

Because there would be so many deck elements created (over 50,000), the 

numbering scheme began with an extra digit for definition.  All deck elements begin with 

a 3 while the associated “fakedeck” spacer elements begin with a 4; the other digits are 

the same between the fake and real deck elements.  Longitudinally, the deck elements 

increase by 1,000; vertically, they increase by 100, and transversely, by 1.  Combining 
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these rules, a deck element has the form 3LLLVTT.  The deck element 105 ft down the 

bridge, on the bottom row of elements, above the innermost flange would be numbered 

3165207.  The bottom row of deck elements has a 2 in the hundreds spot because the two 

rows of haunch elements use 0 and 1. 

5.2.5.4 Rails 

The rails were modeled using c3d8 elements.  Unlike the elements used in the 

deck and girders, c3d8 are not reduced integration elements.  The change to full-

integration elements was made when hourglassing was seen in the rail elements during 

the fracture steps (Figure 5-7).  Hourglass mode shapes occur as a result of reduced 

integration, where fewer integration points are used to approximate the response of an 

element than in full integration.  With fewer integration points, deformation of the 

element can occur while the calculated strain is zero, creating a repeating hourglass shape 

in the elements.  Changing the rail elements to type=c3d8 (full-integration) removed this 

problem.  For more information on hourglassing, see Appendix A or Belytschko et al. 

(2006). 
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Figure 5-7: Stresses in the rail during fracture, magnified to show hourglassing in the reduced 
integration rail elements 

The rail numbering scheme is similar to the deck, with seven digits defining each 

element.  For the “real” elements, the first digit is always a 5; for the “fake” elements it is 

a 6.  The following six digits are of the form LLLVVT; three to describe the longitudinal 

location (as used previously, and defined further in Appendix C); two to give vertical 

position, from 1 to 28; and one for transverse location: 1 through 4 for the interior rail 

and 5 through 8 for the exterior rail. 

5.2.5.5 Rebar 

The rebar layers defined within the concrete deck – longitudinally and 

transversely, top and bottom – are three-dimensional linear truss elements.  Almost all of 

the rebar elements shared nodes with the deck elements they are “embedded” in, but for 

those that use unique nodes, *embedded element constrains the response of the two 

materials, ensuring compatibility.  The interaction between the rebar and concrete is 

thought to be perfect; there is no slip. 
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The top and bottom longitudinal rebar is placed at all but four interior nodes 

transversely, resulting in 31 bars across the width.  Considering the design called for 32, 

the area of the modeled bars was modified by 32 over 31; the bottom #5 bars have an area 

of 0.32 and the top #4s have an area of 0.206.  Transversely, rebar was placed at 

approximately 6-in. intervals near the rail expansion joints and at 12-in. intervals 

elsewhere.  The design called for 6-in. spacing, so at the 6-in. spacing locations, the rebar 

dimension matches the design.  The rebar spaced at 12 in. has an area twice that called 

for in design to compensate for having fewer bars. 

The numbering scheme for the rebar is similar to other element sets.  The first 

digit indicates which rebar layer is being considered (top or bottom, longitudinal or 

transverse).  The next three digits indicate the location longitudinally and correspond to 

associated nodes; because not every node line has rebar attached to it, not every value 

from 0 to 180 is used.  The final two digits indicate location transversely.  Again, the 

number indicates the nodes involved.  For example, the first transverse rebar connects 

nodes ending in 3 and 4, so the first element number would end in 03. 

“Fake” rebar elements were defined in the same fashion as with the deck and rail 

elements.  The numbering varies by 50,000.  The “real” rebar elements are removed and 

reactivated with the rail elements; the “fake” rebar elements are in place from the 

beginning and removed with the reactivation of the “real” elements. 

5.2.5.6 Rail Rebar 

As in the deck, the rebar within the rails was defined explicitly.  While the model 

does not indicate plasticity in the rail (with the exception of immediately surrounding the 

expansion joints), a full-depth web fracture in a bridge with a differing geometry could 

experience such plasticity.  The seven #4 bars (A = 0.20 in.2) are modeled in a similar 

geometry in the model as was constructed in the test specimen.  The greatest variation is 

in placement horizontally, as the uniquely-shaped rails were modeled with rectangular 

elements in the model.  Vertically, the placement is accurate within 0.5 in., which is 

within reasonable construction tolerance. 
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The rail rebar elements are defined as the deck rebar elements are, as truss 

elements connecting two nodes and constrained to the rail elements using *embedded 

element.  The interior rail six-digit element numbers begin with 9 and indicate the 

longitudinal location in the next three digits and the vertical and horizontal in the last 

two, respectively (1 through 4 for vertical, 2 and 3 for horizontal).  The external rail rebar 

element numbers are the same, preceded by a 1.  The “fake” rebar elements are numbered 

50,000 larger than the corresponding “real” element. 

5.2.6 Compile Load Sets  

While element and node sets were defined through the input file as necessary, 

there are other, more specific subsets needed, generally for loading and output requests.  

In this section of the input file, *surface is used to define loading surfaces, *nset is used 

to create sets of nodes of particular interest for output variables, and *elset is used to 

create element groups for actions like gravity loading or element removal. 

5.2.7 Define Load Steps 

The analytical model consists of fourteen load steps.  Each step has been written 

to capture a certain stage of the construction process, from applying the self-weight of the 

girder to the removal of the exterior cross-bracing.  Each step is detailed here: 

 Step 1: Remove deck and rail elements 

Use *model change to remove all elements that were not in place 

when the girders arrived at the testing facility, including the deck, 

rebar, and both rails. 

Apply gravity loading (self-weight) to the girders and bracing. 

 Step 2: Apply dead load of deck to girder flanges 

Use *dsload to apply a distributed surface load to the top flanges 

of the girder equivalent to the dead load of the wet deck (deck 

casting). 

 Step 3: Reactivate real deck elements, strain free 
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Use *model change, add=strain free to replace the real deck and 

rebar elements in a zero-strain state. 

 Step 4: Remove applied flange load, turn on deck gravity load, remove 

fakedeck elements 

Modify previously applied surface loads (on flanges) to zero. 

Apply gravity loading to deck and rebar elements. 

Use *model change to remove the fakedeck and fakedeckrebar 

elements.  While they could have been left in place, this removed 

the possibility of the fake elements affecting the response of the 

system. 

 Step 5: Apply dead load of inside rail to edge of deck 

Similarly to Step 2, apply a distributed surface load to the inside 

edge deck elements equivalent to the dead load of the wet rail (first 

rail casting). 

 Step 6: Reactivate real inside rail, strain free 

Same as Step 3, but for the inside rail. 

 Step 7: Apply dead load of outside rail to edge of deck 

Same as Step 5, but for the outside rail (second rail casting). 

 Step 8: Reactivate real outside rail, strain free 

Same as Step 3, but for the outside rail. 

 Step 9: Remove applied rail loads, turn on rail gravity loads 

Same as Step 4: remove the distributed surface rail loads and apply 

gravity loading in the rail elements.  Also remove fakerail and 

fakerailrebar elements 

 Step 10: Apply truck loads 

Apply distributed surface loads to certain deck elements to 

represent the concrete-block “truck” placed on the test specimen. 

 Step 11: Remove external cross-braces 
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Use *model change to remove the external brace elements (end of 

construction phase). 

 Step 12: Remove bottom flange elements 

Fracture event.  Use *model change to remove a strip of elements 

from the bottom flange of the external girder. 

 Step 13: Remove web elements 

Fracture event.  Same as Step 12, but removes elements from both 

webs of the external girder from bottom flange to top flange. 

 Step 14: Remove truck loads 

Modifies the previously applied distributed surface loads to 

remove the equivalent truck from the bridge. 

The motivation behind using so many steps was the desire to replicate expected 

stresses and deflections as accurately as possible.  To capture these effects, the dead load 

of the deck had to be applied before the deck cured; the deck elements could not be in 

place with a full-strength modulus.  As was explained in Section 5.2.4.5, this effect was 

achieved using “fake” elements to take the space of the real elements to come and to 

translate the associated nodes appropriately.  Once the real elements were in place, such 

as in Steps 3, 6, and 8, the spacer elements could be removed (as in Steps 4 and 9). 

For later models, where the general response was of interest but the exact value of 

stress was not needed, some of these steps were condensed.  For instance, both rail loads 

were applied in one step, rather than individually.  

5.3 AREAS OF SPECIAL FOCUS 

Finite element analysis of trapezoidal box girder bridges is not a new field of 

study; programs like UTrAp (Popp et al. 2004) already exist to easily calculate the 

response of the girders under load.  The current project strives to capture the effects of 

details that were not previously considered.  More specifically, the finite element model 

includes a step where the girder is fractured while under service loads.  Current belief 

states that a bridge in a fractured state will collapse, as discussed in Chapter 2; this 
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research project is focused at verifying or disproving this belief, arguing that the twin 

girders could work as a system, allowing for adequate load transfer. 

During construction of the test specimen and the analytical model, certain details 

came into light as possibly being crucially important in stabilizing a fractured girder.  

These details included the presence of rails (and expansion joints within those rails), the 

shear stud pullout strength, and the presence of the haunch in the deck.  Simplified 

calculations or models were made to consider these details; more importantly, specific 

attention was paid in the development of the ABAQUS model to capture the response of 

these details accurately. 

Additionally, it was important to represent the fracture itself accurately, this event 

being the crucial load step in the model.  Various methods were considered and tried 

before the keyword *model change was decided upon.  The *model change keyword 

allows the programmer to remove elements during a load step; in this case, the elements 

that constituted the fracture.  The details of the rail and shear stud modeling and the 

fracture load step are given below. 

5.3.1 Modeling of the Rails 

Current design practice does not consider the structural advantages cast-in-place 

composite rails give to a bridge.  Thus, for the purpose of design, they are in place to 

prevent cars and trucks from going off the bridge, not to reduce deflections and stresses.  

However, in the case of a fractured girder, the presence of such rails could lend 

significant strength to the system as a whole, providing a compression member far from 

the neutral axis. 

Additionally, preliminary tests showed that the presence of expansion joints – 

which were, until recently, mandated by TxDOT – changed how the rails resisted 

bending.  Specifically, the joints create a discontinuity in the stiffness provided by the 

rails.  Based on these findings, it was decided that the model needed to not only include 

the rails but include the expansion joints as well. 



 82

The modeling of the rails began with a decision about element type.  Beam 

elements were considered; however, they were dismissed when the deck was modeled 

with solid elements.  As explained earlier, an eight-noded solid element uses linear shape 

functions to predict behavior; the responding deflections will vary linearly between any 

two nodes.  Beam elements, however, even if only constructed with two nodes, use cubic 

shape functions, and the deflections will respond in that manner.  The problem that exists 

lies on the surface of the two elements, where mathematically, the sections move 

independently, even potentially passing through each other.  This effect could be 

neutralized using constraints, but to do so would mean adding layers of equations that 

would slow down the analysis.  It was less computationally expensive to add solid 

elements to model the rails, even if thousands more elements were needed than if beams 

were used. 

As was explained in Section 5.2.4.1, the geometry of the rails is complex, with 

multiple exposed surfaces.  Because the rails were not the primary focus of the study, it 

was impractical to model them with the complexity the geometry may have dictated.  

Instead, the rails were modeled with a simplified rectangular solid, 27 in. in height and 13 

in. in width.  Between expansion joints and at the ends of the bridge, one element was 

used through the width and seven through the height.  Nearing the joints, the mesh 

density was increased to 2 × 14 and then 4 × 28.  An elastic modulus was then calculated 

to compensate for the altered geometric properties, to create an effective section with a 

similar influence on overall stiffness, as described in Section 5.2.4.2.  The rail section can 

be seen in Figure 5-8.   
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slowly, as mesh density increases must occur gradually.  Vertically, the transition is from 

 

Figure 5-8: ABAQUS view of the end of the modeled bridge, showing block railing 

Once it was determined that the expansion joints could influence the response of 

the structure, a strategy for adding them was determined.  The modeling of the gaps 

began by decreasing the node spacing at the three expansion joint spacer locations to 

allow for a small gap to be created.  Iterative versions were run, testing the numerical 

response to smaller elements.  Through these versions, it was learned that decreasing the 

size longitudinally alone was not enough; vertically and transversely, there would need to 

be more elements as well.  More nodes were added, resulting in elements at the gap 

dimensioned at 1 in. × 1.5 in. × 2.25 in.  This change was reflected through the entire 

depth of the girder model.  The gaps in the rails on the bridge were designed to be 

between 0.25 and 0.75 in.  The modeled gaps are 1.5 in., as fewer mesh density 

reductions were needed to achieve this spacing.  Although the larger gap decreases the 

chance of contact occurring, it presents a greater area of lower global stiffness at the 

centerline of the bridge. 

Because more elements mean more degrees of freedom and more time for 

calculation, these small elements are not ideal for the entire length of the bridge.  The 

full-size rail elements of acceptable size between the joint locations were subdivided 
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5.3.1.1 Contact Constraints 

e expansion joints in the rails came the need to establish 

contact

ntact twice, neither side of the contact pair is stronger than the 

other.  

5.3.1.2 Multi-Point Constraints 

d to establish compatibility at mesh density increase 

points 

3,1503933,1503937 

This co

in. from

illustrates the bilinear constraint, with node p being linked to a, b, c, and d. 

seven to fourteen to twenty-eight elements; transversely, from one to two to four.  The 

constraints required to increase the mesh density are explained further in Section 5.3.1.2. 

With the addition of th

.  Although not expected under normal loading, in the case of catastrophic failure, 

the 1.5 in. spacing between the two rail parts could close.  As explained in 4.5.6, 

numerically, ABAQUS will allow these surfaces to pass through one another.  In reality, 

contact occurs between the two sides.  The ABAQUS model defines the surfaces at each 

gap and has a pair of contact definitions: one with each side as the master, and one with 

each as the slave surface. 

By defining the co

Because both sides are made of the same material, each has an equal chance of 

deforming under contact loading (unlike, for example, a rubber ball hitting a concrete 

wall).  Further information on contact problems and modeling can be found in Belytschko 

et al. (2006). 

The *mpc keyword is use

in the rails (and in similar mesh density changes in the webs, detailed further in 

Section 5.2.5.1).  The shell web elements use type linear, which connects a single node 

on an edge with the two that make up that edge.  The solid rail elements use type bilinear, 

which restricts a node in the center of a surface to the four nodes creating that surface.  

For instance, consider this line of code, from a rail *mpc file: 

bilinear, 1504535,1504737,150433

de constrains node 1504535 (a node 92 ft down the length of the bridge, 4 

 the top of the exterior rail) to nodes 1504737, 1504333, 1503933, 1503937, the 

four nodes that make up the front surface of the next element down the rail.  Figure 5-9 
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Figure 5-9: Use of the bilinear multi-point constraint (HKS, Inc. 2006) 

5.3.2 Modeling of the Shear Studs 

The research team predicted that, once fractured, the bridge would respond by 

ed girder.  The fractured steel girder would be left 

essentia

ne-dimensional, each spring adds two terms along the diagonal and 

two ter

d at 

essentially the same location (0.01 in. apart vertically).  The bottom line of nodes is used 

losing nearly all capacity in the fractur

lly hanging from the concrete deck.  The question arose as to whether the steel 

shear studs that connect the two, designed to resist shearing between the two materials, 

not to hold load in tension, would be able to withstand this kind of sudden loading.  

Because of the sensitivity of this detail, it was necessary to include the shear studs in the 

ABAQUS model. 

The simplest way to model a connection between two nodes is using spring 

elements.  Being o

ms off the diagonal in the stiffness matrix, meaning they are computationally 

cheap.  In contrast, a three-dimensional beam connection would contribute to the stiffness 

matrix for twelve degrees of freedom.  In developing the box-girder analysis program 

UTrAp, Topkaya and Williamson (2003) showed good correlation with test data using 

one-dimensional spring elements.  Considering this previous success and the minimal 

impact on the stiffness matrix, spring elements were chosen for shear stud modeling. 

The first step in creating the interaction between the girder and the deck was to 

separate the two bodies geometrically.  To do so, a second line of nodes was define
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in the d

p flange, each triplet spaced at 22 in longitudinally.  The shear studs extend five 

inches 

ith element boundaries.  To compensate for 

the gre

ether there was any interaction between the reinforcing steel 

and the

efinition of top flange elements; the top line of nodes bounds the bottom of the 

haunch elements.  The two lines are connected using the springs that represent the shear 

studs. 

The second step was to determine how many springs would be needed and where 

they would be located.  On the physical structure, three shear studs exist transversely on 

each to

into the concrete, which results in the head being approximately even with the 

bottom mat of reinforcing steel in the deck. 

The model features three shear studs in each direction located every 12 in. down 

the length, or approximately twice as often as exist on the full-scale specimen.  This 

spacing was used to correlate shear studs w

ater number of studs, the shear stud stiffness was decreased by 50% relative to the 

actual case to adequately capture the system response.  If shear stud pullout becomes a 

concern for fracture models, the studs should be redefined to exist at the correct spacing, 

as the change in loading that could occur with each stud failure could be enough to cause 

instability in the structure. 

The third step was to determine an appropriate spring stiffness.  J. Sutton, a 

member of the research team, explored the capacity of the shear studs further, 

questioning specifically wh

 shear studs and what level of pullout capacity the shear studs had, as described 

briefly in Chapter 3.  The test results for three studs with a 3-in. haunch showed very 

brittle behavior and a pullout strength of approximately 17 kip (Sutton 2007).  The load-

deflection behavior can be seen in Figure 5-10.   

 



 

Figure 5-10: Load-deflection curve for test specimen shear stud geometry (Sutton 2007) 

Using average values for load and deflection from the two tests run with the 3-

stud, 3-in. haunch geometry, the stiffness provided by the stud group is approximately 

2000 k/in.  In the analytical model, the springs are positioned every twelve inches (or 

almost twice as often as on the test specimen).  The vertical springs were thus given a 

stiffness of 1000 k/in.  Springs are also defined in the two other directions (global 1 and 

3), to ensure stability of the structure and have an assigned stiffness of 200 k/in.  The 

stiffness value is approximately 1/100th the horizontal stiffness of a beam element of 

similar dimensions to one shear stud: 

 3

12 E Ik
L
⋅ ⋅

=  (3) 

where  

k = stiffness of the shear stud 

E = Young’s modulus (29,000 ksi) 

I = moment of inertia (~7 in.4) 

L = length of the beam (5 in.) 

At this point in this research project, the springs do not have a failure load 

associated with them.  Thus, the bridge cannot fail through shear pullout.  Strain values in 

the springs that represent the studs were monitored, however, during the flange and web 

fracture simulations and are discussed in greater detail in Chapter 6. 
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The numbering scheme for the shear studs is similar to other elements, containing 

an aspect of location longitudinally as well as transversely.  Each element has a seven-

digit number.  The first digit indicates which degree of freedom the spring is associated 

with, 7 being transverse, 8 vertical, and 9 longitudinal.  The next three digits represent the 

longitudinal location (0 to 180, see Appendix C).  The fifth digit is always a 0.  The final 

two indicate the transverse location, starting at 01 to 03 on the innermost flange and 

increasing to 09 to 12 on the outermost flange. 

5.3.3 Modeling the Fracture 

The most critical step in this analytical study is that of replicating the fracture of 

the bottom flange and then predicting the fracture of the web.  There are many programs 

that can analyze structural loads on an unfractured girder, such as the previously 

discussed UTrAp, and programs that can analyze a small fracture event, such as 

WARP3D (Computation Fracture Mechanics Research Group 2007), developed at the 

University of Illinois.  The unique part of this study is in the modeling of a fractured 

girder and the system response of the structural system. 

5.3.3.1 *model change 

The fracture in this model occurs using *model change, which allows the 

programmer to remove and re-add element sets.  This same keyword was utilized in 

previous steps to remove deck and rail elements during the construction stages, then re-

add them strain-free at the point when the concrete would have hardened. 

The *model change keyword is used in two ways: to remove and to add 

elements.  The keyword requires one of those two mutually exclusive parameters be 

given: remove or add.  Under add, the elements can be reactivated strain free or with 

strain, depending on the desired element state.  The single data line contains the element 

set involved in the removal or reactivation.  Multiple element numbers or sets can exist 

on one line, and the line can be repeated as necessary. 
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At the beginning of the step including *model change, the removed elements are 

not considered when developing the global stiffness matrix.  Thus, the surfaces bounding 

the fracture are less constrained, and stresses cannot be transferred through the gap.  

There is no consideration of the dynamic effects of quickly releasing the elements, as 

equilibrium is established before and after, but not during, the removal of the elements 

(discussed further in Section 5.3.3.4). 

5.3.3.2 Fracture Path 

In defining the fracture, the programmer must dictate the fracture load and the 

fracture path, as well as the timing of the fracture event.  Other ABAQUS keywords, such 

as *fail strain and *fail stress, allow some automation of the event, but only work with 

linearly elastic material models (HKS, Inc. 2006).  Additionally, the keywords do not 

induce material degradation, but rather indicate to the user that the material has reached a 

failure state.  While using these keywords might be useful for determining the onset of 

failure, these keywords did not perform adequately for this study.  ABAQUS also allows 

the use of fracture elements, which will fail at a given point.  However, decisions 

regarding when such elements fail is still at the discretion of the programmer.  The 

fracture elements, which are much more computationally expensive than using *model 

change, were not thought to be appropriate for this study in which the post-fracture 

behavior and not the fracture itself was of critical importance. 

In an attempt to avoid creating an unrealistic fracture, multiple analyses were run, 

each involving an extra row of elements up the web of the girder, from zero to the sixteen 

that are defined at midspan.  The elemental von Mises stresses at the tip of the fracture 

were considered, and if greater than the limit of 50 ksi, the fracture would be extended in 

the next job. 

This method has one major drawback involving the mesh definition around the 

crack tip.  In a real crack, the tip would be very small and very sharp (acute).  The 

element definitions around the crack location in this analysis do not have a density 

appropriate to create this kind of crack.  Rather, using *model change results in a 



fracture with a square front, as shown in Figure 5-11(a).  The square corners, while not 

realistic, also create stress concentrations from the abrupt geometry change.  A typical 

stress profile (von Mises) around the crack tip with some web elements removed is 

shown in Figure 5-11(b).  Ultimately, the analysis was run with a full-depth web fracture 

as an absolute worst-case scenario. 

  (a) (b)   

Figure 5-11: (a) Square tip of fracture path using *model change, (b) stress concentration that results 

For prediction of a full fracture event, the fracture through the web was 

programmed to occur vertically from the bottom flange fracture location.  While it is 

possible that a real fracture would not follow this exact path, the overall effect of a 

fracture on the system, and thus the total system response, should be similar to what was 

modeled.  Further research could consider variable crack paths, but doing so would likely 

require remeshing the elements around the fracture. 

5.3.3.3 Alternative Fracture Methods 

The fracture method presented here (using *model change) has both benefits and 

drawbacks.  Positively, the method is quick and simple, taking little time to run.  It is also 

very straightforward and clearly indicates what occurs during the modeled fracture.  On 
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the other hand, as mentioned, the crack tip is not representative of a true crack tip and as 

a result, inappropriate stress concentrations form.  It also does not allow for consideration 

of dynamic effects (explained in more detail in Section 5.3.3.4).  Future research could 

feature other fracture modeling methods, some of which are described here. 

The analysis run in this project was also designed using two overlapping sets of 

nodes along the centerline.  Each node connected to elements on one side – north or south 

of centerline – but not to the elements on the other side.  The intention was to apply edge 

loads on each boundary element that would be equivalent to those experienced during 

each load step.  Then, at the step associated with the fracture event, the loads would be 

suddenly released, similar to what would be expected during the failure of the steel. 

The main problem with this method occurs in the defining of the loads.  As was 

explained in Section 4.5.1, the global axes do not necessarily align with the local axes of 

an element.  The difference may not be very influential in a bridge with a large radius, 

such as the one analyzed here, but it can be very important in a bridge with a small 

radius.  To apply representative loads, the values output by the program must then be 

resolved into the appropriate values for reapplication.  Considering that there are three 

edge loads (normal, shear, and traction, seen in Figure 5-12) to be applied to each of the 

seventy-eight elements surrounding the full fracture for each of fourteen load steps, 

calculating these values can take significant time by the programmer.  This method was 

attempted, applying loads through only the first step of the analysis, with little success or 

consistency with earlier models.  Although a cylindrical coordinate system might seem 

more appropriate for this kind of load application, it is not possible in ABAQUS, where 

cylindrical coordinates are transformed into Cartesian locations upon definition (HKS, 

Inc. 2006).  The comparisons are presented in more detail in Chapter 6. 
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Figure 5-12: Edge loading directions and nomenclature for four-noded shell elements (HKS, Inc. 
2006) 

Another possible method of modeling fracture, which was not tried, would be to 

treat the fracture as a substructure, analyzed in a smaller analysis.  In that case, only the 

fracture and some of the elements in proximity would be considered.  The resulting 

change in stresses at the boundaries would be applied to a large-structure analysis as 

loads and pressures on surfaces and edges.  By replicating the fracture step in the analysis 

as a simple load step, the total analysis time should decrease considerably. 

The substructure analysis could be designed in ABAQUS, which would ease data 

transition from the small analysis to the large.  Alternatively, the finite element analysis 

program WARP3D (Computation Fracture Mechanics Research Group 2007), available 

from the University of Illinois at Urbana-Champaign, specializes in modeling fractures, 

with meshing tools designed to make the sharp crack tip expected during an in-service 

fracture event.  For this study, the specifics of the crack tip and crack propagation were 

considered of lesser importance than the overall system effects, and so the simplified, 

blunt-end fracture was adequate. 

5.3.3.4 Dynamic Effects 

Studies run using simpler models have shown that *model change does not 

consider dynamic effects the way adding or removing a load directly would.  However, 

one goal of this project is to remove the need to analyze a dynamic event in a dynamic 
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fashion, instead mimicking the worst-case response of the structure using increased loads.  

Once the dynamic load increase is understood, a simplified model that can run statically 

will likely run faster than the dynamic step required to capture dynamic load applications 

directly.  This approach is considered appropriate for the current project in which a major 

objective is to develop simplified modeling guidelines that can be used by designers to 

estimate the system-wide response of a steel bridge that experiences a fracture. 

The standard method of considering dynamic effects is to double the loads applied 

(United Facilities Criteria 2005).  The maximum dynamic stresses and deflections are 

generally smaller than what results, so the analysis is considered to be conservative.  

However, an analysis gets more complicated when considering loads that push a structure 

into an inelastic response, as energy is dissipated through yielding. 

In progressive collapse analyses, only the loads coincident with a removed 

structural component are increased to represent dynamic effects, such as the bays 

surrounding a disabled column (United Facilities Criteria 2005).  In the current study, the 

loads applied within two times the depth of the girder in either direction from the fracture 

location (approximately 100 in. [8 ft-4 in.] on either side of midspan) are multiplied by 

either 1.5 or 2.0 during the fracture step. 

5.4 CORRELATION WITH TEST SPECIMEN 

The finite element model for this project was developed with the intention of 

predicting the response of a box-girder bridge during a fracture event.  To do so, the 

researcher must have confidence in the accuracy of the results predicted under certain 

loads.  Results from the model were thus compared at various stages with deflections and 

strains measured on the full-scale test specimen; these comparisons are detailed in 

Chapter 6.  During the programming of the model, however, care was taken to recognize 

where and in what way the model corresponded with the gauges on the test specimen.  

An overview of key elements along the bridge is given in the following sections. 



When comparing strain measurements, the type of strain measured and calculated 

should be considered.  In this project, the data gathered was post-processed to give 

engineering strain, or 
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Lf = final length 

L0 = initial length 

The default strain calculation in ABAQUS is Green’s strain, or 
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However, for the element types used in the girder, this strain was not calculated directly.  

Instead, logarithmic strain was given by ABAQUS and then used for data comparison.  

Logarithmic strain is defined as 
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For small-deflection analyses, the strain equations converge to the same value.  However, 

for larger strains, the specifics of the calculation become important, as shown in Figure 

5-13.  The strains experienced in the girders during the live load and fracture tests, given 

in more detail in Chapter 6, were on the order of 10-4, or much smaller than would be 

needed for error to exist.  In the case of a full-fracture event, the strains could reach 

higher levels. 
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Figure 5-13: Variation in strain using different strain equations 

5.4.1 Girder Instrumentation 

The strain gauge locations along the bridge were considered when defining 

element boundaries.  Further programming revealed that what became most appropriate 

within the model did not exactly match the instrumented locations.  Because the 

instrumentation was in place by the time this discrepancy was realized, the data from the 

model had to be manipulated slightly before being compared to measured results.  The 

gauge and corresponding element numbers are tabulated in Table 5-3, indicating which 

element responses must be included for direct comparisons. 
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Table 5-3: Element numbers corresponding to foil gauges and rosettes on the test specimen 

ROSETTE GAUGES FOIL GAUGES 

Gauge Number Element Number Gauge Number Element Number 

1 & 4  1 & 7 6075 
7075 

2 & 5  2 & 8 14075 
15075 

3 & 6  3 & 9 41075 

7 & 10 30075 
31075 4 & 10 45075 

8 & 11 43075 5 & 11 34075 
35075 

9 & 12 10075 
11075 6 & 12 26075 

27075 

13 & 16 30106 
31106 13 & 19 106075 

107075 

14 & 17 43106 14 & 20 114075 
115075 

15 & 18 10106 
11106 15 & 21 141075 

19 &20  16 & 22 145075 

21 &22  17 &23 
134075 
135075 

  18 & 24 126075 
127075 

 

The foil gauges measure single-directional strains and were oriented down the 

length of the bridge.  The longitudinal direction corresponds with the Global 3 axis in the 

model and the local 22 direction within the girder shell elements.  The measured strain 

was compared with the logarithmic strain calculated in ABAQUS, or LE22, for each 

element. 
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The rosette gauges are three-dimensional and capture maximum and minimum 

principle strains.  These values were compared with the calculated maximum and 

minimum principle logarithmic strains.  Discussion of the data comparisons can be found 

in Chapter 6. 

5.4.2 Deck Instrumentation 

With the rebar elements being defined uniquely, it is again straightforward to 

make data comparisons.  The most important part is knowing which element in the model 

corresponds with the gauges in the bridge.  There are eleven rebar gauge locations in the 

deck: five on each side of centerline and the last at the centerline of the bridge.  On the 

test specimen, two gauges were placed at each location, on the top and bottom layers of 

rebar, to capture the bending response through the deck.  In the ABAQUS model, the top 

and bottom rebar mats are defined individually and there are two elements across the top 

of each flange, so each gauge location corresponds with four elements in the model, 

given in Table 5-4.   
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Table 5-4: Element numbers corresponding to deck rebar gauges on the test specimen 

Gauge Location Element Numbers

40 ft north, interior 516012, 516013 
616012, 616013 

40 ft north, exterior 516020, 516021 
616020,  616021 

20 ft north, interior 512012, 512013 
612012, 612013 

20 ft north, exterior 512020, 512021 
612020, 612021 

10 ft north, interior 511012, 512013 
611012, 612013 

Centerline, interior 509012, 509012 
609012, 609013 

10 ft south, interior 507012, 607013 
607012, 607013 

20 ft south, interior 506012, 506013 
606012, 606013 

20 ft south, exterior 506020, 506021 
606020, 606021 

40 ft south, interior 502012, 506013 
602012, 602012 

40 ft south, exterior 502020, 502021 
602020, 602021 

 

5.4.3 Stud Instrumentation 

As with the defining of element boundaries, the shear stud gauge locations were 

considered when defining the location of shear stud springs in the model.  Using more, 

weaker springs allowed for a better correspondence between stud gauges and available 

elements.  Although easier for model definition, this modification should be considered in 

data comparisons and analysis.  Considering the representation of one shear stud with two 

springs (based on the spacing along the length) and the small and variable strains 
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measured during the fracture event, strains measured at neighboring shear studs should be 

considered and possibly averaged during data comparison.  Given the element numbers in 

Table 5-5, nearby gauges can be found longitudinally by varying the second through 

fourth digits, and horizontally by varying the final two digits (the exact numbering 

scheme was given in Section 5.3.2. 

Out of the fifteen stud gauges placed on the test specimen, only two do not line up 

with a shear stud spring element in the model; all of the element numbers are given in 

Table 5-5.  The LE11 strain from these elements as computed by ABAQUS can then be 

compared to the direct strain measurements made during the live load tests and the 

fracture event. 

Table 5-5: Element numbers corresponding to shear stud gauges on the test specimen 

Gauge Number Element Number 

1 8080003 

2 8105006 

3 -- 

4 -- 

5 8080006 

6 8076006 

7 8122007 

8 8116007 

9 8090007 

10 8080007 

11 8076007 

12 8056007 

13 8122012 

14 8107012 

15 8065012 
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5.5 SUMMARY AND CONCLUSIONS 

This chapter has detailed the development of a finite element model of a steel 

trapezoidal box-girder bridge.  The specifics given include geometries, material models, 

and numbering schemes, so as to enable a future researcher to make modifications as 

necessary.  The main logic governing this model, such as the use of the fake deck element 

system and the *model change keyword, can also be used to build models of other 

bridges with varying geometries or boundaries.   

The model in this project was designed to match the full-scale test specimen 

detailed in Chapter 3.  The model also includes load steps capable of removing the entire 

web of the girder to study a full-depth fracture event, with the intention of predicting the 

response of a bridge in this condition.  Details of the verification process, using measured 

strains and displacements, can be found in the next chapter.  Additionally, Chapter 6 

presents expected deflections and strains after a full-web fracture event and in the case of 

alternate geometries (e.g., a three-span structure).   
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CHAPTER 6  
Results and Comparisons 

 

6.1 INTRODUCTION 

The finite element model described in Chapter 5 was developed to create a 

predictive tool for the response of twin trapezoidal box-girder bridges in a fractured state.  

Response parameters computed with this model that are of particular interest in assessing 

the stability of the tested bridge in its post-fractured condition are the deflections and the 

stresses in the bottom flange of the unfractured girder. 

In order to be confident about the predictive capabilities of the analytical model, 

data were gathered on the full-scale test specimen and compared with calculated values 

from the finite element model.  Considered responses include deflections under dead and 

live loads, strain changes in the girders during live load testing, and the change in strain 

and deflection states during the flange fracture event. 

Additionally, during the developmental stages of the model, comparisons were 

made between various modeling methods.  Included in these tests are studies on mesh 

density through the length, width, and depth of the girders; load application methods for 

the construction load of the uncured concrete; and element type options for the concrete 

deck, rails, and haunches.  Analyzing the structure using multiple methods and returning 

the same results suggests the accuracy of those results and gives a good foundation that 

can be used to compare against experimental data. 

This chapter focuses on two methods of verifying the predictive capabilities of the 

developed models and concludes by presenting the computed results for a full-depth web 

fracture event.  The model recommended for analysis can also be modified to consider 

bridge geometries other than that of the full-scale test specimen. 
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6.2 PRELIMINARY VERIFICATIONS 

During the development of the finite element model, certain decisions were made 

regarding modeling techniques.  Some, such as the switch from shell elements to solid 

elements in the deck, allowed for specific details of the structure to be included.  Others, 

such as increasing the mesh density near the fracture point, aided in establishing a 

convergent state during the load and fracture steps.  Whenever possible, the researcher 

made comparisons between two techniques (such as using shell and solid elements), often 

by comparing deflections along the length.  Comparable deflections gave reliability to 

both modeling methods and their accuracy in reflecting the true response.  

6.2.1 Mesh Density 

High mesh density, the benefits of which were explained in Chapter 5, has the 

drawback of requiring greater computation times due to the increased number of degrees 

of freedom over models with coarser mesh densities.  To capture the response 

surrounding the expansion joints in the rails and the fracture location where stresses and 

strains change rapidly over a small area, a greater number of elements are needed relative 

to other locations over the length of the bridge where the changes in the response 

parameters are less abrupt. 

Adding elements at locations where stresses and strains change rapidly, and thus 

increasing the total number of longitudinal elements from 120 to 180, provided the ability 

to verify the accuracy of the original mesh density.  For the dead load application steps, 

neither the expansion joints nor the fracture were in place, so the additional elements 

were not needed for convergence.  A comparison of dead load deflections calculated 

using 60- and 120-element models is given in Figure 6-1.  The deflections indicate those 

expected during deck casting, with essentially no stiffness added by the deck.  At 

midspan, the percent difference between the two curves is 0.30%.  This minor difference 

indicates that sixty elements down the length of the bridge were adequate to capture the 

response of the real structure for this uniform load case.  The final model has 180, the 

additional elements being located at the three expansion joints in the rails. 
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Figure 6-1: Comparison of dead load deflections with 60 and 120 elements down the length  

6.2.2 Deck Element Type 
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the deck response and considering the possibility of cracking in the deck during the 

fracture event, the model was modified using solid elements for the deck, rails, and 
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Figure 6-2.  At midspan, the variation in deflection between the two element types is 

0.005%.  The final model uses solid elements through the haunches, deck, and rails. 
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Figure 6-2: Comparison of dead load deflections using solid and shell deck elements (curves overlap) 

A second point of comparison for the element types is in the reaction forces.  If 

each element is able to similarly represent the same loads on the structure, the response in 

the reactions should also be the same.  A representative sample of comparative reaction 

forces is given in Table 6-1.  In the set of twenty nodes and thirty reaction forces (twenty 

vertical and ten horizontal), none varied by more than 0.5 kip. 
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Table 6-1: Comparison of reaction forces under dead load using solid and shell deck elements 

Node No. Solid Elements 
(kip) 

Shell Elements 
(kip) 

% 
Difference 

20112 28.95 28.69 -0.90% 

20113 11.42 11.58 1.37% 

20114 19.46 19.01 -2.36% 

20115 11.47 11.77 2.54% 

20116 31.58 31.88 0.95% 
 

6.2.3 Concrete Load Application 

In an effort to capture the true stresses that are experienced by a steel bridge from 

fabrication through service, the construction sequence needs special attention.  In the 

early stages of construction, the steel girders do not have the stiffness or rigidity that is 

later gained through casting and curing of the solid composite deck.  Thus, to calculate 

the correct deflections and stresses, the load steps have to begin with zero stiffness in the 

deck. 

The deck stiffness was developed using *model change, as described in Section 

5.3.3.  During the construction step, the dead load of the wet deck was applied to the top 

flanges of the girder, where the stay-in-place metal pan decking would be attached.  The 

next steps reactivated the deck elements (with an appropriate value for Young’s 

modulus), disabled the applied flange load, and activated gravity loading. 

To ensure the applied and gravity loads were equivalent, deflections considering 

each scenario were gathered and compared.  Additionally, the change in deflection across 

the load steps where the deck elements were reactivated and loaded was monitored to 

confirm that appropriate loads were applied considering the dimensions and density of 

the deck.  Figure 6-3 shows the deflection curve down the length for the applied and 

gravity load scenarios (applied load referring to the case where the dead load is applied 

on the top flanges).  As with the previous graphs, the two curves are coincident, with 

percent differences on the order of 0.05%. 
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Figure 6-3: Comparison of dead load deflections while applying deck load as a surface load on the 
top flange (applied) or as a gravity load 

The same method of removing and reactivating elements was used in the rail pour 

steps, with each rail considered individually and in a corresponding manner to the 

construction of the test specimen.  A typical deflection profile through the first ten load 

steps – girder erection through external cross-brace removal – is shown in Figure 6-4.  

The switch in deck loading leads to a change in deflection of 0.01%, while the switch in 

rail loadings change the deflection by 0.8%. 
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Figure 6-4: Deflection profile for a midspan node on the external girder from girder erection through 
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d analysis in the ABAQUS model allowed for the separation of 
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Figure 6-5: Deck load deflection comparison using ABAQUS, UTrAp, and measured data 

The similarity in data between the ABAQUS model and the measured values 

continued to reinforce the strength of the “fake element” method for applying the deck 

loads (described in Chapter 5).  If the “fake” deck elements had added significantly to the 

steppe  process of 

ual load step deflections.  To help evaluate the accuracy of the analytical model, 

the measured and ABAQUS values were compared after the deck was poured (thus 

capturing the deflection experienced from the dead load of the deck).  Additionally, the 

same deflections were calculated in UTrAp.  A comparison of the deflection curves for 

the exterior bottom flange are shown in Figure 6-5.  At midspan, the difference in 

deflection between the three curves is less than 0.15 in.  Considering the accuracy of the 

laser level used for measurement (±0.06 in.), the curves are nearly coincident at that 

point. 
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strength

 

Figure 6-6: Deck and girder dead load deflection comparison using reduced- and full-integration 
girder elements (s4r and s4) 

 of the system during deck casting, the ABAQUS model would have resulted in 

deflections less than the measured values.  The larger deflections that were actually 

calculated suggest that the use of reduced-integration elements throughout the girder 

overcompensated for the extra stiffness in the model.  Figure 6-6 shows how the 

measured data generally falls between the response of full- and reduced-integration 

elements.  To the south of centerline (the left on Figure 6-6), the correlation between 

measured and calculated values is not as good as it is to the north of the centerline.  This 

discrepancy was most likely caused by imperfections in the geometry of the girders that 

were present at the time of construction or error in the deflection measurements.  Further 

data regarding the shape of the girders through the construction phases can be found in 

Barnard (2006). 
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While the deflections of the south end might be better approximated with full 

integration elements, reduced integration was used for two reasons.  First, the 

computation time for reduced integration elements is less than for full integration 

elements.  Secondly, the higher deflections that result present a conservative 

approximation of response, which the full integration elements cannot do at all locations. 

6.3.2 Live Load Testing 

During the fracture event, the bridge was loaded with an equivalent HS-20 truck, 

approximately 76 kips spread at 14-ft intervals.  The loading was achieved using concrete 

blocks, as described in Section 3.3.  Before the fracture event, the changes in strain 

experienced during the placing of the blocks were measured; after the fracture event, the 

changes during unloading were measured.  Similarly, steps are included in the ABAQUS 

analysis that mimic the placing and removing of the surface load on the bridge.  Strain 

changes across those steps were calculated and compared with the measured values, as 

shown in Figure 6-7.   

 

Figure 

those near the top of the webs may seem to have large variation between measured and 

6-7: Measured and calculated strain changes in the girders during loading.  Measured values 
are on the exterior of the girders in blue; calculated values are on the interior in red italics.  

It is important to note the magnitudes of the strains shown in Figure 6-7.  While 
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itial imperfections in the girders would influence the measured 

strains.  By definition, the bridge in the finite element model has no superelevation or 

initial twist, and thus all loads are applied vertically and uniformly.  The test specimen is 

known to have a slope longitudinally which would influence the exact direction and 

magnitude of the dead loads.  Any initial transverse rotation would also alter the loading, 

as the wet concrete would favor the lower side during casting. 

Figure 6-8 presents strain comparisons at the same locations during unloading, 

after the flange was fractured.  Again, the most accuracy is found on the bottom flange, 

where the strain change is the greatest. 

event showed essentially 

negligible changes in the rebar strains; there was not enough bending induced in the deck 

to register outside the range of noise and with any believed accuracy in the rebar gauges.  

recorded values, the values are very small, as the gauges are situated close to the neutral 

axis of the structure.  The comparisons on the bottom flange, which are of larger strain 

values, present a more suitable look at the accuracy of the model. 

Additionally, in

 

Figure 6-8: Measured and calculated strain changes in the girders during unloading.  Measured 
values are on the exterior of the girders in blue; calculated values are on the interior in red italics. 

6.3.3 Fracture Event 

During the fracture test, there were strain gauges on the girders, the rebar within 

the deck, and the shear studs.  Data processing after the 
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The ros

strain in the analytical model in an effort to verify 

the accuracy of the model. 

6.3.3.1 Deflections 

During the flange fracture, the girders deflected 0.25 in. (±0.06 in.) at midspan.  

The analytical model predicted a change in deflection of 0.252 in.  A comparison of the 

measured and calculated change in deflections due to the flange fracture can be seen in 

Figure 6-9.  While the maximum measured change in deflection was not at midspan, the 

total deflection was greatest at the fracture location.  Considering the deck gravity 

loading and the weight of the truck, as well as the influence of the fracture, the difference 

between the total measured and calculated deflections was 0.1 in. at midspan.    

ette and foil gauges on the girders, however, as well as the stud gauges, did return 

strain values indicative of the transfer of forces after the fracture event.  These values 

were compared to calculated values for 

 

Figure 6-9: Comparison of the change in deflections calculated in ABAQUS and measured on the 
test-specimen using a laser-level 
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se during 

the live load testing and the full-depth fracture of this bridge and fracture events on other 

test specimens would continue to validate the modeling methods presented here. 

6.3.3.2 Girder Strains 

As with the live load testing, the foil gauge readings were compared with the 

longitudinal directional (LE11 and LE22) strains measured in certain elements in the web 

and flange.  Because the analysis was run statically and the fracture event happened 

dynamically, the calculated strains were compared with the final-state strain change 

measured on the girder.  The peak strains measured are compared in Section 6.5 with 

dynamic load-effect-modified analyses. 

Figure 6-10 shows the calculated and measured strains.  There are four locations 

where the gauges failed, most because the wires were severed by shrapnel from the 

explosive event.  The calculated values are displayed even without the comparison to 

measurements so as to show the trends through the full girder cross-section.  

ured 
values are on the exterior of the girders in blue; calculated values are on the interior in red italics.  

Blank spots indicate broken gauges.   

The smaller deflections calculated by the model, especially in comparison with 

the larger deflections calculated pre-fracture, imply that the model responded in a stiffer 

manner than the test specimen.  The stiffness could come from the strength attributes 

given to the deck or the static load application method.  Further study of respon

 

Figure 6-10: Measured and calculated strain changes in the girders during fracture event.  Meas
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uges, especially along the bottom flange, show very good 

correla

e beginning of the analysis.  If there was a slight 

angle 

Differences in sign could be caused by incorrect element-gauge location 

correspondence.  The gauge that measured -19.6 microstrain could have been placed 

lower on the web than the element that measured 47.1 microstrain.  To some extent, this 

source of error could be confirmed by measuring the exact locations of the gauges on the 

girders to ensure the location is known.  However, the size of the elements in relation to 

the size of the strain gauges also means the element is measuring strain over a larger area 

that might not be centered on the gauge.  Initial imperfections in the girder placement and 

loading should also be considered, as explained further in Section 6.3.2. 

Keeping in mind that the displayed strains are changes in the strain in the

in tension through the top o is has shifted upwards, as 

was expected after the loss of stiffness in the bottom flange.  The strain at the other points 

decreas

Some of the ga

tion with the calculated values, while others do not.  Even for the cases involving 

the largest differences, the error is on the order of a 2 ksi stress (assuming elastic 

response).  The differences between the two could come from a variety of sources 

including the element size and location considered on the model and the placement of the 

gauges on the girders.  The strains gathered were aligned with the longitudinal edges of 

the elements, which were horizontal at th

off horizontal in the gauges, the measured strain would actually contain 

components from each directional strain.  Considering the calculated vertical and shear 

strains were smaller by only one order of magnitude, the predicted influence on strain 

readings would be important. 

 

members, general trends can be observed.  In the fractured (exterior) girder, the increase 

f the web indicates the neutral ax

ed due to the transfer of stresses through other pathways because the bottom 

flange can no longer hold load.  Fracture theory predicts an ellipse of near-zero stress to 

form around a fracture; this effect is seen both in the data shown in Figure 6-10 and in the 

ABAQUS plot shown in Figure 6-11. 
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ely.  However, these calculations do not consider 

the fracture of the exterior girder webs.  Also neglected are the initial residual stresses 

that are caused by welding the plates of the box together.  Full fracture response 

predictions are presented in Section 6.4. 

6.3.3.3 Shear Stud Strains 

Strain gauges were placed within selected shear studs to measure the vertical 

forces transferred to the slab through the studs from the dead weight of the fractured 

girder.  Seven of the fifteen gauges returned useable data, and the elongations were 

 

Figure 6-11: Ellipse of near-zero stress surrounding the flange fracture (blue is low, red is high) 

All gauges on the interior girder showed an increase in tension in the web and 

bottom flange.  This increase correlates with the expectation that some of the loads from 

the exterior girder would be transferred to the interior girder.  With the additional loads 

on the interior girder, one concern is the possibility of yielding in the bottom flange if the 

loads get too high.  Both the measured and calculated strains show very little change: 40 

to 130 microstrain, or, if the steel remains elastic, less than 4 ksi of added stress.  

Considering the pre-fracture stresses were calculated to be in the range of 20 ksi, yielding 

of the interior bottom flange is not lik
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compared to deflection differentials through the spring element shear studs in the 

analytical model. 

The overall difference in length in individual shear studs measured was on the 

order of 10-5 in. across a 5 in. tall stud (this value being calculated from the measured 

engineering strain and the initial length), with five of the seven gauges indicating 

elongation.  The ABAQUS model accuracy was limited to five decimal places and thus 

barely captured any change between load steps.  However, the values that were calculated 

corresponded in sign and magnitude with the measurements during the fracture event. 

To further validate the modeling method, it would be beneficial to perform tests 

that create higher loads in the studs.  With such small values, gauge precision and 

placement become highly influential.  For instance, if the gauge was not placed exactly 

vertically within the stud, shear forces transferred between the deck and girders could 

influence the reading.  As for 

the tole

ently with an analytical finite element model.  

ure test would be compared with those calculated by the 

model,

precision, the readings need to be high enough to be outside 

rance of the gauge, where the reading is not dictated by noise but by the changing 

load paths of the structure.  A full-depth web fracture test should be able to create these 

strains, which can then be compared to the predicted values gathered by the model.  This 

scenario is investigated analytically and is presented in part in Section 6.4.1.3.  If the 

spring elements are found not to represent the response adequately, the stiffness and 

placement of the springs could be changed to improve correlation or a different modeling 

method could be used. 

6.4 PREDICTION OF FULL FRACTURE RESPONSE 

This project was designed with the goal of creating a predictive tool for the 

behavior of trapezoidal box-girders that experience a fracture event.  The intent was to 

build a full-scale test specimen concurr

Data gathered from the fract

 verifying the accuracy of the model.  However, testing of the full-scale test 

specimen failed to fracture the web, so the finite element model could only be evaluated 

to that point. 
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t verification, however, it is difficult to assess the validity of the 

predict

ore 

comple

t a plot of the deflections of each bottom flange.  Figure 6-12 

shows the change in deflection down the length of the bridge from pre-fracture to post-

r girder, with no continuity at the 

midspa

The model was still run through a full-fracture event, as that response is still of 

interest.  Withou

ed response, especially when considering certain assumptions made in creating the 

model and the variability between calculated and measured values during the flange 

fracture event. 

Included in those assumptions is the behavior of the concrete in the deck and rails.  

The non-linear and complex failure behavior of concrete is difficult to model, and it was 

eventually simplified to an elastic-plastic model as described in Chapter 5.  A m

x material model including the cracking behavior of concrete was not used 

because local failures in the deck and rail caused non-convergence in the model.  The 

elastic-plastic model assumes that the concrete failures will be localized and the rebar 

embedded in those members will be able to withstand the stresses without the confining 

concrete. 

6.4.1.1 Deflections 

Twin box girders are not classified as redundant structures because there are less 

than three primary load-carrying members.  The expected response of the bridge under 

fracture does not give credit to the system effects that come from having two connected 

girders.  While one can fracture, the other can still hold load.  The two behaviors are seen 

most clearly looking a

full-depth web and flange fracture.  The exterio

n, shows hinging effects: a sharp change in rotation occurs at the fracture site (the 

jump in displacement visible at midspan is caused by the unsymmetrical interior bracing 

and the location of the truck loading with respect to the fracture site, and is discussed 

further in Section 6.6.1).  The interior girder, however, which is still intact, responds in 

bending, to a much smaller extent. 
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Figure

As mentioned in Section 6.3.3.2, there is a possibility of yielding in the interior 

girder due to the increased load that occurs after failure of the exterior girder.  Using the 
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 6-12: Change in deflections of the interior and exterior flange during a simulated full-depth 
flange and web fracture 

The stability of the structure then becomes dependent on four additional factors: 

(1) the stresses in the bottom flange of the interior girder, which could be high enough to 

cause yielding; (2) the stresses in the shear studs, which are expected to pull out of the 

concrete deck if the load is too great; (3) the strain in the rebar of the deck and rails; and 

(4) the presence of uplift at the supports, which could cause the bridge become unstable 

due to a lack of proper restraint.  The first three factors are considered in the following 

sections; the reaction forces are discussed further in Section 6.6.1.3 in conjunction with 

bridges of variable radii. 

6.4.1.2 Interior Girder Stresses 
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von Mises failure stress criterion (Salmon and Johnson 1996), no yielding is expected in 

the bottom flange as a result of a full-depth fracture.  The maximum calculated von Mises 

stresses are in the range of 40.0 ksi at midspan of the interior girder, which is less than 

the assumed design yield stress of 50.0 ksi.  The actual uniaxial yield stress of the steel in 

the girders is unknown, as no coupon from the girders was tested.  During deconstruction 

of the test specimen, it would be beneficial to perform this test.  The stresses are 

presented in more detail alongside those from alternate bridge geometries in Section 

6.6.1.2. 

6.4.1.3 Shear Stud Strains 

The elongations calculated in the shear studs during a full fracture event were 

between 1 × 10-5 in. and 2 × 10-4 in.  The loads calculated from these strains are between 

0.01 and 0.5 k, which is much less than the expected 17 k failure pullout load found by 

Sutton (2007).  While the accuracy of the shear stud modeling was not verified during the 

flange fracture event, the axial load on one shear stud can be approximated by 

c

Considering solely statically applied dead ds (three on each top 

flange)

onsidering the dead load each will need to carry if the girder below is fractured. 

 loads, six shear stu

 will need to support a tributary width of 22 in. of girder below.  The weight of 

that girder can be found by considering the volume of steel and the unit weight of steel 

(0.490 k/ft3): 

 1
6onestud steel trib steelLoad L Aγ= ⋅ ⋅ ⋅  (1) 

where  

γsteel = unit weight of steel, 0.490 k/ft3 

Ltrib = tributary length, 22 in. or 1.83 ft2 

Asteel = area of steel in girder cross-section, 0.76 ft2 

ain much less than the experimental limit load, and 

approx

The result is 0.11 k, which is ag

imately equal to those calculated from the ABAQUS model.   
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 the girder.  The results from this model do not indicate this progression as a 

likely mode of failure. 

6.4.1.4

edictive 

capabil

ough to indicate imminent plasticity.  The rebar was modeled using truss 

xial) elements, so the direct stresses (S11) were considered.  Figure 6-13 present

schematic of the stress value data shown in Figure 6-14 and 6-15.  

The more damaging impact could be that caused by the dynamic change in 

geometry.  Sutton showed the shear studs to have very little ductility, meaning no plastic 

behavior is expected.  Additionally, the tests were run with static loads; it is unclear if 

dynamic loads will increase or decrease the pullout strength.  The combination of 

increasing the expected strains and decreasing the pullout strength could result in an 

unbuttoning response of the shear studs: the set nearest to the fracture fails, thus more 

heavily loading the set 22 in. away, which quickly fail, and the process repeats down the 

length of

 Rebar Strains 

In the model, the rebar was defined explicitly for two reasons: the first was to 

account for the failure of the surrounding concrete without losing all capacity in the deck; 

the second was to allow for data comparison with the rebar gauges.  During the flange 

fracture event, the rebar gauges indicated so little change that there were no meaningful 

comparisons to be made.  However, the analytical model does still have pr

ities for a full web fracture event.  The total stresses expected in the rebar after 

girder fracture are presented here. 

The analysis was run with a perfectly elastic rebar model, as the stresses were 

never high en

(a s a 

 



 

Figure 6-13: Schematic of the rebar stress figures shown in Figures 6-14 and 6-15 

 

Figure 6-14: Predicted total stresses from live load in (a) interior and (b) exterior deck and rail rebar 
at midspan 

 (a) (b) 

 (a) (b)  
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Figure 6-15: Predicted total stresses after a full-depth flange and web fracture in (a) interior and (b) 
exterior deck and rail rebar at midspan 

The general trends include high stresses right near the central expansion joint, 

which coincides with the induced fracture.  Additionally, the full-depth fracture results in 

the neutral axis being located much higher at midspan, which is expected due to the lack 

of stiffness in the external girder.  The high stresses calculated in the rebar were very 
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localized, remaining within three feet of midspan and of the external edge of the deck.  In 

all cases stresses were not large enough to indicate yielding of the rebar. 

6.5 EFFECT OF DYNAMIC LOADING 

Dynamic response calculations are made through a series of iterations that capture 

the behavior at many points through a load step.  Because each iteration means solving 

the governing system of equilibrium equations, dynamic studies take significantly more

time to r seful to 

mimic the behavior experienced from a dynamically-applied load using statically-applied 

(according to serviceability concerns, o  of a truck to cross the bridge safely).   

In an effort to capture dynamic load increase effects for the present study, an 

the girder (or approxim

(midspan) were multiplied dations in recent literature 

to use a magnification factor of 1.5 (Ruth et al. 2006), the guidelines still advise using 

2.0, so

 

un than static ones.  As such, in an effort to limit computation time, it is u

loads. 

In 1989, the National Cooperative Highway Research Program released a report 

discussing redundancy ratings for two-girder steel bridges (Daniels et al.).  In it, loads 

were applied statically, but the standard truck loadings were increased by 30% to account 

for dynamic impact.  However, the dynamic effects of the fracture are not considered 

explicitly.  Instead, further studies increased the truck load until “failure” was reached 

r the ability

analysis was defined using a method similar to that used for progressive collapse 

modeling of structures.  The Unified Facilities Criteria Guidelines (2006) state that, to 

consider the dynamic effects of the failure of a column, the loads in the surrounding bays 

should be magnified by a factor of two.  As there are no bays on the bridge, this method 

was modified slightly.  Instead, the gravity and truck loads within two times the depth of 

ately 96 in.) in either direction from the fracture location 

 by two.  While there are recommen

 that was the value used for this research project.  Each 50% increase added 

approximately 70 kip to the total load on the bridge, increasing the total load from 600 

kip (no amplification) to 670 kip (×1.5) to 740 kip (×2.0). 
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f having the full 

design load at the time of failure.  In this study, the “live” truck load was considered as 

 the bridge at the time of the fracture.  In a real 

fracture

The difference in static and dynamic responses can be seen in Figure 6-16, where 

the dyn

Of the eight foil gauges that 

returned good results from the flange fracture test, only two fit this trend.  The other six 

The UFC Guidelines state that 1.2 times the dead load and 0.5 times the live load 

should be magnified.  The decrease in live load reflects the probability o

dead load, as it was known to be on 

 situation, a load would have moved across the fracture location during some part 

of the fracture event; the truck used here did not.  The impact of the truck on the response 

of the bridge was thus more similar to a dead load, and as such, the truck loads were also 

amplified in the dynamic load study. 

The effects of dynamically applied loads are felt during the first moments of the 

event.  

amic load (applied at Time = 1.00) creates a peak value approximately two times 

the final value from a static load. The statically calculated values with dynamic 

amplification factors were thus compared to the peak change in strain in the gauges, not 

the overall change (as has been previously considered).   

 

Figure 6-16: Example of the difference in peak values from static (blue dashed line) and dynamic 
(red solid line) load application 

The expectation was that the peak strains measured would fall between the strains 

calculated using a 1.5 and a 2.0 amplification factor.  
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register

 

Figure 6-17: Measured peak and calculated base and amplified strain values during fracture event at 
locations indicated on inset (6 ft south of centerline) 

The higher peak strains could indicate several things.  Most simply, the area over 

which the loads were amplified in the models was possibly not large enough.  More load 

would certainly increase the calculated strains.  However, to arbitrarily increase loads 

without reason is not a good analysis decision, as it cannot be repeated with confidence

fo e 

bridge, as there are no additional supports between the fracture and the ends, could be 

tried and compared to the gathered data to

geometry. 

ed strains greater than even the 2.0 amplification factor would suggest.  A 

comparison of each gauge reading and calculation can be seen in Figure 6-17. 

 

r other geometries.  Additional load amplification areas, such as the entire length of th

 find a better method of capturing the dynamic 

response.  However, true verification of any load scheme would require data from 

multiple bridge geometries to show that the same loading method works independently of 
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econd, the 

impact of that load both locally and system-wide could be minimal.  In an effort to 

remove the change of a high peak value skewing the data, an alternate method could be 

used where the values recorded in the first milliseconds of the test (for instance, 50 ms) 

are averaged to get an effective “peak” value.  If the gauges read high for just an instant, 

the timed average would lessen the effect of that maximum on the recorded data.  Further 

study and comparisons based on additional data are needed to better understand 

appropriate static loads to mimic dynamic response. 

6.6 ALTERNATIVE GEOMETRIES 

One of the goals in designing this model was to be able to make predictions of the 

behavior of other bridges.  The bridge studied here had three details whose influence was 

of particular interest.  First, the bridge has a very large radius of curvature, which, 

relative to a bridge with a small radius of curvature, minimizes the amount of torsional 

stress on the bridge during a fracture event.  Second, researchers are presently debating 

the merits of keeping or removing the external cross-braces used during construction. 

concern that they may onversely, they may 

benefit a fracture-critical bridge by providing additional load paths to transfer forces from 

one gir

One critical detail when considering dynamic loads is the length of time over 

which they happen.  If the peak strains were felt in the bridge for just a millis

 

Currently, as in this study, they are removed after the deck is cured because there is 

 help initiate a fracture at a critical location.  C

der to the other.  Lastly, the test specimen in this study was simply-supported and 

thus lacking redundancy that could come from multiple spans.  The base input file was 

modified to consider these three variables.  The following sections present comparisons 

in the response of the system with these varying geometries. 

6.6.1 Variable Radius 

The AASHTO Guide Specifications for Horizontally Curved Steel Girder 

Highway Bridges (2003) is written for bridges with a minimum radius of curvature of 
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as not necessary.  Section 4.2.2 of the specification states that  

100 ft.  Considering the length of the bridge in this study is only 120 ft, studying a radius 

that small w

 

the effect of curvature may be ignored in the determination of 

vertical bending moment in box-girder bridges when … the arc 

span divided by the girder radius is less than 0.3 radians 

(AASHTO 2003). 

 

Using the arc length of the bridge and rearranging the equation to solve for R, 

 ftftL
R arc 400

3.0
120

3.0
===  (2) 

The minimum radius of curvature considered was thus chosen as 400 ft.  An intermediate 

a middle geometry.  All three of these geometries are 

still co

structure is weak – also adds to the deflection of the exterior girder.  Figure 6-18 shows 

the change in displacement of the bottom flange of the exterior girder along the length of 

each bridge from before fracture initiation to after the web is completely cut.  As 

expected, the smallest radius girder (R = 400 ft) has the most deflection, at 2.64 in.  

value of R = 800 ft was also used as 

nsidered to be essentially straight; further study should include tightly-curving 

bridges where the AASHTO limit given above is exceeded.  For the geometries 

considered, the deflections and bottom flange strains from each bridge were compared, as 

were the reaction forces at the ends.  These three variables are general indicators of 

performance and are useful in assessing the system-wide stability of the structure.  For 

instance, uplift reaction forces at the ends could indicate instability of the bridge in the 

form of possible rollover. 

6.6.1.1 Deflections 

The bottom flange deflections of the bridge give an idea of the magnitude of 

deformation that occurs during a fracture event.  Most of the deflection comes from the 

fractured girder sinking as the stiffness approaches zero at the centerline.  The rotation of 

the girder towards the outside of the curve – where the load is placed, and where the 
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is not significantly greater than what is expected for the near-

straight

ifference in deflection on either side of the centerline is almost 

0.1 in. for the R = 400 ft case.  Possible causes of this difference include the greater truck 

 the south end of the bridge, or the presence of internal stiffeners on 

only th

shows the deflection in the bottom flange of the exterior girder after the flange has been 

However, this deflection 

 case (R = 1365 ft), which deflected 2.37 in, or 10% less. 

0

0.5
R = 400 ft
R = 800 ft
R = 1365 ft

-2.5

-1.5

-1

-0.5

D
ef

le
ct

io
n 

(in
)

-2

-3
0 10 20 30 40 50 60 70 80 90 100 110 120

Location (ft)

 

Figure 6-18: Change in displacement of the exterior girder during a full-web fracture with variable 
radii: blue solid line is 400 ft radius, red dashed is 800 ft, and green dotted is 1365 ft 

It should be noted that at the point of fracture (x = 60 ft), there is a jump in the 

calculated deflection.  The fracture was modeled just south of centerline, or between 59 

ft-10.5 in. and 60 ft.  The d

load that is applied on

e north side of the fracture.  The result is the formation of a hinge at the fracture 

location.  Prior to the fracture, the bottom flange held the highest moments in the 

structure, but after, is unable to hold any.   

The effect of the hinge can be seen in Figure 6-19 and Figure 6-20.  The former 



fractured but while the web is intact.  The latter shows the total deflection after the web 

has failed.  The shape of the curve in Figure 6-20 shows how the hinge has formed: the 

girder bends very little between the support and midspan.  
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Figure 6-19: Deflection of the bottom flange of the exterior girder after flange fracture 
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Figure 6-20: Total deflection of the bottom flange of the exterior girder down the length of the 
bridge, post-web fracture 

The hinging effect is present in all three geometries, without much variation in 

response.  However, in all three cases, the web fracture was dictated to progress through 

the web to the top flange.  An actual fracture event might occur differently in the three 

bridges due to the varied magnitude and distribution of service-load stresses, so results 

suggest a worst-case scenario. 

6.6.1.2 Bottom Flange Stresses 

Upon fracture of the exterior girder, load is expected to transfer to the interior 

girder through the shear studs and deck.  Assuming the shear studs and deck have the 

ability to transfer this load, the interior girder must have the capacity to withstand the 

resulting increase in stresses and strains.  The maximum bottom flange stresses for the 

three different bridge geometries considered are presented in Figure 6-21.  For each 

geometry, the maximum stresses in the bottom flange of the interior girder occurred at 
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the intersection of the web and flange on the outside of the horizontal curve of the bridge 

(towards the fractured girder).  The element at midspan (in the same longitudinal location 

as the fracture), as well as one element north and south of midspan, are shown in the 

figure.  The stresses in the interior girder flange pre-flange fracture are within two ksi of 

the stresses shown post-flange fracture. 

culated in the bottom flange of the interior girder after each stage 
of fracture for three different geometries (R = 400, 800, and 1365 ft) 

the von Mises yield criterion, which was defined as 50.0 ksi for the steel used.  The 

 

Figure 6-21: von Mises stresses cal

The clear trend with the variable radius is an increase in stress as the radius is 

increased.  This increase is likely due to rotation across the width of the bridge that is 

experienced more with the smaller radius, where the interior girder is actually lifting 

slightly, thus reducing the amount of tension experienced by the bottom flange.  

Achieving a failure through flange yield during a fracture is thus more likely in a 

straighter bridge.  However, for all three geometries considered, the stresses did not reach 
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 to resist torsion both within the members and as 

a system: loads on the exterior edge of the bridge must not be able to tip the girder off its 

supports.  Neither elastomeric or pot bearings have any tensile capacity, which means 

uplift cannot be resisted.  For this study, the fracture was initiated in the exterior girder, 

as the exterior girder is normally instrumental in securing the system-wide stability (i.e., 

it represents a worst-case scenario).  The reaction forces were calculated at each of the 

sixteen support nodes: four on each girder, at each end.  The forces are referenced in the 

graphs by a letter and number.  The letter determines the location across the bottom 

flange (shown in Figure 6-22), and the number indicates the end of the bridge, with 1 

being the south end (roller support) and 2 being the north (pin support). 

Figure 6-22: Support locations and lettering scheme 

Figure 6-23 shows the total vertical reaction forces at each of the sixteen support 

nodes after a f etries.  While 

the geometries were different, the total load on each bridge was within 0.5 kip of one 

another

interior girder thus remained elastic and has reserve capacity to withstand load transferred 

from the failed exterior girder. 

6.6.1.3 Reaction Forces 

Curved bridges must be designed

 

ull web and flange fracture event for the three different geom

 (0.1% of the total load of 600 kip).  Only the 400-ft radius bridge experienced 

any uplift (negative reaction values), and neither instance spanned the entire width of the 

support.  The trend was for the girders to lean on the supports toward the outside of the 

curvature of the bridge, which is expected for a curved bridge. 
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Figure 6-23: Total reaction forces after a full web and flange fracture event for three different 
geometries (R = 400, 800, and 1365 ft) 

The total load on each bearing can be calculated by summing the reactions at the 

four constitutive nodes.  The reaction forces calculated before and after the fracture even

are presented in Table  steps.  The analyses 

predict that transversely, the loads will shift from one support to the other, in amounts of 

4 to 10

 

t 

 6-2, along with the difference between the two

 kip.  At the south end, the loads increase on the interior support and decrease on 

the exterior.  At the north end, the loads increase on the exterior support and decrease on 

the interior.  This difference in response could be due to the decreased stiffness in the 

exterior girder, which would cause rotation of the bridge towards the outside support, and 

the hinging of the fractured girder, which would lift the end of the girder off its support.  

The hinging effect dominates over the overturning effect at the south support because the 

majority of the truck load is south of centerline. 
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Table 6-2: Variation in reaction forces at each of four supports for three bridges of different radii 

Loads (kip) 

Location Pre-Fracture Post-Fracture Change 

Interior 60.2 69.4 9.3 
South 

Exterior 235.0 225.8 -9.1 

Interior 59.8 55.0 -4.7 

R 
= 

40
0 

ft 

North 
Exterior 244.0 248.7 4.6 

Interior 96.8 105.5 8.8 
South 

Exterior 198.1 189.4 -8.7 

Interior 97.4 93.0 -4.4 

R 
= 

80
0 

ft 

North 
Exterior 206.2 210.5 4.3 

Interior 111.7 120.3 8.5 
South 

Exterior 183.0 174.5 -8.5 

Interior 112.7 108.5 -4.2 

R 
= 

13
65

 ft
 

North 
Exterior 190.8 195.0 4.2 

 

tic 

load steps) was also calculated and is shown in Figure 6-24.  These forces again show the 

rotation

The change in vertical reaction force from pre- to post-fracture (using two sta

 of the girders on their supports, decreasing the load towards the inside and 

increasing the load towards the outside.  The exterior girder supports on the south end are 

almost entirely negative, showing a decrease in the reactions across the entire girder.  

This decrease could be due to the effective hinge that forms in the bridge when the 

fracture is formed, as was shown in Figure 6-20.  The difference in response between the 

north and south ends could be a result of the placement of the fracture, which is just south 

of centerline in the model, and the placement of the truck, with the majority of the load 

south of centerline. 
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Figure 6-24: Change in  during a full web and f acture event hree 
different geometries 0, 800, and 13

erent load schemes to determine the true cause of the response. 

The data presented in Figure 6-23 and 6-24 and Table 6-2 can also be used to 

consider the moments produced within each bearing pad.  The larger radius bridge has 

 

support reactions lange fr
65 ft) 

 for t
 (R = 40

At three of the four supports, the response across the bearing is the same for all 

three bridge geometries.  For the exterior girder at the south end, each responds slightly 

differently.  The 800-ft radius bridge shows a uniform decrease in reaction forces across 

the width of the bearing (nodes E1 to H1).  The 1365-ft radius bridge follows the trend of 

the other three supports, with the uplift being smallest towards the exterior of the curve of 

the bridge, indicating some roll of the girder towards the outside.  The 400-ft radius 

bridge, however, varies in the opposite direction, increasing in uplift towards the exterior 

of the bearing.  These variances are most likely due to the hinging at midspan and the 

truck load placement.  Further study is warranted considering bridges of larger and 

smaller radii and diff
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less variation in reaction forces between the interior and exterior girder, and across each 

individual bearing.  As the bearings were all modeled with the same width (22.75 in.), the 

moment around the centerline of the larger-radius bridge bearings are thus less than in the 

smaller-radius bridge.  The change in moment during the fracture is also smaller.  The 

total moments for each of the bearings before and after the fracture event are presented in 

Figure 6-25.  Of the four bearing locations on each bridge, only one responds differently: 

the southern support on the exterior girder.  This support is the same one discussed 

previously.  As the moments are calculated from the reaction forces, the same factors 

would influence the response (truck loading and hinging at midspan). 

 

Figure 6-25: Moment about the centerline of each bearing pad for three bridges of different radii.  
The bearings are located beneath the internal and external (Int and Ext) girders at the north and 

south ends of the bridge (N and S). 

In a case where rollover is of concern (as may be for the 400-ft radius bridge), 
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ts of the bridge.  A 

model was run with the braces left in place during the two fracture events (flange and 

web removal).  The external braces were able to aide in transferring load from the 

fractured girder to the remaining one but did little to restrict rotation and independent 

movement of the fractured girder.  The model predicts a decrease in deflections during 

the web removal step of approximately 0.07 in., as summarized in Table 6-3.  The overall 

shape of both girders post-fracture was the same with and without the braces. 

Table 6-3: Maximum change in deflection at midspan of the fractured girder with and without 
external cross-bracing 

Change in Deflection (in) 

expensive, if this minor modification to the design could prevent collapse in a fracture 

event, it would be practical to use it. 

6.6.2 Influence of External Bracing 

In the construction of the full-scale test specimen, the external bracing frames 

were removed after construction was complete, as is standard in Texas box-girder 

bridges.  In general service life, the braces hold very little load but can be a source of 

fatigue crack initiation.  However, in the case of a fracture event, the braces might have 

the ability to transfer load from the fractured girder to intact componen

 

Flange Fracture Web Fracture 

Without bracing 0.26 2.16 

With bracing 0.26 2.09 

 

The stress gained in the external braces during the flange fracture was less than 1 

ksi in each individual member.  Removing the flange and web resulted in a total stress of 

up to 7.3 ksi in tension and 6.6 ksi in compression, as shown in Figure 6-26 (the larger 

st t 

south of midspan).  Consider .31 in2 for the horizontal T-

shapes and 6.1 in2

both ends, the critical buckling stresses are on

resses in the south brace are likely due to the location of the fractured elements, jus

ing the areas of the members (6

 for the inclined double-angles) and assuming pinned connections at 

e to two orders of magnitude greater than 



the induced compression stresses, and none of the calculated values near a 50 ksi yield 

stress. 
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tween 0.01 

an te 

life” and thus need not be considered

Concerning global stability, the bot unfractured girder 

are of importance.  By transferring m s fr ed girder, the 

external braces s the stresses induced during the fracture event.  The 

differential, shown 7, is greatest on the outer edge of the interior girder 

flange.  Considering the positive difference on the inner edge (meaning the model 

withou

 

Figure 6-26: Total stresses calculated in the (a) south and (b) north external brace elements after 
flange and web removal (actual braces connect at girder web; drawn for clarity in data presentation) 

The external braces are generally removed because of fatigue concerns at the 

connections with the web plates.  Any weld that holds tension forces is susceptible to 

flaw growth from fatigue.  However, the estimated life for a member (in terms of cycles 

of load) is dependent on the stress range in that member.  The stresses accrued in the 

members during service (before the fracture event) were calculated to be be

 (a) (b) 

d 1.5 ksi, which could be small enough to classify the connection as having an “infini

 during fracture-critical inspections. 

tom flange stresses in the 

ore of the force om the fractur

lightly increased 

 in Figure 6-2

t cross-braces calculated higher stresses), the cross-braces are causing rotation of 

the interior girder towards the exterior girder.  As the cross-braces add points of contact 

between the girders, this rotation should be expected as the fractured girder deflects more 

significantly than the unfractured girder. 

The external cross-braces modeled match those designed for construction stability 

purposes on the test specimen but not for load-transfer capabilities.  Further study should 
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ractured girder to the unfractured interior girder. 

 

Figure

redundancy in a fracture event. 

At the intersections of the spans, elements were defined more explicitly to capture the 

include using stiffer braces that are designed for the purpose of transferring the dead load 

of the f

 6-27: Difference in average midspan stresses across the seven elements of the interior girder 
bottom flange with and without external braces after a full-depth fracture.  Negative values indicate 

the stresses with the braces in place were higher. 

6.6.3 Benefits of Structural Redundancy 

All of the previous recorded fracture incidents involved bridges with multiple 

spans.  As was explained in Chapter 2, the indeterminacy of such a structure could 

provide redundancy to an otherwise non-redundant two-span girder.  The 120-ft long 

bridge initially modeled was thus tripled in length to form a three-span continuous 

structure to evaluate the role of structural 

The modeling was accomplished in the same fashion as the previously designed 

model, with elements being defined through a greater length than for the original model.  
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which allow for one object to be 

defined (such as a single span) and then copied into the model multiple times. 

The geometry of the multi-span structure is very similar to that of the previously-

modeled bridge.  There are three spans, each 120 ft in length and containing bracing 

identical to the original model.  Two external braces are in place on each span through 

deck casting, then they are removed.  Two fracture scenarios were considered: in the first, 

the midspan web and flange elements of just the center span are removed during the 

fracture steps.  However, the pre-fracture deflections and strains of the continuous beam 

indicated that the worst case would be a fracture in one of the end spans.  Thus, the 

second test featured a fracture at midspan of an exterior span. 

The expansion joint that would exist in the rail at the central supports (as per 

former TxDOT requirement) is not included as to do so would require increasing the 

mesh density significantly at the end of each span.  Considering the expected response, 

with a negative moment region across the support, a continuous rail could add benefit to 

the structure.  In a more detailed analysis, the expansion joint could be included based on 

the expected bridge design; since the initiation of this project, TxDOT has removed the 

requirement for expansion joints as were used in this study. 

of the fractured span. 

railings, the closure is expected to be small enough to not require contact considerations.  

g the simply-supported case, where the gap 

closed 

posite; the two 

elemen

non-sequential numbering at that location.  Another option would have been to use the 

ABAQUS keywords *part, *instance, and *assembly, 

At the other joint locations, contact was only considered for the gaps in the rails 

 While the fracture event may cause a closing of the space in the 

This assumption was validated by considerin

less than 0.5 in. between element re-activation and web fracture.  As contact 

constraints add significantly to computation time, it was beneficial to limit the number of 

contact locations considered. 

To limit the contact considerations further, the shear studs were not included in 

this study.  Instead, the deck and flanges were designed as fully com

ts share nodes at their joint.  While the spring element shear studs themselves do 

not add significant computation time, the contact constraint between the haunch and 
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ed during the fracture, and 

thus th

ted time to run the study was 

also fo

. 

flange was found to double the time for analysis in the simply-supported case.  Because 

the changes in deflections were not expected to be large, and the strain in the shear studs 

of the simply-supported model were so small, this assumption was appropriate and 

allowed for great savings in computation time. 

An additional inaccuracy in this model is that the deck loading occurs all in one 

step, with each span having “wet” and “dry” concrete at the same time.  During 

construction, this timeline is not practical and thus the induced stresses before fracture are 

not likely to correspond precisely with what would be expected in the field.  This error 

could be removed by adding more load steps in which different sections of deck are cast 

and cured separately, accounting for the change in stiffness due to the hardened deck; to 

do so would add time to the computational effort.  Additionally, the stress in the girders 

from dead load is generally significantly less than those add

e calculations of response were considered acceptable with the simultaneous 

casting of the decks. 

Lastly, the deck and rail rebar were not included in this study.  The study was 

originally written with rebar considerations; however, the memory needed for such a 

large study was not available on the personal computer used for the rest of the analyses in 

this project.  Considering the additional calculations that come from added elements (the 

rebar) and constraints (embedding the elements), the estima

und to be impossible considering the computing limitations.  The University of 

Texas does, however, have a high-level computing facility available to researchers within 

and outside of the UT program, the Texas Advanced Computing Center (TACC).  If the 

rebar is considered to be of great importance (such as in near-failure cases), resources 

like TACC can be used to conduct additional analyses.  Analyses of such large size do 

not meet the project goal of being able to be run in a design firm facility, and so the rebar 

was removed for these studies

The expectation in considering a multi-span bridge is that the post-fracture 

deflections and stresses would be less than those in the simply-supported case.  This 

belief is based on principles explained more fully in Chapter 2: removing a central 
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erns shifted to make the more cantilevered response discussed in 

Chapte

element from a continuous bridge forms two cantilevered structures, which, with the 

proper support mechanisms, can support the additional load.  The deflections and support 

reactions from the multi-span geometry were thus considered and are presented here. 

6.6.3.1 Deflections 

All of the deflections presented in this section are from full-depth web fracture 

events; the changes calculated during the flange fracture step were on the order of 0.05 

in., and thus not considered to be significant.  The deflections along the length of the 

continuous bridge after a fracture event were compared to both the pre-fracture 

deflections and to those calculated for a simply-supported structure with a fracture.   

The deflections from the first test, with the fracture located in the central span, are 

shown in Figure 6-28.  Two things can be seen in this plot.  First, the fractured span 

deflection changes are much smaller than those from the simply-supported case, 

measuring under 0.5 in.  Second, the end span deflections in fact decrease during the 

fracture, as load patt

r 2. 
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fracture at the centerline of the middle span 

Analyses conducted for the first scenario also highlighted the need to consider a 

fracture in the exterior spans, where the pre-fracture deflections (and stresses) are 

significantly higher than the central span.  An exterior span can only benefit from 

continuity on one side; the other end is more akin to the simply-supported case.  The 

expectation is that the response will be a combination of the two geometries. 

The second fracture scenario moved both the truck load and the fracture to the 

first span of the bridge.  It is expected that, due to the symmetric nature of the design, 

fracturing the third span would cause the same response.  The truck load was placed in 

the same location within the length of the span as in the previous study, which is not 

necessarily the location of maximum moment.  The total deflections along the entire 

length of the three-span bridge before and after the fracture event are shown in Figure 

6-29.  As expected, the event causes the fractured girder to deflect significantly, by 

 

Figure 6-28: Total vertical deflections of the exterior girders before and after a full-depth web 
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approximately 1.0 in.  The center span deflections are reduced due to the cantilevered 

behavior towards the end span.  The far span shows almost no change, deflecting less 

than 0.05 in.  The minimal response indicates that a two-span continuous bridge might 

also hold the same redundancy as a three-span bridge.  However, further study 

considering two- and three-span bridges with varying length ratios is needed to clearly 

indicate the redundancy in such structures.  Additionally, the truck load should be 

relocated to maximize the moment in the bottom flange of the end span. 
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re 6-29: Total vertical deflections of the exterior girders before and after a full-depth web 
fracture at the centerline of the first span 

Section 6.4 presented the expected response of a single span bridge during a full-

depth web fracture event.  Although a catastrophic failure was not indicated, the 

predictions made depended on the assumptions that went into the model.  This study of 

multi-span bridges was designed to determine if, with similar assumptions, there was 

benefit from the additional spans, and if so, how much benefit there was.  However, due 



to the computation constraints discussed earlier, further assumptions had to go into the 

multi-span models.  The single-span model was run again with these same variations (no 

rebar, rigid contact between the flange and haunch) and the change in deflection of the 

fractured spans was considered.  This comparison is shown in Figure 6-30. 
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Figure 6-30: Change in displacement of the exterior girder during a full-web fracture for a single 
span design as compared to continuous bridges with end- and center-span fractures 

The simply-supported bridge deflects more than twice as much as the continuous

bri ge 

with a center-span fracture.  None of the cases indicate full-scale failure will occur.  

Noneth

 

dge with an end-span fracture, and over four times as much as the continuous brid

eless, the serviceability limit state should be considered in the designation of a 

fracture-critical bridge because, even if a bridge does not collapse, it may not be possible 

for vehicles to drive safely off a fractured bridge if the deflections are excessively large.  

For the cases considered in this research, a 2-in. deflection over 120 ft would not cause 

any such problems.  It is important to note, however, that the ratio of deflections for the 
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The chief concern in considering reaction forces for a continuous beam is to 

ensure the end supports will not have uplift across the entire width of one girder.  If uplift 

were to occur, a fracture would cause the girders to come off their supports, potentially 

causing catastrophic collapse.  Uplift is more likely to occur in bridge geometries where 

the central span is significantly longer than the exterior spans.  This study considers three 

equal-length spans, but it could be modified to test a bridge with short approach spans. 

The reaction forces from one end support and one middle support from the first 

test (central span fracture) are shown in Figure 6-31 (an explanation for the locations of 

the supports was shown in Figure 6-22).  As expected, the end support reactions decrease 

across the fracture event, while the middle support reactions increase.  Although the end 

reactions are not large to begin with and then decrease across the event, there is still little 

indication that uplift would be a concern, with the reactions still totaling over 80 kip per 

bearing pad. 

three different fracture scenarios is significant, and further studies considering alternate 

geometries should be considered. 

6.6.3.2 Reaction Forces 
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depth web fracture at the centerline of the middle span 

The reaction forces seen in the second study, where the fracture is initiated in an 

end span, have one main feature similar to the simply-supported case: on the far end 

support, the tendency to overturn can be seen.  The far end of the fractured end span does 

not have the benefit of the weight of an additional girder adding overturning resistance 

the way the two supports of a fractured center span do.  The middle support adjacent to 

the fractured span also shows some rotation towards the exterior of the curve.  At the next 

support further down the length of the bridge, referred to as the “far middle” support, the 

change in reaction loads is constant and small, and the furthest support experiences 

almost no change.  The support reaction changes can be seen in Figure 6-32, with the 

reaction locations numbered as before. 

 

Figure 6-31: Reaction forces at an end support and a middle support (typical) before and after a full-
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Figure 6-32: Change in support reactions during a full-depth web fracture event in an end span 
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As in the first study, the changes in the reaction forces are not large enough to 

induce 

he bridge post-fracture even when the fracture is 

not readily apparent until drivers are on the bridge.  As these twin-girder bridges are often 

total uplift of the bridge off the supports; the smallest vertical reaction is 

approximately 18 kip downward.  Considering the data presented in Section 6.6.1 on the 

reaction forces of the small-radius bridges, uplift might become a problem during an end-

span fracture of a small-radius bridge.  As before, this problem could be neutralized by 

using support mechanisms that can resist uplift. 

Considering the deflections and the reaction forces of the two fractured multi-

span bridges investigated in this study, there is evidence that adding continuous spans to 

a fracture-critical-classified bridge could remove the necessity for that classification.  The 

change in deflections seen during either a center- or end-span fracture event are small 

enough to allow for a safe closing of t
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used for flyovers in large intersections, there are few single spans built that could not be 

made continuous with the spans surrounding it. 

It is important, however, in calculating the redundancy in a multi-span bridge and 

considering the results presented here to include reflection on the overall properties of 

continuous and simply-supported spans.  In their study on redundancy ratings for two-

span bridges, Daniels et al. (1989) found that a two-span bridge had less post-fracture live 

load capacity than a simply-supported bridge because the benefit from the second span 

allowed for a decrease in section properties (e.g., height and thickness) for each of the 

two spans as compared to the section properties of a single span girder.  The current 

study considered the exact same dimensions for the multi-span bridges as were used in 

the simply-supported case.  If this deficiency is recognized during design and the 

continuous structure can be designed for the cantilevered service load scenario, the initial 

construction cost might be increased, but the lifecycle costs could be decreased by 

removing the fracture-critical designation. 

6.

This chapter presents preliminary verifications of the analytical model, 

compar

and computationally-efficient method of 

predict

7 SUMMARY AND CONCLUSIONS 

isons between data that were measured and calculated, and predictions of 

response under full-depth web fracture (for bridges of varying geometries).  The 

verifications considering different modeling assumptions for the analyses gave 

confidence that the parameters selected, including mesh densities, element types, and 

load applications, were appropriate.  The analytical design that was chosen (and 

described in Chapter 5) reflected an appropriate 

ing response. 

The experimental and analytical data comparisons were performed for further 

validation, to indicate whether the analysis model was able to predict the behavior of a 

full-scale specimen.  While the two sets of data did not correspond exactly, they were not 

expected to, considering the variability that came from the experimental measurement 

methods and the assumptions that went into the analytical model.  Multiple full-scale 
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 gauge readings was a function of the 

experim

tests would help reduce that variability; however, multiple tests of that size were not an 

option.  The accuracy of gauge placement and

ental test constructors and the gauges used. 

The accuracy in the predictions of system-response is largely a factor of the 

assumptions that went into the analytical model.  The importance of these assumptions, 

and suggestions for how to validate and improve on them, are given in the following 

chapter. 
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CHAPTER 7  
Conclusions and Recommendations 

 

7.1 SUMMARY OF RESEARCH 

A major objective of the research project described in this thesis is the 

quantification of the inherent redundancy that may exist in trapezoidal box-girder 

bridges.  Current AASHTO Specifications designate two-girder bridges of this type to be 

fracture-critical, and, as a result, they require frequent inspection cycles to guarantee their 

safety.  In the past, there have been multiple instances of fractures in fracture-critical 

bridges without collapse, as described in Chapter 2.  The main goals of this project were 

to determine whether an AASHTO-defined fracture-critical bridge could withstand a full-

depth fracture under load without collapse and to develop a method for measuring 

redundancy in such a bridge. 

It is important to note that the test set-up and corresponding models represented a 

worst-case scenario for loading on the structure at the time the simulated fracture was 

initiated.  The likelihood of the truck being positioned in the precise location of the 

fracture and remaining in that location is expected to be extremely low.  As an illustrative 

comparison, in the design of structures for progressive collapse, current guidelines 

recommend that only one-half of the service live loads be considered during the collapse 

event to reflect the low probably of a structure being under the full design load conditions 

at the time of collapse initiation by column failure (UFC 2005). 

The analytical model described in this report was developed to mimic the 

behavior of the full-scale test specimen that was constructed and damaged.  For the 

dynamic load amplification study, the truck load, which under normal conditions would 

be considered a live load, was amplified by the same ratio as the dead load to account for 

the stationary nature of the loading blocks on the test specimen during the experiment.  

Experimental data were compared with computed values to determine the accuracy of the 
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finite element model.  The model was then used as a predictive tool for considering a 

full-depth fracture event, dynamic load effects, and variations in bridge details such as 

horizontal radius of curvature, continuity of spans, and external bracing.  The following 

sections present the conclusions gathered from the models and suggest possible directions 

for future research in the analysis of redundancy in twin box girders. 

7.2 CONCLUSIONS 

Prior to making conclusions about the behavior of a fracture-critical trapezoidal 

box-girder bridge, it is necessary to recognize the assumptions made in the programming 

of the analytical model.  Most important are those assumptions which involve the 

behavior of the concrete deck.  Cracking of the concrete was not modeled in detail and 

thus a localized concrete tensile failure mode was not considered.  To accommodate the 

influence of cracking in the model, nonlinear material response in the deck was 

approximated with a “smeared” material model.  The analyses performed with this 

approximation are expected to capture the essential features of response when 

considering system-wide strength and stability. 

The shear stud modeling method technique was based on a method previously 

shown to be satisfactory for shear considerations (Topkaya and Williamson 2003).  The 

calculated strains in this study, however, which were primarily tensile, did not correlate 

well with measured test data.  The differences in measured and calculated values could be 

insignificant considering the order of magnitude of the differential displacements (10-4), 

but they might indicate that linear spring elements are not appropriate in regard to tensile 

pullout, as is expected during a full web fracture. 

Within the framework of these assumptions and the modeling approach described 

in the previous chapters of this thesis, the following conclusions can be drawn regarding 

a full fracture event, dynamic load factors, and the influence of various bridge 

geometries. 
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7.2.1 Full Fracture Response 

Results obtained from the finite element analyses indicate that the trapezoidal 

box-girder bridge studied in this project possesses a level of redundancy that will allow it 

to remain standing in a fractured, loaded state.  Deflections caused by a full-depth web 

fracture were predicted to be less than 2.5 inches for the fractured (exterior) girder and 

less than 1.5 inches for the unfractured (interior) girder.  The stresses induced in the 

bottom flange of the interior girder, the transverse and longitudinal rebar in the deck and 

rails, and the majority of the deck were sufficiently small so that they did not near the 

plastic range.  Small sections of deck concrete showed minor plasticity, which could 

indicate local failures.  The presence of reinforcing bars in the deck should minimize the 

system-wide impact of these localized failures. 

7.2.2 Consideration of Dynamic Load Factors 

The nature of a fracture event includes a rapid change in the geometry of a 

structural system.  To capture the response of a structure through modeling requires 

consideration of this rapid change, which is most often done through dynamic 

calculations at the time of the fracture.  However, dynamic calculations are significantly 

more time-consuming than static calculations, and thus finding an appropriate method of 

simulating the dynamic response while using static loads would be of benefit to designers 

wishing to study the redundancy of their structures. 

This study compared the peak strains measured in the test specimen during the 

flange fracture event with strains induced at the same locations on two models where a 

percentage of the dead and live loads had been increased by 150% to 200%.  The loads 

were amplified within two times the depth of the section, or 96 inches on either side of 

the fracture.  The strains calculated were still less than those measured at the peak of the 

fracture event, indicating this method of approximating the dynamic loads was not 

appropriate.  Further study is needed to determine how best to establish the impact of the 

rapid change at the time of the fracture and how loads should be modified to capture 

dynamic response using static loads.  
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7.2.3 Effect of Radius 

Decreasing the horizontal radius of curvature of the bridge resulted in minimally 

higher deflections during a fracture event (on the order of 0.5 in.) than the original 

geometry.  More significantly, a tighter radius reduced the induced stresses in the bottom 

flange of the unfractured girder, most likely due to a greater rotation of the structure 

towards the fractured side.  This rotation was also reflected in the support reactions, 

where small uplift forces of approximately 10 kip were seen on the inside of the 

unfractured, interior girder supports at both ends for the geometry with R = 400 ft.  If 

overturning is of concern during fracture of a tightly curved bridge, bearings that include 

vertical restraint could be used on the inside of the bearing points. 

7.2.4 Effect of External Bracing 

Because of the minimal response of the bridge to the full-depth fracture, the 

external braces were stressed to less than 8.0 ksi, which is far below yield.  Pre-fracture 

stresses were less than 1.5 ksi, or possibly low enough to indicate an “infinite life” with 

regard to fracture criticality and could thus be left in place after construction without 

adding another potential initiation site for fracture.  The braces, when modeled as 

remaining in place during the fracture event, also minimally reduced overall deflections 

of the fractured girder.  Further study of braces that are designed to transfer significant 

loads in addition to restrain rotation during construction is warranted, with consideration 

of fatigue effects and fracture initiation at the connections. 

7.2.5 Effect of Structural Redundancy 

Adding continuity to fracture-critical bridges through additional spans helped 

reduce the deflections seen in the fractured span, both when the fracture is in the center 

span and when it is in an end span.  This study included calculating the reaction forces at 

each of the four supports in a three-span bridge, with results that indicated uplift should 

not be a problem for a large radius of curvature (R = 1365 ft for this study).  Considering 
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the previously discussed results that a small-radius bridge had minor uplift at the 

supports, supports with resistance against uplift might be needed. 

A detail pointed out by Daniels et al. (1989) and reiterated by this author is that 

multi-span bridges often have a smaller cross-section than a simply-supported span, thus 

likely providing less redundancy than was seen in the structures considered in this study 

where the multi-span girders had the same cross-sectional dimensions as the simply-

supported case.  To remove fracture-critical designations and/or lessen inspection 

requirements, it is paramount that designers consider both the pre- and post-fracture 

behavior of a section.  With proper consideration for the fractured state, a multi-span 

structure could be capable of resisting collapse following a fracture event. 

7.3 RECOMMENDATIONS FOR FUTURE WORK 

Removing the fracture-critical designation from trapezoidal box-girder bridges, or 

simply reducing the frequency of inspections of fracture-critical bridges, would save 

bridge owners like the Texas Department of Transportation millions of dollars every year 

(Connor et al. 2005).  This study has shown that the designation may have been applied 

too liberally to bridges that do in fact have redundant load paths.  Especially in the case 

of multi-span, continuous bridges, the loads originally carried by a fractured member can 

be held by the unfractured spans that are also a part of the system. 

At the beginning of this study, three components were highlighted as being 

critical to the stability of a fractured bridge: the shear studs having the tensile capacity to 

bring load from the fractured girder into the deck, the deck having the moment capacity 

to transfer the load to the unfractured girder, and the unfractured girder having the 

capacity to hold the additional load.  The model built in this study includes many 

assumptions about the behavior of the shear studs and deck, as were explained earlier.  

Future research using this model should begin by further validating and improving these 

assumptions.  The following sections describe steps that can be taken to improve the 

fidelity of the finite element model. 
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7.3.1 Fracture 

As was described in Section 5.3.3, the fracture in this model was created using 

*model change, a keyword in ABAQUS that removes elements at the beginning of a 

load step.  The benefit of this method is that it is computationally simple and does not 

significantly increase job run times.  The drawbacks include the need for the programmer 

to dictate the fracture path and timing of the event and an inability to capture dynamic 

response.   

An alternate model could instead define coincident nodes at the fracture location.  

Through the preliminary steps, the nodes would be held together using applied surface or 

edge loads.  At the time of the fracture, the loads would be released.  To consider 

dynamic effects, an equal and opposite load could be applied on the same surfaces and 

edges, creating a multiplication factor of 2.0 in the change in the loads.  This method was 

briefly tried as part of this study with some success; better results could come from using 

multiple jobs with imported data from previous analyses, rather than adding load steps 

individually to an input file. 

The fracture model could also be run using an explicit solver such as 

ABAQUS/Explicit.  Unlike ABAQUS/Standard, this computation method allows for the 

failure of elements without creating numerical problems in the formulation of the 

structural stiffness matrix.  However, to define an explicit analysis could require 

specifying other parameters and material properties that are not known or easily assumed.  

The result is a prediction of behavior that is thought to be more accurate while actually 

depending more heavily on the assumptions defined by the programmer.   

A goal in this study was to adequately approximate the response using a simple 

method with few assumptions and low computational needs.  Future research should 

continue to consider the input information, computing ability, and time needed for 

complex analyses if the modeling techniques are to be used in a design office. 
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7.3.2 Shear Studs 

The shear studs in the developed model are simulated using three one-

dimensional spring elements between the top flange of the girder and the bottom of the 

concrete haunch.  The linear spring element definition does not allow for separate 

stiffness values for compression and tension.  The springs were thus defined with the 

stiffness measured by Sutton (2006), which is only accurate in the tensile direction.  In 

compression, the stiffness should near infinity, as no shortening of the shear stud is 

expected.  To prevent the haunch from passing through the top flange (which is 

impossible physically but possible numerically with a low compressive stiffness value), 

contact was established between the two surfaces.  While successful at restricting this 

physical impossibility, the contact restriction at the boundary nearly doubled the total run 

time for the job. 

In future studies, the shear studs could be modeled using truss elements.  Unlike 

springs, trusses are assigned to a material which can have a different response in tension 

and compression.  Additionally, because the truss elements must have some finite length, 

the model will not converge if the bottom of the haunch deflects further than the top of 

the flange.  Alternatively, constraints other than contact could be used to limit the 

distance between two nodes, preventing compression of the springs and retaining the 

minimum initial spacing of the nodes. 

The importance of the shear studs on the global behavior of the system is 

currently under investigation at the University of Texas at Austin.  The first studies are 

showing that, if the loads get high enough, the orientation and height of the studs will 

change the strength and ductility of the stud-deck interaction (Sutton 2007).  However, 

the finite element analyses calculated forces in the studs from static loading more than an 

order of magnitude smaller than the failure pullout loads measured by Sutton.  

One possibility that needs more study is that dynamically-applied loads will 

significantly change the pullout behavior of the shear studs.  The data gathered to date are 

for statically-applied loads, as are the analytically calculated expected loads.  The 

dynamic failure load is unknown.  Additionally, the calculated loads in the shear studs 
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could be higher under dynamic load scenarios (as opposed to the static studies performed 

in this study).  A higher load in the shear studs could result in a viable failure mode that is 

not seen in the analytical model presented in this report. 

Additional data from the stud-deck interaction studies will be able to help 

improve and validate the modeling method, especially if dynamic loads are considered.  

Full utilization of the tests being run in the laboratory would include modeling the test 

setup and comparing the shear stud strains and loads from the experimental program to 

calculated values from ABAQUS.  The number of tests and the varying geometries being 

studied in the lab present a more controlled and repeatable situation than the full-scale 

test and would thus be beneficial for verifying the accuracy of the modeling method. 

7.3.3 Concrete Material Model 

The concrete deck used in this project, described in more detail in Section 5.2.4, 

was comprised of concrete solid elements with embedded rebar truss elements.  The 

concrete material model attempted to capture the pre-cracking behavior of unreinforced 

concrete.  Post-cracking, the concrete hardened slightly and then became “perfectly 

plastic”, so the deck elements would add zero stiffness to the model.  This modified and 

approximate material model removed convergence problems previously experienced by 

the solver, but may not return behavior similar to true concrete response.  The goal, 

however, was to allow individual elements to fail (as is likely in a severe fracture event, 

where crushing and cracking of the concrete is expected) while allowing the program to 

converge to an answer.  This assumption may be appropriate considering this study is 

focusing on system response as opposed to individual small-scale failures, but 

verification would increase confidence in the answer. 

7.3.4 Parameter Studies 

The parameter studies run using the current finite element model and described 

more fully in Chapter 6 raised further questions regarding the importance of dynamic 

load effects, external bracing, and bridge geometry on the response of a fractured twin 
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box-girder bridge.  The following studies are recommended to be performed, using either 

the current model or one that has been improved with the methods mentioned above: 

 Dynamic loading 

Consider alternate methods of loading to mimic the response of dynamic 

loads using static calculations.  Current research and guidelines regarding 

progressive collapse could help determine appropriate load increase zones.  

Multiple geometries should be tested with the same formula for load 

application.  Verification could come from smaller laboratory tests, as full-

scale tests are not financially feasible. 

 External bracing 

Consider the effects of external braces that have been designed for load 

transfer and redundancy.  Concerns include excessive twist of the 

unfractured girder and fatigue-critical connection details.  Benefits could 

include reducing deflections in the fractured girder. 

 Continuous spans 

Consider continuous-span bridges that were designed to be continuous and 

thus likely have a smaller cross-section than the bridge modeled in this 

study.  Longitudinal dimensions should also be varied to calculate 

response of bridges featuring a long central span in comparison to the end 

spans. 

Each of these studies can also be expanded by introducing a second variable, such 

as radius of curvature in the continuous-span designs.  As more data on response is 

gathered, it will become clearer which features of box-girder bridges are critical for 

maintaining stability post-fracture.  The research to this point indicates that proper design 

of these critical details (e.g., uplift-resisting bearings on bridges with a small radius of 

curvature) will allow for post-fracture stability in twin box-girder bridges. 
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7.4 SUMMARY 

The finite element analyses of twin steel trapezoidal box-girder bridges presented 

in this report indicate redundancy in this bridge design that surpasses current AASHTO 

estimations.  With proper design that considers the benefit of structural indeterminacies 

(such as continuous spans) and includes restraint against uplift at the supports, a full-

depth web fracture in one girder of a twin trapezoidal box-girder bridge does not 

guarantee the system-wide failure expected by AASHTO in their fracture-critical 

definition.  By having the reserve capacity to maintain serviceability after a fracture, the 

criticality of a fracture in a girder is lessened, which should be reflected in inspection 

requirements. 
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APPENDIX A  
Introduction to Finite Element Analysis 
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A.1 INTRODUCTION 

The goal of structural analysis is to determine the variations in stresses and strains 

induced in a structure under load.  With simple systems such as statically determinate 

trusses and beams, these values can be readily calculated.  If a structure is statically 

indeterminate or there are multiple degrees of freedom, the complexity of the problem 

increases, and determining the response of such a system using hand-based procedures is 

not practical. 

Finite element analysis (FEA) was developed as a method of solving for the 

response of a continuous system using discrete elements.  The basis of the analysis 

methods can be compared to earlier techniques considering planar truss and beam 

elements, which, with two or six degrees of freedom, can be solved using hand 

calculations and simple computational tools (Bathe 1982).  The growth of computer 

technology has allowed for more complex computations considering plane stress and 

strain formulations, three-dimensional problems, and shell behavior (Belytschko 2000).  

The influence of individual elements is combined to form a system of equations relating 

forces and displacements.  Computer programs like ABAQUS (HKS 2006) and ANSYS 

(2005) were developed to compile this information and calculate the resulting 

displacements, and by association, strains and stresses. 

This chapter introduces the basics of the methodology behind finite element 

analysis (considering only axial and beam members) so as to establish the rationale 

behind modeling decisions described in the main body of this report.  Further explanation 

can be found in a finite element textbook such as Bathe (1996) or Cook et al. (2001). 

A.2 OVERVIEW OF METHODOLOGY 

The governing equation for deformation in continuous systems is known as the 

Boundary Value Problem (BVP).  Considering the deflection in an axial element under 

load (shown in Figure A-1), the BVP, which considers kinematics, equilibrium, and 

constitution can be written as: 
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where  

E(x) = Young’s modulus 

A(x) = cross-sectional area 

p(x) = loading per unit length 

u'(x) = derivative of the displacement at any point, x, along the 

length of the bar (strain). 

 

Figure A-1: Axial element with applied load p(x) 

This equation states that the strain of the member (represented by u'(x)) is related to the 

stiffness of that member (E(x)·A(x)) and the load that is applied.  The equation is solved 

for the displacement along the length, u(x). 

For a prismatic bar with constant values of modulus and area, a simple loading 

scheme, and clear boundaries that restrict the value of u(x) at a given x, the BVP can be 

solved directly, even by hand.  However, if variations over the length are introduced 

(such as in the case of a tapered member), the equations to integrate can increase in order 

to the point of requiring numerical evaluation and approximation. 

As an alternative, finite element analysis can be used.  FEA considers a complex 

structure as a combination of smaller elements with known behavior.  The behavior of the 

smaller elements is dictated by the user; for instance, a flexural member can be used 

rather than an axial member, if flexure is expected to occur and is of interest.  Other 

common elements include shells, plates, and solids, which will not be discussed in detail 

here, but are considered in texts such as Bathe (1982).   
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Finite element analysis is based on four major steps: idealizing the configuration 

of a continuous system by using many smaller elements; establishing equilibrium at the 

nodes of each element; assembling the elements in a manner that considers compatibility 

at boundaries; and solving for the response of the elements as a system of equations.  The 

two major methodologies, stiffness- (or displacement-) based and flexibility- (or force-) 

based, result in an approximation of the internal forces and displacements through a 

continuous structure.  These methods are described in more detail in Sections A.2.1 and 

A.2.2, respectively. 

In each case, the degrees of freedom are thought to behave similarly to a spring, 

with a direct relationship between the forces applied and the resulting displacements.  

The governing equation for the force in a spring is: 

 Fuk =⋅  (2) 

where  

k = spring stiffness 

u = displacement induced under the applied force 

F = applied force 

Similarly, each approximation method formulates an equivalent stiffness of the structure 

in each degree of freedom at each node, as well as equivalent forces.  The displacements 

are then found and used to calculate the response in the elements (e.g., stresses and 

strains). 

A.2.1 Stiffness Method 

The stiffness method of analysis is based in the Principle of Virtual Work (PVW).  

The Principle of Virtual Work is considered to be the “weak form” of the solution, as it is 

an approximate solution to the boundary value problem.  The PVW is based on the idea 

that internal and external virtual work must be equal.  “Virtual work” is a term referring 

to the work done in moving a point through a virtual (fictitious) displacement. 

The stiffness method of analysis begins by assigning an assumed displaced shape, 

u(x), for the member being analyzed.  For instance, as it known that the response of a 
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prismatic axial member under load is to deform linearly, it is a reasonable first step to 

assume that the response of a tapered axial member will also be linear.  Thus, the 

assumed displaced shape is defined by: 

 xaaxu 10)( +=  (3) 

where a0 and a1 are coefficients related to the boundaries on the element. 

Using the PVW, this assumed shape can be used to find the internal and external 

virtual work experienced by the structure under a given load.  For equilibrium to be met, 

the internal and external work values must be equal; or: 
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where  

ū'(x) = derivative of the virtual displacement over the length, x 

P = applied load at the location ū 

L  = length of the member being analyzed 

For low-order expressions for E(x) and A(x), this equation can be solved directly for u(x). 

A.2.1.1 Shape Functions 

The PVW equation written above (Equation 4) is for the consideration of one 

degree of freedom, such as an axial member pinned at one end.  The next step is to 

consider a more generic element.  An element connects two or more nodes and is 

characterized by its behavior between those nodes.  All considered degrees of freedom 

(displacement and rotation) exist only at those nodes.  For assumed planar response, an 

axial member has two degrees of freedom (DOFs), as is shown in Figure A-2(a), while a 

beam has six DOFs (Figure A-2(b)).   

 

Figure A-2: Axial degrees of freedom numbering and sign convention 
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Using variable boundary conditions (displacement and rotation limitations at x = 0 

and x = L) that relate to the established degrees of freedom, a system of equations can be 

written from Equation 3, from which the coefficients a0 and a1 can be calculated: 
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Inserting the coefficients into Equation 3 and rearranging to group u1 and u2, the equation 

for assumed displacement down the length of the member becomes: 
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Although it may be of little benefit while considering an axial member with only two 

DOFs (u1 and u2) it becomes much easier to consider u(x) in matrix form for elements 

that have greater complexity and great numbers of DOFs: 
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The terms in the first matrix are referred to as the shape or interpolation functions for the 

element, and the matrix is given the designation of L(x).  The order of x in the equations 

is equal to the order of the equation approximating the shape of the element between the 

nodes.  The most common axial elements consist of two or three nodes (the third node 

generally being positioned at x = L/2). 

A.2.1.2 Stiffness Matrix Calculation 

The derivative of the new form of u(x) can now be inserted into Equation 3.  The 

derivative of the matrix of interpolation functions, L(x), is referred to as the strain-

displacement matrix, B(x).  The virtual displacement term can be removed from the 

equation by realizing that, if the virtual displacements are of the same form as the real 

displacements,  

 '( ) ( )u x x= ⋅B u  (8) 
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and 

 
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
L L

Tx E x A x x dx x E x A x x dx⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅∫ ∫u' u' u B B u  (9) 

Combining this equation with Equation 3, and assuming that ū does not equal zero (a 

trivial case), 
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where 

B(x) = dL(x)/dx = strain-displacement matrix 

u = vector of displacement values (u1, u2, etc) 

P = vector of loads applied at nodes 

This transformation is made using principles of linear algebra.  For more information on 

matrix manipulation, reference Williams (2001). 

Equation 10, which equates an integral multiplied by the nodal displacement 

values to the applied nodal loads, is of the same form as Equation 2, the load-

displacement equation for a spring.  The integral, which considers material properties, 

element geometry, and node layout, is referred to as the structural stiffness matrix, k: 
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For an axial member, the stiffness matrix is 2 × 2, symmetric across the diagonal.  If the 

virtual displacement equation is not of the same form as the real displacement, the strain-

displacement matrices will not be the same, and the stiffness matrix will not necessarily 

be symmetric. 

A.2.1.3 Beam Elements 

The stiffness matrix formulation for beam elements is very similar to axial 

elements.  The differences include the number of degrees of freedom (shown in Figure 

A-3) and the order of the polynomial shape functions.  The axial response in a beam 

(with small deflections) is uncoupled from the flexural.  Cubic functions are needed to 
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capture the response in shear and flexure, while Equation 11 can still be used to calculate 

the axial stiffness contributions. 

 

Figure A-3: Beam degrees of freedom numbering and sign convention 

For beam elements, the shape functions are given the variable H(x).  The strain-

displacement matrix, which is the second derivative of the shape functions and is 

referenced as H"(x).  Additionally, for flexure, the area of the member is of little 

importance while the moment of inertia governs the stiffness.  The stiffness matrix 

equation can be written as 
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⋅

determinant element.  For instance, a beam element with no axial deformation (Figure 

 (12) 

where 

H"(x) = d2H(x)/dx2 = strain-displacement matrix

I(x) = moment of inertia at location x 

When choosing an element to use in an analysis, it is important to consider the 

assumptions that have gone into forming the basic elemental properties.  For instance, the 

response of a beam is based in beam theory, which focuses on flexure.  In an analysis, 

beam elements should only be used when the assumptions of beam theory can be met; for 

instance, the length of a beam element should be significantly larger than any of the 

cross-sectional dimensions. 

A.2.2 Flexibility Method 

As an alternative to using the stiffness method, the k matrix can be developed 

using the flexibility method.  The flexibility method begins by recognizing redundant 

forces in an individual element and establishing equilibrium in the resulting statically 



A-4(a)) would have two redundant forces.  Those redundants could be the vertical 

reaction at both ends, or the vertical reaction and moment at one end.  Using the 

independent (non-redundant) forces, the dependent reactions can be resolved using 

equilibrium.   Further examples in this section will reference a beam with the moments as 

the independent forces, shown in Figure A-4(b). 

 

Figure A-4: (a) Forces on an axially rigid beam element; (b) dependent forces written in terms of 

(a) 

(b) 
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independent forces 

A.2.2.1 Force Distribution Functions 

, and axial forces at any point, x, in the beam can 

be writ

Equations for the shear, flexure

ten using just the independent forces.  Considering the beam shown in Figure 

A-4(b), with x = 0 at the left end, the moment along the length can be written as: 
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M(x) = moment along the length of the beam 

This expression can a x form, using a vector of force distribution 

where 

M1 = moment at x = 0 

M2 = moment at x = L 

lso be written in matri

functions, D(x), similar to the vector of shape functions used in the stiffness method: 

 ( ) ( )M x x= ⋅ 0D Q  (14) 

here w
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D(x) = vector of force distribution functions 

The flexibility entary Virtual Work, where, 

instead

 

Q  0  = matrix of independent variables 

 method uses the Principle of Complim

 of using a virtual displacement, a virtual load is applied.  Computing internal and 

external virtual work, as in Equation 4, results in an expression for the flexibility matrix, 

f: 

0

1( ) ( )
( ) ( )

L
T x x dx

E x xβ
= ⋅ ⋅

⋅∫f D D ⋅  (15) 

where 

β(x) = geometric parameter: A(x) for axial members, I(x) for 

When considering shear or axial response in a beam, both the geometric parameter β(x) 

A.2.2.2 Stiffness Matrix Calculation 

 element cannot be used to directly compute the 

respons

 the degree of indeterminacy.  The 

number

dependent and independent variables can be expressed using a matrix referred to as Φ: 

flexural members 

and the expressions within D(x) change.  An equation for N(x), or axial force along the 

length of the element, is needed to calculate the axial response.  Similarly, for shear, an 

equation for V(x) is needed and, in Equation 15, the shear modulus, G(x), should be used 

instead of the elastic modulus, E(x).  For shear, β(x) would refer to the shear area of the 

element. 

The flexibility matrix for an

e of the element because of the assumptions on independent and dependent 

variables: the choice in variable definitions changes the resulting matrix.  To capture the 

response of all degrees of freedom in the element, the matrix must be transformed to 

include both the independent and dependent variables. 

The number of dependent variables is related to

 of independent variables should be as small as possible to result in a statically 

determinate, stable structure.  The dependent variables are then written in terms of the 

independent ones, such as is shown in Figure A-4(b).  The relationship between the 



 = ⋅1 0Q Φ Q  (16) 

where 

Q1  = vector of dependent v

Q0  = vector of independent variables 

 dependent variables 

As an example, Equat ould be 

ariables 

Φ = matrix relating independent and

ion 16 for the beam in Figure A-4(b) w

⎥
⎤

⎢
⎡
⋅⎥

⎥
⎢
⎢

−−=⎥
⎤

⎢
⎡ 11

11
MLLF

 

⎤⎡ 11

 
⎦⎣⎥

⎦
⎢
⎣

⎦⎣ 22 M
LL

F
(17) 

The Φ matrix and the flexibility matrix, f, are th

matrix, where the stiffness matrix is partitioned into four sections, k00, k01, k10, and k11 so 

that: 

en used to calculate a stiffness 
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These expressions were derived using the concepts of partitioned matrices(McGuire et al. 

2000).  The resulting stiffness matrix can be used to solve for the nodal displacements, 

g the flexibility method.  

Similar

which can be used to calculate elemental stresses and strains.   

It should be noted that the stiffness matrix derived for an element using the 

stiffness method is not the same as the one derived usin

ly, the nodal force vectors (not described in this report) are not the same from 

each method.  The calculated response of the structure (found using Equation 2) may be 

equivalent; variations come from inaccuracies in one or both methods (e.g., an 
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insufficient number of elements).  The benefits and drawbacks of this method as 

compared to the stiffness method are presented in further detail in Section A.2.5. 
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A.2.3 Improving the Model 

ays to improve the quality of an approximation using 

finite e

 (20) 

sing a higher-order polynomial means adding anoth

interpo

ental 

model.

There are two simple w

lement analysis.  The first is referred to as p-type refinement and is achieved by 

increasing the order of the polynomial in the assumed shape.  For example, Equation 3 

would become: 

 2
210)( xaxaaxu ++=

U er node along the length of the 

member (generally equidistant from the boundary nodes).  With another node, new 

interpolation functions must be developed considering the new boundary conditions. 

The additional term in the u(x) equation will increase the order of the 

lation functions.  Especially in a case where the area of the beam is non-linear 

down the length, the integrals for the stiffness matrix terms quickly increase in order as 

well.  The integrals are generally solved using Gaussian or Newton-Cotes quadrature, 

forms of numerical integration used to approximate the solution to complex integrals 

(further information on numerical integration can be found in Dahlquist and Bjork 

(1974)).  Both methods require more terms to accurately estimate higher-order 

expressions.  As a result, p-type refinement is generally only used to the third order. 

Instead, n-type refinement can be used to improve the accuracy of an elem

  In using n-type refinement, elements are subdivided.  For instance, the response 

of a tapered axial beam could be calculated using two beams of length L/2 rather than one 

of length L.  The two elements would feature unique cross-sectional properties (Figure 

A-5), thus capturing the effects of the taper without requiring a higher order polynomial.   

 



 (a) (b)  

Figure A-5: (a) A tapered element, (b) represented by two constant-area members 

If the two-element model is still not considered to be acceptable, the element can 

be subdivided further.  Once further subdivisions converge to one value, or subsequent 

evaluations do not yield a different result, one can be satisfied with the number of 

elements, or mesh density, used for approximation.  For example, when drawing a circle 

with straight lines, four or even eight might not be enough, but twenty could return 

results close to that which would be calculated using the true circle. 

The main drawback of increasing the number of elements or the order of an 

approximation in a model is that the number of equations to be solved increases.  One 

method of controlling the computation time is to use reduced integration.  When using 

reduced integration, the number of sampling points used to approximate the integrals that 

define the stiffness matrix of each element is decreased.  For example, a fourth-order 

polynomial can be calculated exactly using second-order Gaussian quadrature or 

approximately using first-order.   

Reduced integration lessens the complexity of equations within each stiffness 

matrix term but returns a stiffness value smaller than the exact value.  Considering the 

increased stiffness inherent in a finite element model, due to the use of small elements 

that do not necessarily deform as easily as a continuous system would, reduced 

integration can properly balance the stiffness of a system.  This effect is discussed further 

in Chapters 5 and 6. 

Reduced integration, however, has the potential to introduce response modes that 

are not captured by the integration points.  This effect can be seen in Figure A-6, where 

the single integration point used for a four-noded element does not experience strain, 

even with the deformation of the element.  The full-integration method, with four 
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integration points, would have shown strain change from the stresses applied.  This shape 

can repeat through elements forming an hourglass appearance, and is thus referred to as 

hourglassing (Belytschko et al. 2006). 

  (a) (b) 

Figure A-6: Example mode shape not caught using reduced integration.  Full integration points 
shown with X’s, reduced integration point shown with single O. 

A.2.4 Mapping Elements 

In the case of a single-element model, the structural stiffness matrix is equal to the 

elemental stiffness matrix.  Once more elements are introduced, each elemental stiffness 

matrix will contribute to the structural stiffness matrix.  The contribution from each 

element is determined by orientation and correspondence with the directions of the global 

degrees of freedom.  Calculating member response is a two-step process. 

The first step is to consider the orientation of the element with regard to the global 

axes.  The degrees of freedom shown in Figure A-2 are oriented with the local axes of 

each member (along the length and perpendicular to the length).  In most analyses, the 

global degrees of freedom will not correspond with the local axes of each member.  A 

transformation matrix, T, is used to rotate the influence of a member: T

 T
global local= ⋅ ⋅k T k T  (21) 

where  

kglobal = contribution of a single element to the global stiffness 

matrix 

T = transformation matrix T

klocal = stiffness matrix for an individual element 
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The transformation matrix consists of sine and cosine terms of the angle the element 

makes with the global axes and relates the local directions with global degrees of 

freedom.  Using Equation 21, the local coordinates are mapped onto the global axes. 

The second step determines how the local, rotated degrees of freedom correspond 

with the global DOFs.  For instance, for a simply-supported (pin-roller) beam only the 

local DOFs 3, 4, and 6 (as defined in Figure A-2) would contribute to the global stiffness 

matrix.  Assuming the global DOFs are assigned as shown in Figure A-7, the global 

stiffness matrix would be: 

 
33 34 36

43 44 46

63 64 66

global

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

k k k
k k k k

k k k
 (22) 

where the kxx values refer to the corresponding value in the elemental stiffness matrix.  

The same modifications must be made to nodal load vectors in order to capture the 

correct response at each degree of freedom.  In multi-element structures, the stiffness 

associated with a global degree of freedom is simply the sum of the contributions from 

the surrounding elements.  While somewhat tedious to do by hand, the mapping of 

elements is very systematic, and thus easily performed by a well-written computer 

program. 

 

Figure A-7: Global degrees of freedom for a pin-roller simply supported beam 

A.2.5 Choosing a Method 

Both the stiffness and the flexibility method have strengths and weaknesses in 

calculation and accuracy of the solution.  The accuracy of the stiffness method is based 

on the appropriateness of the assumed deflected shape and the size (or number) of the 

elements.  A single-element member modeled with a low-order shape function is not 

likely to adequately approximate the true response of a geometrically complex beam.  
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However, the stiffness method develops the stiffness matrix directly, which, relative to 

the flexibility method, makes it more computationally efficient.  Additionally, the shape 

functions are designed to calculate the displacement over the length of the element, 

meaning that with nodal values, the displacements at any point in the member can be 

calculated. 

Because it is based in establishing equilibrium, the flexibility method can 

calculate nodal displacements exactly, guaranteeing accuracy of a model.  Because there 

is no assumed deflected shape, the flexibility method is better than the stiffness method 

for non-linear material response.  However, to form the stiffness matrix, the flexibility 

matrix must be modified by the Φ matrix, which adds a step to the analysis process.  

Also, because there are no shape functions in the flexibility method, the response is only 

calculated at the nodal locations.  This latter limitation means that the response of a point 

that is of interest can only be captured if there is a node located there. 

A.3 SUMMARY AND CONCLUSIONS 

The theory of finite element analysis is based on using small elements with 

known behavior to estimate the response of a continuous system.  This chapter presented 

two methods for formulating the stiffness matrix for an individual element, as would be 

used by a computer program such as ABAQUS or ANSYS.  An understanding of the 

calculation methods of finite element programs was critical for choosing modeling 

techniques and assessing the validity and appropriateness of the model. 
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*heading 
trapezoidal steel box girder model fsel AUGUST 2007 
** 
** 
** -------------------------------------------------------------------- 
** 
** 
** NODE DEFINITION 
** 
** 
*system 
0,0,0,100,0,0 
** 
** 
** Import text files of nodes to define horizontal planes at z=0, z=58  
**  (top of girder), z=58.01 (bottom of haunch), z=61 (top of 
haunch),  
**  z=69 (top of deck), and z=97 (top of rails). 
** 
*node, nset=line0, input=000s-final.txt 
*node, nset=line8, input=800s-final.txt 
*node, nset=line9, input=900s-final.txt 
*node, nset=line11, input=1100s-final.txt 
*node, nset=line19, input=1900s-final.txt 
*node, nset=line47, input=4700s-final.txt 
** 
** 
** Generate additional planes of elements between planes defined above 
**  to form 16 possible elements through the girders, 3 through the  
**  haunch, 8 through the deck, and 28 through the rails. 
** 
*nfill, nset=face0 
line0,line8,16,50 
*nfill, nset=face0 
line9,line11,2,100 
*nfill, nset=face0 
line11,line19,8,100 
*nfill, nset=face0 
line19,line47,28,100 
** 
** 
** The following nsets are defined mainly for data aquisition 
** 
*nset, nset=allnodes 
face0 
*nset, generate, nset=bottomflange 
8,1800008,10000 
15,1800015,10000 
23,1800023,10000 
30,1800030,10000 
**
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** 
** Define node sets for supports: four nodes across the middle of each 
**  girder, at each end.  The near end is a roller and is constrained 
**  against horizontal movement using a spring element. 
** 
** 
*nset, generate, nset=roller 
10010,10013,1 
10025,10028,1 
*nset, generate, nset=pinsupport 
1790010,1790013,1 
1790025,1790028,1 
*nset, nset=supports 
roller, pinsupport 
** 
*boundary 
roller,2 
pinsupport,1,3 
** 
*element, type=spring2, elset=supportspring 
700001,20007,20008 
*spring, elset=supportspring 
1,1 
7.333 
** 
** 
** END NODE/SUPPORT DEFINITION 
** 
** 
** -------------------------------------------------------------------- 
** 
** 
** DEFINE SECTION PROPERTIES 
** 
** 
** Listed thicknesses for steel plates are the average measured value 
**  found on the as-built bridge specimen 
** 
*shell section, elset=webs, material=steel 
0.503 
*shell section, elset=botflange, material=steel 
0.757 
*shell section, elset=topflange, material=steel, offset=spos 
0.646 
*shell section, elset=diaphragms, material=steel 
0.5 
*shell section, elset=diaphvert, material=steel 
0.625 
*shell section, elset=vert, material=steel 
0.625 
** 
** 
** The following beam sections are for the bracing members within and 
**  between the girders.  The approximate L-shape member is  
**  defined using coordinates. 
** 
*beam section, elset=inttruss, section=arbitrary, material=steel 
4,-4,0.13,0,0.13,0.530 
0,-6.435,0.305 
0,0.13,0 
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4,0.13,0.530 
*beam section, elset=toptruss, section=arbitrary, material=steel 
4,-4,0.13,0,0.13,0.530 
0,-6.435,0.305 
0,0.13,0 
4,0.13,0.530 
*beam section, elset=exttruss, section=arbitrary, material=steel 
4,-4,0.13,0,0.13,0.530 
0,-6.435,0.305 
0,0.13,0 
4,0.13,0.530 
** 
** 
** Because the fake elements have their own material, the sections 
**  must be defined individually 
** 
*solid section, elset=deck, material=conc 
*solid section, elset=fakedeck, material=fakeconc 
*solid section, elset=rails, material=railconc 
*solid section, elset=fakerails, material=fakeconc 
*solid section, elset=bigtrans, material=rebar 
0.62 
*solid section, elset=smalltrans, material=rebar 
0.31 
*solid section, elset=botlong, material=rebar 
0.31 
*solid section, elset=toplong, material=rebar 
0.20 
*solid section, elset=railrebar, material=rebar 
0.20 
*solid section, elset=fakedeckrebar, material=fakerebar 
0.01 
*solid section, elset=fakerailrebar, material=fakerebar 
0.01 
** 
** 
** END SECTION PROPERTY DEFINITIONS 
** 
** 
** -------------------------------------------------------------------- 
** 
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** 
** DEFINE MATERIALS 
** 
** 
*orientation, name=standard, definition=coordinates 
1,0,0,0,1,0 
1,0 
** 
*material, name=steel 
*elastic 
29000,0.3 
*plastic 
50.086, 0 
51.0, 0.01804 
62.4, 0.03707 
70.2, 0.07454 
71.5, 0.09284 
65.0, 0.4 
*density 
7.33863e-7 
** 
*material, name=rebar 
*elastic 
29000,0.3 
*density 
7.33863e-7 
** 
*material, name=fakerebar 
*elastic 
0.1,0.3 
*density 
1e-15 
** 
*material, name=conc 
*Elastic 
3875, 0.2 
*plastic 
3.09, 0 
3.77, 0.0004 
4.28, 0.0008 
4.84, 0.0018 
4.84, 0.01 
*density 
2.4576e-07 
** 
*material, name=railconc 
*elastic 
3000,0.25 
*plastic 
3.09, 0 
3.77, 0.0004 
4.28, 0.0008 
4.84, 0.0018 
4.50, 0.0027 
4.50, 0.01 
*density 
1.9225e-07 
** 
*material, name=fakeconc 
*elastic 
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0.1,0.25 
*density 
1e-15 
** 
** 
** END MATERIAL DEFINITIONs 
** 
** 
** -------------------------------------------------------------------- 
** 
** 
** DEFINE GIRDER ELEMENTS 
** 
** 
*element, type=s4r, elset=topflange 
1001,   808,10808,10807,807 
21001,  815,10815,10814,814 
101001, 823,10823,10822,822 
121001, 830,10830,10829,829 
** 
*element, type=s4r, elset=webs 
3001,   808,10808,10708,708 
23001,  815,10815,10715,715 
3071,   700808,710808,710758,700758 
23071,  700815,710815,710765,700765 
3111,   1100808,1110808,1110708,1100708 
23111,  1100815,1110815,1110715,1100715 
** 
*element, type=s4r, elset=botflange 
40001,  9,8,10008,10009 
140001, 24,23,10023,10024 
** 
** 
*elgen, elset=topflange 
1001,   180,10000,1, 2,1,1000 
21001,  180,10000,1, 2,1,1000 
101001, 180,10000,1, 2,1,1000 
121001, 180,10000,1, 2,1,1000 
** 
*elgen, elset=webs 
3001,   70,10000,1,  8,-100,2000 
23001,  70,10000,1,  8,-100,2000 
3071,   40,10000,1,  16,-50,1000 
23071,  40,10000,1,  16,-50,1000 
3111,   70,10000,1,  8,-100,2000 
23111,  70,10000,1,  8,-100,2000 
*elcopy, element shift=100000, old set=webs, shift nodes=15, new 
set=webs 
** 
*elgen, elset=botflangein 
40001, 180,10000,1, 7,1,1000 
*elgen, elset=botflangeout 
140001, 180,10000,1, 7,1,1000 
** 
*elset, elset=botflange 
botflangein, botflangeout 
** 
** 
** define end diaphragms 
** 
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** 
*element, type=s4r 
200001,10009,10109,10108,10008 
*elgen, elset=diaph 
200001, 22,1,1, 8,100,100 
*elcopy, element shift=10000, old set=diaph, shift nodes=1780000, new 
set=diaph 
** 
** 
** define diaphragm stiffeners 
** NOTE: actual stiffeners are six inches deep, 5/8" thick, both sides  
** of diaphragm.  These are twelve inches deep, one side. 
** 
** 
*element, type=s4r, elset=diaphvert 
50001, 11,10011,10111,111 
51001, 12,10012,10112,112 
52001, 13,10013,10113,113 
*elgen, elset=diaphvert 
50001, 2,16,1, 8,100,100 
51001, 2,14,1, 8,100,100 
52001, 2,12,1, 8,100,100 
*elcopy, element shift=3000, old set=diaphvert, shift nodes=1790000, 
new set=diaphvert 
** 
** 
** define top of diaphragms 
** 
** 
*element, type=s4r 
56000, 810,10810,10809,809 
*elgen, elset=diaphtop 
56000, 5,1,1, 2,10000,10 
*elcopy, element shift=5, old set=diaphtop, shift nodes=15, new 
set=diaphtop 
*elcopy, element shift=100, old set=diaphtop, shift nodes=1780000, new 
set=diaphtop 
** 
*element, type=s4r 
57001, 17,10017,10016,16 
57000, 16,10016,10015,15 
*elgen, elset=middiaph 
57001, 6,1,1, 2,10000,10 
57000, 2,7,7, 2,10000,10 
*elset, generate, elset=middiaph1 
57001,57006,1 
57011,57016,1 
*elcopy, element shift=20, old set=middiaph1, shift nodes=800, new 
set=middiaph 
*elcopy, element shift=100, old set=middiaph, shift nodes=1780000, new 
set=middiaph 
** 
*elset, elset=diaphragms 
diaph, diaphtop, middiaph 
** 
*elset, generate, elset=diaphmidtop 
57021,57026,1 
57031,57036,1 
57121,57126,1 
57131,57136,1 
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** 
** 
** DEFINE INTERNAL TRUSS ELEMENTS 
** 
** 
*element, type=b31, elset=int1 
58001, 120808,120811 
58002, 120811,120815 
58003, 120008,120811 
58004, 120015,120811 
*elcopy, element shift=100, old set=int1, shift nodes=120000, new 
set=int2 
*elcopy, element shift=100, old set=int2, shift nodes=320000, new 
set=int3 
*elcopy, element shift=100, old set=int3, shift nodes=120000, new 
set=int4 
*elcopy, element shift=100, old set=int4, shift nodes=220000, new 
set=int5 
*elcopy, element shift=100, old set=int5, shift nodes=220000, new 
set=int6 
*elcopy, element shift=100, old set=int6, shift nodes=120000, new 
set=int7 
*elcopy, element shift=100, old set=int7, shift nodes=320000, new 
set=int8 
*elcopy, element shift=100, old set=int8, shift nodes=120000, new 
set=int9 
*elset, generate, elset=inttruss 
58001,58900,1 
*elcopy, element shift=100000, old set=inttruss, shift nodes=15, new 
set=inttruss 
** 
** 
** DEFINE INTERNAL TOP BRACING 
** 
** 
*element, type=b31, elset=toptruss 
59001, 10815,   120808 
59002, 120808,  240815 
59003, 240815,  560808 
59004, 560808,  680815 
59005, 680815,  900808 
59006, 900808,  1120815 
59007, 1120815, 1240808 
59008, 1240808, 1560815 
59009, 1560815, 1680808 
59010, 1680808, 1790815 
*elcopy, element shift=100000, old set=top truss, shift nodes=15, new 
set=toptruss 
** 
** 
** DEFINE INTERNAL WEB STIFFENERS 
** 
** 
*element, type=s4r 
60001, 120008,120108,120109,120009 
60002, 240008,240108,240109,240009 
60003, 560008,560108,560109,560009 
60004, 680008,680108,680109,680009 
60005, 900008,900058,900059,900009 
60006, 1120008,1120108,1120109,1120009 
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60007, 1240008,1240108,1240109,1240009 
60008, 1560008,1560108,1560109,1560009 
60009, 1680008,1680108,1680109,1680009 
*elgen, elset=vert 
60001, 2,6,1000, 8,100,10 
60002, 2,6,1000, 8,100,10 
60003, 2,6,1000, 8,100,10 
60004, 2,6,1000, 8,100,10 
60005, 2,6,1000, 16,50,10 
60006, 2,6,1000, 8,100,10 
60007, 2,6,1000, 8,100,10 
60008, 2,6,1000, 8,100,10 
60009, 2,6,1000, 8,100,10 
*elcopy, element shift=100000, old set=vert, shift nodes=15, new 
set=vert 
** 
** 
** DEFINE EXTERNAL BRACING 
** 
** 
*element, type=b31, elset=ext2 
63200, 680815,680823 
63201, 680015,680019 
63202, 680019,680023 
63203, 680815,680019 
63204, 680823,680019 
*element, type=b31, elset=ext3 
63300, 1120815,1120823 
63301, 1120015,1120019 
63302, 1120019,1120023 
63303, 1120815,1120019 
63304, 1120823,1120019 
*elset, generate, elset=exttruss 
63200,63204,1 
63300,63304,1 
** 
** 
** END GIRDER DEFINITION 
** 
** 
** -------------------------------------------------------------------- 
** 



 185

** 
** DEFINE HAUNCH ELEMENTS 
** 
** 
*element, type=c3d8r, elset=haunch 
3002001, 20907,20908,30908,30907,21007,21008,31008,31007 
3002003, 20914,20915,30915,30914,21014,21015,31015,31014 
*elgen, elset=haunch 
3002001, 2,1,1, 2,100,100, 176,10000,1000 
3002003, 2,1,1, 2,100,100, 176,10000,1000 
*elcopy, element shift=4, old set=haunch, shift nodes=15, new 
set=haunch 
** 
** 
** Above each end diaphragm, the haunch connects the top flanges as 
** well as spans between the two girders.  These extra elements are 
** defined here. 
** 
*element, type=c3d8r, elset=haunchdiaph 
3000013, 907,908,10908,10907,1007,1008,11008,11007 
*elgen, elset=haunchdiaph 
3000013, 24,1,1, 2,100,100, 2,10000,1000 
*elcopy, element shift=178000, old set=haunchdiaph, shift 
nodes=1780000, newset=haunchdiaph 
** 
** 
** DEFINE DECK ELEMENTS 
** 
** 
*element, type=c3d8r, elset=maindeck 
3000205, 1105,1106,11106,11105,1205,1206,11206,11205 
*elgen, elset=maindeck 
3000205, 28,1,1, 180,10000,1000 
** 
** 
** The deck elements below the rails are defined separately because the 
**  mesh density changes down the length with the rail element mesh  
**  density. 
** 
*element, type=c3d8r, elset=undrailslong 
3000201, 1101,1105,11105,11101,1201,1205,11205,11201 
3050201, 501101,501105,511105,511101,501201,501205,511205,511201 
3100201, 
1001101,1001105,1011105,1011101,1001201,1001205,1011205,1011201 
3150201, 
1501101,1501105,1511105,1511101,1501201,1501205,1511205,1511201 
** 
*elgen, elset=undrailslong 
3000201, 30,10000,1000 
3050201, 30,10000,1000 
3100201, 30,10000,1000 
3150201, 30,10000,1000 
** 
**  
** In order to use the elcopy function, the area with increased mesh  
** density was separated out, then copied twice down the length to  
** capture the three expansion joint locations. 
** 
*element, type=c3d8r, elset=undrailsshort 
3030201, 301101,301103,311103,311101,301201,301203,311203,311201 
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3036201, 361101,361102,371102,371101,361201,361202,371202,371201 
3044201, 441101,441103,451103,451101,441201,441203,451203,451201 
*elgen, elset=undrailsshort 
3030201, 2,2,1, 6,10000,1000 
3036201, 4,1,1, 8,10000,1000 
3044201, 2,2,1, 6,10000,1000 
** 
*elcopy, element shift=50000, old set=undrailsshort, shift 
nodes=500000, new set=undrails 
*elcopy, element shift=100000, old set=undrailsshort, shift 
nodes=1000000, new set=undrails 
** 
*elset, elset=deckundrails 
undrails, undrailsshort, undrailslong 
** 
*elcopy, element shift=32, old set=deckundrails, shift nodes=32, new 
set=deckundrails 
** 
** 
** Throughout the deck definition, only one deck element has been  
** defined vertically.  At this point, the entire plane of elements  
** is copied vertically.  By separating it out like this, the deck  
** elements can be viewed in the .odb file at 1 in. increments  
** through the thickness. 
** 
*elset, elset=deck1 
maindeck,deckundrails 
** 
*elcopy, element shift=100, old set=deck1, shift nodes=100, new 
set=deck2 
*elcopy, element shift=200, old set=deck1, shift nodes=200, new 
set=deck3 
*elcopy, element shift=300, old set=deck1, shift nodes=300, new 
set=deck4 
*elcopy, element shift=400, old set=deck1, shift nodes=400, new 
set=deck5 
*elcopy, element shift=500, old set=deck1, shift nodes=500, new 
set=deck6 
*elcopy, element shift=600, old set=deck1, shift nodes=600, new 
set=deck7 
*elcopy, element shift=700, old set=deck1, shift nodes=700, new 
set=deck8 
** 
*elset, elset=thdeck 
deck1,deck2,deck3,deck4,deck5,deck6,deck7,deck8 
** 
*elset, elset=deck 
haunch, thdeck, haunchdiaph 
** 
** 
** DEFINE FAKE DECK AND FAKEHAUNCH ELEMENTS 
** NOTE: Using shift nodes=0 will cause a warning to appear in the .dat 
** file.  There is no adverse effect on the analysis and the  
** warning should not cause concern. 
** 
*elcopy, element shift=1000000, old set=deck, shift nodes=0, new 
set=fakedeck 
** 
** 
** END DECK DEFINITION 
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** 
** 
** -------------------------------------------------------------------- 
** 
** 
** DEFINE REBAR WITHIN DECK ELEMENTS 
** 
** 
*element, type=t3d2 
700003, 1303,11303 
700005, 1305,11305 
** 
*elgen, elset=botlong 
700003, 2,32,32, 180,10000,100 
700005, 29,1,1, 180,10000,100 
** 
*elcopy, element shift=100000, old set=botlong, shift nodes=300, new 
set=toplong 
** 
** 
** The longitudinal rebar connects each longitudinal node, and thus the  
**  definition and generation is very straightforward.  The  
** transverse rebar exists every 6 or 12 in. down the length, which  
** means it must be defined at certain nodes but not at others. 
** 
*element, type=t3d2 
500001, 11203,11204 
505301, 531203,531204 
510301, 1031203,1031204 
515301, 1531203,1531204 
** 
*elgen, elset=bigtrans 
500001, 26,10000,100, 32,1,1 
505301, 23,10000,100, 32,1,1 
510301, 23,10000,100, 32,1,1 
515301, 26,10000,100, 32,1,1 
** 
**  
** NOTE: The midtrans elset name does not refer to the size of the  
** rebar but to the nature of the definition; it was defined only as  
** a middle step to allow for multiple copies to be made. 
** 
*element, type=t3d2, elset=midtrans 
502601, 261203,261204 
503101, 311203,311204 
503901, 391203,391204 
504301, 431203,431204 
505001, 501203,501204 
** 
*elgen, elset=midtrans 
502601, 32,1,1, 4,10000,100 
503101, 32,1,1, 3,20000,200 
503901, 32,1,1 
504301, 32,1,1, 4,20000,200 
505001, 32,1,1, 3,10000,100 
** 
*elcopy, element shift=5000, old set=midtrans, shift nodes=500000, new 
set=smalltrans 
*elcopy, element shift=10000, old set=midtrans, shift nodes=1000000, 
new set=smalltrans 
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** 
*elset, elset=smalltrans 
midtrans 
** 
** 
** Copy the transverse rebar vertically to define the top layer of bars 
** 
** 
*elcopy, element shift=100000, old set=bigtrans, shift nodes=500, new 
set=bigtrans 
*elcopy, element shift=100000, old set=smalltrans, shift nodes=500, new 
set=smalltrans 
** 
** 
*elset, elset=deckrebar 
botlong, toplong, bigtrans, smalltrans 
** 
** 
** DEFINE FAKEREBAR ELEMENTS 
** NOTE: Using shift nodes=0 will cause a warning to appear in the .dat 
** file.  There is no adverse effect on the analysis and the  
** warning should not cause concern. 
** 
*elcopy, element shift=50000, old set=deckrebar, shift nodes=0, new 
set=fakedeckrebar 
** 
** 
** Constrain the fake and real rebar elements to move with the deck 
** elements they are within. 
** 
*embedded element, host elset=deck 
deckrebar, fakedeckrebar 
** 
** 
** END DECK REBAR DEFINITION 
** 
** 
** -------------------------------------------------------------------- 
** 
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** 
** DEFINE RAIL ELEMENTS 
** 
** 
** The rails are defined in a similar manner to the deckundrails  
** elements, as the mesh density increase requires varying element  
** definitions by longitudinal location. 
** 
*element, type=c3d8, elset=raillong 
5000001, 1901,1905,11905,11901,2301,2305,12305,12301 
5050001, 501901,501905,511905,511901,502301,502305,512305,512301 
5100001, 
1001901,1001905,1011905,1011901,1002301,1002305,1012305,1012301 
5150001, 
1501901,1501905,1511905,1511901,1502301,1502305,1512305,1512301 
** 
*elgen, elset=raillong 
5000001, 7,400,40, 30,10000,1000 
5050001, 7,400,40, 30,10000,1000 
5100001, 7,400,40, 30,10000,1000 
5150001, 7,400,40, 30,10000,1000 
** 
** 
*element, type=c3d8, elset=railshort 
5030001, 301901,301903,311903,311901,302101,302103,312103,312101 
5036001, 361901,361902,371902,371901,362001,362002,372002,372001 
5040001, 401901,401902,411902,411901,402001,402002,412002,412001 
5041001, 411901,411902,421902,421901,412001,412002,422002,422001 
5044001, 441901,441903,451903,451901,442101,442103,452103,452101 
** 
*elgen, elset=railshort 
5030001, 2,2,1, 14,200,20, 6,10000,1000 
5036001, 4,1,1, 28,100,10, 4,10000,1000 
5040001, 4,1,1, 6,100,10 
5041001, 4,1,1, 28,100,10, 3,10000,1000 
5044001, 2,2,1, 14,200,20, 6,10000,1000 
** 
*elcopy, element shift=50000, old set=railshort, shift nodes=500000, 
new set=railgaps 
*elcopy, element shift=100000, old set=railshort, shift nodes=1000000, 
new set=railgaps 
** 
*elset, elset=inrail 
raillong, railgaps, railshort 
** 
*elcopy, element shift=4, old set=inrail, shift nodes=32, new 
set=outrail 
** 
*elset, elset=rails 
inrail, outrail 
** 
** 
** DEFINE FAKERAIL ELEMENTS 
** NOTE: Using shift nodes=0 will cause a warning to appear in the .dat 
** file.  There is no adverse effect on the analysis and the  
** warning should not cause concern. 
** 
*elcopy, element shift=1000000, old set=rails, shift nodes=0, new 
set=fakerails 
** 
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** 
** END RAIL DEFINITION 
** 
** 
** -------------------------------------------------------------------- 
** 
** 
** DEFINE REBAR WITHIN RAIL ELEMENTS 
** 
** 
*element, type=t3d2 
900102, 12102,22102 
900112, 13002,23002 
904112, 413002,423002 
909112, 913002,923002 
914112, 1413002,1423002 
900133, 14503,24503 
904133, 414503,424503 
909133, 914503,924503 
914133, 1414503,1424503 
** 
**  
** The rebar generation creates four rows of rebar.  The bottom three  
** have two bars in each row, the top one has just one (thus the  
** absence of a 2,2,2 generation for the 33 elements.  The 02  
** elements are the only continuous ones (through the expansion  
** joint location). 
** 
*elgen, elset=inrailrebar 
900102, 178,10000,100, 2,2,2 
900112, 37,10000,100,  2,2,2, 2,900,10 
904112, 47,10000,100,  2,2,2, 2,900,10 
909112, 47,10000,100,  2,2,2, 2,900,10 
914112, 38,10000,100,  2,2,2, 2,900,10 
900133, 37,10000,100 
904133, 47,10000,100 
909133, 47,10000,100 
914133, 38,10000,100 
** 
*elcopy, element shift=1000000, old set=inrailrebar, shift nodes=32, 
new set=outrailrebar 
** 
*elset, elset=railrebar 
inrailrebar, outrailrebar 
** 
** 
** DEFINE FAKERAILREBAR ELEMENTS 
** NOTE: Using shift nodes=0 will cause a warning to appear in the .dat 
** file.  There is no adverse effect on the analysis and the  
** warning should not cause concern. 
** 
*elcopy, element shift=50000, old set=railrebar, shift nodes=0, new 
set=fakerailrebar 
** 
** 
** Constrain the fake and real rebar elements to move with the deck 
** elements they are within. 
** 
*embedded element, host elset=rails 
railrebar, fakerailrebar 
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** 
** 
** Create one elset to contain all the rebar defined in the model 
** 
*elset, elset=rebar 
deckrebar, railrebar 
** 
** 
** END RAIL REBAR DEFINITION 
** 
** 
** -------------------------------------------------------------------- 
** 
** 
** CONNECT HAUNCH TO TOP FLANGES USING SPRINGS 
** 
** 
*spring, elset=shearstud1 
1,1 
200 
*spring, elset=shearstud2 
2,2 
1000 
*spring, elset=shearstud3 
3,3 
200 
** 
** The spring stiffnesses given are explained in Chapter 5, and reflect 
** on the expected strength of the shear stud in the given 
** direction. 
** 
** 
*element, type=spring2 
7000001, 807,907 
7054001, 540807,540907 
7104001, 1040807,1040907 
7154001, 1540807,1540907 
** 
*elgen, elset=SS1long 
7000001, 3,1,1, 27,10000,1000 
7054001, 3,1,1, 23,10000,1000 
7104001, 3,1,1, 23,10000,1000 
7154001, 3,1,1, 27,10000,1000 
** 
** 
** Similar to with the transverse rebar, the shear studs are not  
** defined at every longitudinal node.  Thus, again, the definitions  
** are split out to consider 12" spacing along the length. 
** 
*element, type=spring2, elset=SS1mid 
7028001, 280807,280907 
7030001, 300807,300907 
7034001, 340807,340907 
7040001, 400807,400907 
7046001, 460807,460907 
7050001, 500807,500907 
7052001, 520807,520907 
** 
*elgen, elset=SS1mid 
7028001, 3,1,1 
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7030001, 3,1,1 
7034001, 3,1,1 
7040001, 3,1,1 
7046001, 3,1,1 
7050001, 3,1,1 
7052001, 3,1,1 
** 
*elcopy, element shift=50000, old set=SS1mid, shift nodes=500000, new 
set=SS1-1 
*elcopy, element shift=100000, old set=SS1mid, shift nodes=1000000, new 
set=SS1-1 
** 
*elset, elset=SS1-1 
SS1mid, SS1long 
** 
**  
** The studs have only been defined on the innermost flange.  Those can  
** now be copied to the other three flanges. 
** 
*elcopy, element shift=3, old set=SS1-1, shift nodes=7, new set=SS1-2 
*elcopy, element shift=6, old set=SS1-1, shift nodes=15, new set=SS1-3 
*elcopy, element shift=9, old set=SS1-1, shift nodes=22, new set=SS1-4 
*elset, elset=shearstud1 
SS1-1,SS1-2,SS1-3,SS1-4 
** 
** 
** DEFINE SHEAR STUDS IN 2,3 DIRECTIONS 
** NOTE: Using shift nodes=0 will cause a warning to appear in the .dat 
** file.  There is no adverse effect on the analysis and the  
** warning should not cause concern. 
** 
*elcopy, element shift=1000000, old set=shearstud1, shift nodes=0, new 
set=shearstud2 
*elcopy, element shift=2000000, old set=shearstud1, shift nodes=0, new 
set=shearstud3 
** 
** 
** -------------------------------------------------------------------- 
** 
** 
** RESTRICT CONTACT BETWEEN FLANGE AND HAUNCH 
** 
** NOTE: The contact definition here returns many (~2500) warnings in  
** the .dat file about restricting rotation between the DOFs.  There  
** has been no indication that this is a problem in running the job  
** correctly. 
** 
** 
*surface interaction, name=deckgirderint 
 
** 
*surface, name=flangesurface 
topflange, sneg 
diaphmidtop, sneg 
diaphtop, sneg 
** 
*nset, generate, nset=haunchnodes 
907,1800907,10000 
908,1800908,10000 
909,1800909,10000 
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914,1800914,10000 
915,1800915,10000 
916,1800916,10000 
922,1800922,10000 
923,1800923,10000 
924,1800924,10000 
929,1800929,10000 
930,1800930,10000 
931,1800931,10000 
*nset, nset=haunchnodes 
910,911,912,913,917,918,919,920,921,925,926,927,928 
10910,10911,10912,10913,10917,10918,10919 
10920,10921,10925,10926,10927,10928 
20910,20911,20912,20913,20917,20918,20919 
20920,20921,20925,20926,20927,20928 
1780910,1780911,1780912,1780913,1780917,1780918,1780919 
1780920,1780921,1780925,1780926,1780927,1780928 
1790910,1790911,1790912,1790913,1790917,1790918,1790919 
1790920,1790921,1790925,1790926,1790927,1790928 
1800910,1800911,1800912,1800913,1800917,1800918,1800919 
1800920,1800921,1800925,1800926,1800927,1800928 
*surface, type=node, name=haunchsurface 
haunchnodes, 20 
** 
*contact pair, interaction=deckgirderint 
haunchsurface, flangesurface 
** 
** 
** -------------------------------------------------------------------- 
** 
** 
** DEFINE CONTACT SURFACES FOR RAIL GAPS 
** 
** 
** Each of the six gaps in the railing have contact defined with them,  
** which involves defining the surfaces involved and then applying 
** the constraint. 
** 
*surface interaction, name=railgapint 
 
** 
** 
** inner rail 
** 
** 
*elset, generate, elset=inrail1e 
5039091,5039271,10 
5039092,5039272,10 
5039093,5039273,10 
5039094,5039274,10 
*surface, name=inrail1s 
inrail1e,S5 
*elset, generate, elset=inrail2e 
5041091,5041271,10 
5041092,5041272,10 
5041093,5041273,10 
5041094,5041274,10 
*surface, name=inrail2s 
inrail2e,S3 
** 
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*elset, generate, elset=inrail3e 
5089091,5089271,10 
5089092,5089272,10 
5089093,5089273,10 
5089094,5089274,10 
*surface, name=inrail3s 
inrail3e,S5 
*elset, generate, elset=inrail4e 
5091091,5091271,10 
5091092,5091272,10 
5091093,5091273,10 
5091094,5091274,10 
*surface, name=inrail4s 
inrail4e,S3 
** 
*elset, generate, elset=inrail5e 
5139091,5139271,10 
5139092,5139272,10 
5139093,5139273,10 
5139094,5139274,10 
*surface, name=inrail5s 
inrail5e,S5 
*elset, generate, elset=inrail6e 
5141091,5141271,10 
5141092,5141272,10 
5141093,5141273,10 
5141094,5141274,10 
*surface, name=inrail6s 
inrail6e,S3 
** 
*contact pair, interaction=railgapint 
inrail2s, inrail1s 
inrail1s, inrail2s 
inrail4s, inrail3s 
inrail3s, inrail4s 
inrail6s, inrail5s 
inrail5s, inrail6s 
** 
** 
** outer rail 
** 
** 
*elset, generate, elset=outrail1e 
5039095,5039275,10 
5039096,5039276,10 
5039097,5039277,10 
5039098,5039278,10 
*surface, name=outrail1s 
outrail1e,S5 
*elset, generate, elset=outrail2e 
5041095,5041275,10 
5041096,5041276,10 
5041097,5041277,10 
5041098,5041278,10 
*surface, name=outrail2s 
outrail2e,S3 
** 
*elset, generate, elset=outrail3e 
5089095,5089275,10 
5089096,5089276,10 
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5089097,5089277,10 
5089098,5089278,10 
*surface, name=outrail3s 
outrail3e,S5 
*elset, generate, elset=outrail4e 
5091095,5091275,10 
5091096,5091276,10 
5091097,5091277,10 
5091098,5091278,10 
*surface, name=outrail4s 
outrail4e,S3 
** 
*elset, generate, elset=outrail5e 
5139095,5139275,10 
5139096,5139276,10 
5139097,5139277,10 
5139098,5139278,10 
*surface, name=outrail5s 
outrail5e,S5 
*elset, generate, elset=outrail6e 
5141095,5141275,10 
5141096,5141276,10 
5141097,5141277,10 
5141098,5141278,10 
*surface, name=outrail6s 
outrail6e,S3 
** 
*contact pair, interaction=railgapint 
outrail2s, outrail1s 
outrail1s, outrail2s 
outrail4s, outrail3s 
outrail3s, outrail4s 
outrail6s, outrail5s 
outrail5s, outrail6s 
** 
** 
** END RAIL CONTACT DEFINITION 
** 
** 
** -------------------------------------------------------------------- 
** 
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** 
** DEFINE MPCs AT MESH DENSITY INCREASE POINTS 
** 
** 
** A sample of these files is included in Appendix E.  Each one 
** includes the restraints placed on nodes that are part of one  
** element but not the neighboring elements. 
** 
*mpc, input=WebMPCs.txt 
*mpc, input=DeckMPCs.txt 
** 
*mpc, input=RailEdge1.txt 
*mpc, input=RailEdge2.txt 
*mpc, input=RailEdge3.txt 
** 
*mpc, input=Gap1-7to14.txt 
*mpc, input=Gap1-14to28.txt 
*mpc, input=Gap1-28to14.txt 
*mpc, input=Gap1-14to7.txt 
** 
*mpc, input=Gap2-7to14.txt 
*mpc, input=Gap2-14to28.txt 
*mpc, input=Gap2-28to14.txt 
*mpc, input=Gap2-14to7.txt 
** 
*mpc, input=Gap3-7to14.txt 
*mpc, input=Gap3-14to28.txt 
*mpc, input=Gap3-28to14.txt 
*mpc, input=Gap3-14to7.txt 
** 
** 
** -------------------------------------------------------------------- 
** 
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** 
** DEFINE GENERAL ELEMENT SETS 
** 
** 
*elset, elset=girders 
topflange, webs, botflangein, botflangeout, diaph, diaphvert, diaphtop, 
middiaph, vert 
** 
*elset, elset=bracing 
inttruss,exttruss,toptruss 
** 
** 
** The two types of flanges defined below are so defined to capture the 
** difference between the internal and external sides and the  
** different tributary areas from the deck. 
** 
*elset, generate, elset=flange1 
2001,2180,1 
21001,21180,1 
22001,22180,1 
101001,101180,1 
102001,102180,1 
121001,121180,1 
*elset, generate, elset=flange2 
1001,1180,1 
122001,122180,1 
** 
*surface, type=element, name=flangetype1 
flange1, sneg 
*surface, type=element, name=flangetype2 
flange2, sneg 
** 
** 
** The in and outdeckedges are for applying the dead load of the rails 
** before the elements are reactivated using *model change 
** 
*elset, generate, elset=indeckedge 
3000901,3179901,1000 
3030902,3049902,1000 
3080902,3099902,1000 
3130902,3149902,1000 
3036903,3043903,1000 
3036904,3043904,1000 
3086903,3093903,1000 
3086904,3093904,1000 
3136903,3143903,1000 
3136904,3143904,1000 
*elset, generate, elset=outdeckedge 
3000933,3179933,1000 
3030934,3049934,1000 
3080934,3099934,1000 
3130934,3149934,1000 
3036935,3043935,1000 
3036936,3043936,1000 
3086935,3093935,1000 
3086936,3093936,1000 
3136935,3143935,1000 
3136936,3143936,1000 
** 
*surface, type=element, name=indeck 
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indeckedge, S2 
*surface, type=element, name=outdeck 
outdeckedge, S2 
** 
** 
** -------------------------------------------------------------------- 
** 
** 
** DEFINE TRUCK LOADS 
** 
** 
** The truck load locations correspond to the locations of the concrete 
** blocks on the test specimen, which is not the exact same as an 
** actual truck, but was necessary to correlate data. 
** 
*elset, elset=ax1-1 
3110921,3110922,3110923 
*elset, elset=ax1-2 
3110927,3110928 
*elset, generate, elset=ax2 
3077921,3077928,1 
3078921,3078928,1 
*elset, generate, elset=ax3 
3063921,3063928,1 
** 
*surface, type=element, name=axle1-1 
ax1-1, s2 
*surface, type=element, name=axle1-2 
ax1-2, s2 
*surface, type=element, name=axle2 
ax2, s2 
*surface, type=element, name=axle3 
ax3, s2 
** 
** 
** -------------------------------------------------------------------- 
** 
** 
** DEFINE FRACTURE SETS 
** 
** 
*elset, generate, elset=fractflange 
140090,146090,1000 
** 
** 
** The web fracture was originally defined in two vertical element  
** pairs, so that one set could be removed in each subsequent step  
** to look at the tip stresses. 
** 
*elset, elset=fractweb1 
118090,138090 
117090,137090 
*elset, elset=fractweb2 
116090,136090 
115090,135090 
*elset, elset=fractweb3 
114090,134090 
113090,133090 
*elset, elset=fractweb4 
112090,132090 
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111090,131090 
*elset, elset=fractweb5 
110090,130090 
109090,129090 
*elset, elset=fractweb6 
108090,128090 
107090,127090 
*elset, elset=fractweb7 
106090,126090 
105090,125090 
*elset, elset=fractweb8 
104090,124090 
103090,123090 
** 
*elset, elset=fractweb 
fractweb1, fractweb2, fractweb3, fractweb4 
fractweb5, fractweb6, fractweb7, fractweb8 
** 
** 
*elset, elset=fracture 
fractflange, fractweb 
** 
** 
** -------------------------------------------------------------------- 
** 
** 
** DEFINE SETS FOR DATA AQUISITION 
** 
** 
** elset midspanInt refers to the central elements of the internal  
** girder, where yielding was possible. 
** 
*elset, generate, elset=midspanInt 
40089,46089,1000 
40090,46090,1000 
40091,46091,1000 
** 
** 
** The following elsets define which elements correspond with gauge 
** locations on the girders for the foil gauges, rosettes, and stud  
** gauges.  The stud nodes were also grouped so as to consider the 
** spacing between the two nodes directly. 
** 
*elset, elset=foilgauges 
6075,7075,14075,15075,41075,45075, 
141075,145075,34075,35075,26075,27075, 
106075,107075,114075,115075,134075,135075,126075,127075 
** 
*elset, elset=rosettes 
30075,31075,43075,10075,11075,30106,31106,43106,10106,11106 
** 
** 
*elset, elset=studgauges 
8080003,8150006,8080006 
8076006,8122007,8116007,8090007,8080007 
8076007,8056007,8122012,8107012,8065012 
** 
*nset, nset=studnodes 
560822,560922,650831,650931,760816,760916 
760822,760922,800809,800909,800816,800916 
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800822,800922,900822,900922,1070831,1070931 
1160822,1160922,1220822,1220922,1220831,1220931 
1500816,1500916 
** 
** 
** END ELEMENT SET DEFINITIONS 
** 
** 
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** -------------------------------------------------------------------- 
** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
** -------------------------------------------------------------------- 
** 
** 
** ADD LOADS IN STEPS 
** 
** -----------------------------------1-------------------------------- 
** 
** STEP ONE: REMOVE DECK AND RAIL ELEMENTS 
*step, nlgeom=yes, name=s1removedeck 
Remove deck and rail elements 
*static 
0.25, 0.25, 1e-05 
** 
*model change, type=element, remove 
deck, inrail, outrail, rebar 
** 
*dload 
girders,grav,386.4,0,-1,0 
bracing,grav,386.4,0,-1,0 
** 
*el print, elset=fracture 
S 
*node print, nset=bottomflange 
U 
** 
*end step 
** 
** -----------------------------------2-------------------------------- 
** 
** STEP TWO: APPLY DEAD LOAD OF DECK TO GIRDER FLANGES 
*step, nlgeom=yes, amplitude=ramp, name=s2appdeckload 
Apply dead load of deck to girder flanges 
*static 
0.25, 0.25, 1e-05 
** 
*dsload 
flangetype1,p,-0.00485119 
flangetype2,p,-0.00431217 
** 
*el print, elset=fracture 
S 
*node print, nset=bottomflange 
U 
** 
*end step 
** 
** -----------------------------------3-------------------------------- 
** 
** STEP THREE: REACTIVE DECK ELEMENTS, STRAIN FREE 
*step, nlgeom=yes, name=s3adddeckelem 
Reactivate deck elements, strain free 
*static 
0.25,0.25,1e-05 
** 
*model change, type=element, add=strain free 
deck, deckrebar 
** 
*el print, elset=fracture 
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S 
*node print, nset=bottomflange 
U 
** 
*end step 
** 
** -----------------------------------4-------------------------------- 
** 
** STEP FOUR: REMOVE APPLIED FLANGE LOAD, TURN ON DECK GRAVITY LOAD, 
** REMOVE FAKEDECK ELEMS 
*step, nlgeom=yes, amplitude=ramp, name=s4loaddeck 
Remove applied flange load, turn on deck gravity load 
*static 
0.25,0.25,1e-05 
** 
*dsload 
flangetype1,p,0.0 
flangetype2,p,0.0 
** 
*dload 
deck,grav,386.4,0,-1,0 
** 
*model change, type=element, remove 
fakedeck, fakedeckrebar 
** 
*el print, elset=fracture 
S 
*node print, nset=bottomflange 
U 
** 
*end step 
** 
** -----------------------------------5-------------------------------- 
** 
** STEP FIVE: APPLY DEAD LOAD OF INSIDE RAIL TO EDGE OF DECK 
*step, nlgeom=yes, amplitude=ramp, name=s5apprailinload 
Apply dead load of inside rail to edge of deck 
*static 
0.25, 0.25, 1e-05 
** 
*dsload 
indeck,p,0.0018027 
** 
*el print, elset=fracture 
S 
*node print, nset=bottomflange 
U 
** 
*end step 
** 
** -----------------------------------6-------------------------------- 
** 
** STEP SIX: REACTIVE INSIDE RAIL, STRAIN FREE 
*step, nlgeom=yes, name=s6activeinsiderail 
Reactivate inside rail, strain free 
*static 
0.25, 0.25, 1e-05 
** 
*model change, type=element, add=strain free 
inrail, inrailrebar 
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** 
*el print, elset=fracture 
S 
*node print, nset=bottomflange 
U 
** 
*end step 
** 
** -----------------------------------7-------------------------------- 
** 
** STEP SEVEN: APPLY DEAD LOAD OF OUTSIDE RAIL TO EDGE OF DECK 
*step, nlgeom=yes, amplitude=ramp, name=s7apprailoutload 
Apply dead load of outside rail to edge of deck 
*static 
0.25, 0.25, 1e-05 
** 
*dsload 
outdeck,p,0.0018027 
** 
*el print, elset=fracture 
S 
*node print, nset=bottomflange 
U 
** 
*end step 
** 
** -----------------------------------8-------------------------------- 
** 
** STEP EIGHT: REACTIVE OUTSIDE RAIL, STRAIN FREE 
*step, nlgeom=yes, name=s8addrailelem 
Reactivate outside rail, strain free 
*static 
0.25, 0.25, 1e-05 
** 
*model change, type=element, add=strain free 
outrail, outrailrebar 
** 
*el print, elset=fracture 
S 
*node print, nset=bottomflange 
U 
** 
*end step 
** 
** -----------------------------------9-------------------------------- 
** 
** STEP NINE: REMOVE APPLIED RAIL LOADS, TURN ON RAIL GRAVITY LOADS 
*step, nlgeom=yes, name=s9loadrail, amplitude=ramp 
Remove applied rail loads, turn on rail gravity loads 
*static 
0.25, 0.25, 1e-07 
** 
*dsload 
indeck,p,0.0 
outdeck,p,0.0 
*dload 
rails,grav,386.4,0,-1,0 
** 
*model change, type=element, remove 
fakerails, fakerailrebar 
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** 
*el print, elset=fracture 
S 
*node print, nset=bottomflange 
U 
** 
*end step 
** 
** -----------------------------------10------------------------------- 
** 
** STEP TEN: APPLY TRUCK LOADS 
*step, nlgeom=yes, name=s10truckloads, amplitude=ramp 
Apply truck loads above outside girder 
*static 
0.25,0.25,1e-05 
** 
*dsload 
axle1-1,p,0.033333 
axle1-2,p,0.025641 
axle2,p,0.03252033 
axle3,p,0.03252033 
** 
*el print, elset=fracture 
S 
*node print, nset=bottomflange 
U 
*el print, elset=foilgauges 
LE 
*el print, elset=rosettes 
LEP 
*el print, elset=exttruss 
S 
*node print, nset=supports 
RF 
*node print, nset=studnodes 
U2 
** 
*end step 
** 
** -----------------------------------11------------------------------- 
** 
** STEP ELEVEN: REMOVE EXTERNAL CROSS-BRACES 
*step, nlgeom=yes, name=s11removebraces 
Remove external cross-braces 
*static 
0.25,0.25,1e-05 
** 
*model change, type=element, remove 
exttruss 
** 
*el print, elset=fracture 
S 
*el print, elset=midspanInt 
S 
*node print, nset=bottomflange 
U 
*el print, elset=foilgauges 
LE 
*el print, elset=rosettes 
LEP 
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*el print, elset=studgauges 
E11 
*node print, nset=supports 
RF 
*node print, nset=studnodes 
U2 
** 
*end step 
** 
** -----------------------------------12------------------------------- 
** 
** STEP TWELVE: REMOVE BOTTOM FLANGE ELEMENTS 
*step, nlgeom=yes, name=12fractflange, amplitude=step, inc=1000 
Remove the bottom flange elements 
*static 
0.0005,0.1,1e-05 
** 
*model change, type=element, remove 
fractflange 
** 
*el print, elset=midspanInt 
S 
*node print, nset=bottomflange 
U 
*el print, elset=foilgauges 
LE 
*el print, elset=rosettes 
LEP 
*el print, elset=studgauges 
E11 
*node print, nset=supports 
RF 
*node print, nset=studnodes 
U2 
** 
*end step 
** 
** -----------------------------------13------------------------------- 
** 
** STEP THIRTEEN: REMOVE WEB ELEMENTS 
*step, nlgeom=yes, name=s13fractweb, amplitude=step, inc=1000 
Remove the web elements 
*static 
0.0005,0.1,1e-05 
** 
*model change, type=element, remove 
fractweb 
** 
*el print, elset=midspanInt 
S 
*node print, nset=bottomflange 
U 
*el print, elset=foilgauges 
LE 
*el print, elset=rosettes 
LEP 
*el print, elset=studgauges 
E11 
*node print, nset=supports 
RF 
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*node print, nset=studnodes 
U2 
** 
*end step 
** 
** -----------------------------------14------------------------------- 
** 
** STEP FOURTEEN: REMOVE TRUCK LOADS 
*step, nlgeom=yes, name=s14removetruck 
Remove truck loads from outside girder 
*static 
0.25,0.25,1e-05 
** 
*dsload 
axle1-1,p,0 
axle1-2,p,0 
axle2,p,0 
axle3,p,0 
** 
*el print, elset=midspanInt 
S 
*node print, nset=bottomflange 
U 
*el print, elset=foilgauges 
LE 
*el print, elset=rosettes 
LEP 
*node print, nset=supports 
RF 
*node print, nset=studnodes 
U2 
** 
*end step 
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APPENDIX C  
Table of Longitudinal Node Locations 



Element No. Location (ft) Element No. Location (ft) Element No. Location (ft) Element No. Location (ft) Element No. Location (ft)
0 0 16 16 66 46 116 76 166 106
1 1 17 17 67 47 117 77 167 107
2 2 18 18 68 48 118 78 168 108
3 3 19 19 69 49 119 79 169 109
4 4 20 20 70 50 120 80 170 110
5 5 21 21 71 51 121 81 171 111
6 6 22 22 72 52 122 82 172 112
7 7 23 23 73 53 123 83 173 113
8 8 24 24 74 54 124 84 174 114
9 9 25 25 75 55 125 85 175 115
10 10 26 26 76 56 126 86 176 116
11 11 27 26.5 77 56.5 127 86.5 177 117
12 12 28 27 78 57 128 87 178 118
13 13 29 27.5 79 57.5 129 87.5 179 119
14 14 30 28 80 58 130 88 180 120
15 15 31 28.25 81 58.25 131 88.25

32 28.5 82 58.5 132 88.5
33 28.75 83 58.75 133 88.75
34 29 84 59 134 89
35 29.25 85 59.25 135 89.25
36 29.5 86 59.5 136 89.5
37 29.625 87 59.625 137 89.625
38 29.75 88 59.75 138 89.75
39 29.875 89 59.875 139 89.875
40 30 90 60 140 90
41 30.125 91 60.125 141 90.125
42 30.25 92 60.25 142 90.25
43 30.375 93 60.375 143 90.375
44 30.5 94 60.5 144 90.5
45 30.75 95 60.75 145 90.75
46 31 96 61 146 91
47 31.25 97 61.25 147 91.25
48 31.5 98 61.5 148 91.5
49 31.75 99 61.75 149 91.75
50 32 100 62 150 92
51 32.5 101 62.5 151 92.5
52 33 102 63 152 93
53 33.5 103 63.5 153 93.5
54 34 104 64 154 94
55 35 105 65 155 95
56 36 106 66 156 96 Expansion joints
57 37 107 67 157 97
58 38 108 68 158 98
59 39 109 69 159 99 Internal bracing
60 40 110 70 160 100
61 41 111 71 161 101
62 42 112 72 162 102 Internal & external bracing
63 43 113 73 163 103
64 44 114 74 164 104
65 45 115 75 165 105 Truck axles

LEGEND:
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APPENDIX D  
List of Commonly Used Keywords 
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Commonly used ABAQUS keywords: 

 beam section 
 boundary 
 contact pair 
 density 
 dload 
 dsload 
 el print 
 elastic 
 elcopy 
 element 
 elgen 
 elset 
 embedded element 
 heading 
 material 
 model change 
 mpc 
 nfill 
 ngen 
 node 
 node print 
 nset 
 orientation 
 plastic 
 shell section 
 solid section 
 spring 
 static 
 step, end step 
 surface 
 surface interaction 
 system 
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APPENDIX E  
Example *mpc File  
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The following code is an example of one of the additional text files that defines 

boundaries on the mesh density increase locations within the rail.  The bilinear mpc type 

is written as the node being constrained followed by the four nodes constraining it, as is 

shown below in the ABAQUS User’s Manual graphic and code explanation. 
*mpc 

bilinear, p, a,b,c,d 

 

Figure E-1: Bilinear mpc explanation (HKS, Inc. 2006) 

The mpc file Gap3-14to7.txt is given here: 
bilinear, 1502103, 1502305,1502301,1501901,1501905 
bilinear, 1502135, 1502337,1502333,1501933,1501937 
** 
bilinear, 1502503, 1502705,1502701,1502301,1502305 
bilinear, 1502535, 1502737,1502733,1502333,1502337 
** 
bilinear, 1502903, 1503105,1503101,1502701,1502705 
bilinear, 1502935, 1503137,1503133,1502733,1502737 
** 
bilinear, 1503303, 1503505,1503501,1503101,1503105 
bilinear, 1503335, 1503537,1503533,1503133,1503137 
** 
bilinear, 1503703, 1503905,1503901,1503501,1503505 
bilinear, 1503735, 1503937,1503933,1503533,1503537 
** 
bilinear, 1504103, 1504305,1504301,1503901,1503905 
bilinear, 1504135, 1504337,1503933,1503533,1503537 
** 
bilinear, 1504503, 1504705,1504701,1504301,1504305 
bilinear, 1504535, 1504737,1504333,1503933,1503937 

 



 213

References 

Abraham, F.F. and G. Huajian.  (2000).  “How Fast Can Cracks Propagate?”  Physical 
Review Letters, Vol. 84, No. 14, pg 3113-3116. 

AC Engineering, Inc.  (1996).  “A Special Topic Seminar: ABAQUS Contact Problems 
Made Easy.”  West Lafayette, IN. 

Allaire, P.E. (1985).  Basics of the Finite Element Method: Solid Mechanics, Heat 
Transfer, and Fluid Mechanics.  Wm. C. Brown Publishers, Dubuque, Iowa. 

American Association of State Highway and Transportation Officials (AASHTO).  
(2004).  AASHTO LRFD Bridge Design Specifications.  Washington, D.C. 

Ibid (AASHTO).  (2003).  AASHTO Guide Specifications for Horizontally Curved Steel 
Girder Highway Bridges.  Washington, D.C. 

American Concrete Institute.  (2005). Building Code Requirements for Structural 
Concrete (ACI 318-05).  ACI Committee 318, Farmington Hills, MI. 

American Institute of Steel Construction (AISC).  (2006).  Load and Resistance Factor 
Design Specification for Steel Buildings.  13th Edition. 

ANSYS, Inc.  (2005).  ANSYS.  Version 10.0.  Canonsburg, PA. 

Barnard, T.J.  (2006).  “Constructing a Full-Scale Horizontally-Curved Twin Steel 
Trapezoidal Box Girder Bridge Segment to Determine Redundancies in Fracture Critical 
Bridges.”  Departmental Report presented to The University of Texas at Austin, in partial 
fulfillment of the requirements for the degree of Master of Science in Engineering. 

Bathe, K.-J.  (1982).  Finite Element Procedures in Engineering Analysis.  Prentice-Hall, 
Inc., Englewood Cliffs, New Jersey. 

Bathe, K.-J.  (1996).  Finite Element Procedures.  Prentice-Hall, Inc., Englewood Cliffs, 
New Jersey. 

Belytschko, T., Liu, W.K., and B. Moran.  (2006).  Nonlinear Finite Elements for 
Continua and Structures.  Wiley, Hoboken, New Jersey. 

Branco, F.A. and Green, R.  (1985).  “Composite box girder behavior during 
construction.”  Journal of Structural Engineering, ASCE, Vol. 111, No. 3, pg 577-593. 

Bruhn, E.F.  (1965).  Analysis and Design of Flight Vehicle Structures.  Tri-State Offset 
Company, Cincinnati, OH. 



 214

Chen, B.S.  (1999). “Top flange lateral bracing of steel U-shaped girders.”  Thesis 
presented to The University of Texas at Austin, in partial fulfillment of the requirements 
for the degree of Master of Science in Engineering. 

Chopra, A.K.  (2000).  Dynamics of Structures: Theory and Applications to Earthquake 
Engineering.  2nd Ed.  Upper Saddle River, New Jersey. 

CNN.  (2002).  “Bridge Disasters in the United States.”  
<http://www.cnn.com/2002/US/05/26/bridge.accidents> Published: 26 May 2002. 
Accessed: 04 April 2007. 

Computational Fracture Mechanics Research Group.  (2007).  WARP3D.  Release 15.8.  
University of Illinois at Urbana-Champaign. 

Computers and Structures, Inc.  (2006).  Sap2000.  Advanced 10.0.9.  Berkeley, CA. 

Connor, R.J., Dexter, R., and H. Mahmoud.  (2005).  “Inspection and Management of 
Bridges with Fracture-Critical Details.”  National Cooperative Highway Research 
Program Synthesis 354. Transportation Research Board, National Academy Press, 
Washington, DC. 

Cook, R.D., Malkus, D.S., Plesha, M.E., and R.J. Witt.  (2001).  Concepts and 
Applications of Finite Element Analysis.  4th Edition.  John Wiley & Sons, Inc., New 
York. 

Cowper, G.R.  (1973).  “Gaussian Quadrature Formulas for Triangles.”  International 
Journal for Numerical Methods in Engineering, Vol. 7, pg 405-408. 

Crampton, D.D., McGormley, J.C., and H.J. Hill.  (2007).  “Improving Redundancy of 
Two-Girder Bridges.”  Proceedings, Transportation Research Board Annual Meeting.  
Washington, D.C. 

Crisfield, M.A.  (1991).  Non-Linear Finite Element Analysis of Solids and Structures, 
Vol. 1.  John Wiley & Sons, Inc., New York. 

Dahlquist, G., and A. Bjork.  (1974).  Numerical Methods.  Prentice Hall, Inc., 
Englewood Cliffs, New Jersey. 

Daniels, J.H., Kim, W., and J.L. Wilson.  (1989).  “Recommended Guidelines for 
Redundancy Design and Rating of Two-Girder Steel Bridges.”  National Cooperative 
Highway Research Program Report 319.  Transportation Research Board, National 
Academy Press, Washington, D.C. 

Davidson, J.S., Abdalla, R.S., and M. Madhavan.  (2004).  “Stability of Curved Bridges 
During Construction.”  University Transportation Center for Alabama, Birmingham, AB. 



 215

Dexter, R.J., Wright, W.J., and J.W. Fisher.  (2004).  “Fatigue and Fracture of Steel 
Girders.”  Journal of Bridge Engineering, ASCE, Vol. 9, No. 3, pg 278-286. 

Dowling, P.J.  (1975).  “Strength of Steel Box-Girder Bridges.”  Journal of the Structural 
Division, ASCE, Vol. 101, No. 9, pg 1929-1947. 

Failla, K.S.  (1985).  “New Mianus Bridge Report Disputes Earlier Study.”  Civil 
Engineering, Vol. 55, No. 4, pg. 10. 

Fisher, J.W. Photos from within Connor et al.  (2005). 

Fisher, J.W., Pense, A.W., and R. Roberts.  (1977).  “Evaluation of Fracture of Lafayette 
Street Bridge.”  Journal of the Structural Division, ASCE, Vol. 103, No. 7, pg 1339-
1357. 

Frank, K.H.  (2007).  CE 386P class notes and personal correspondence. 

Gilchrist, Christopher  (1997). “Buckling Behavior of U-Shaped Girders,” thesis 
presented to The University of Texas at Austin, in partial fulfillment of the requirements 
for the degree of Master of Science in Engineering. 

Ghosn, M., and F. Moses.  (1998).  “Redundancy in Highway Bridge Superstructures.”  
National Cooperative Highway Research Program Report 406.  Transportation Research 
Board, National Academy Press, Washington, D.C. 

Hellen, T.K.  (1972).  “Short Communications: Effective Quadrature Rules for Quadratic 
Solid Isoparametric Finite Elements.”  International Journal for Numerical Methods in 
Engineering, Vol. 4, pg 597-600. 

Hibbitt, Karlsson, and Sorensen, Inc. (HKS, Inc.).  (2006).  ABAQUS/CAE.  Version 6.6-
1.  Providence, RI. 

Ibid.  ABAQUS/Explicit.  Version 6.6-1.  Providence, RI. 

Ibid.  ABAQUS/Standard.  Version 6.6-1.  Providence, RI. 

Ibid.  ABAQUS/Viewer.  Version 6.6-1.  Providence, RI. 

Ibid.  Keywords Manual.  Version 6.6-1.  Providence, RI. 

Ibid.  Standard User’s Manual.  Version 6.6-1.  Providence, RI. 

Ibid.  Theory Manual.  Version 6.6-1.  Providence, RI. 



 216

Hughes, J.R.  (2000).  The Finite Element Method: Linear Static and Dynamic Finite 
Element Analysis.  Dover Publications, Mineola, New York. 

Idriss, R.L, White, K.R., Woodward, C.B., and D.V. Jauregui.  (1995).  “Evaluation and 
testing of a fracture critical bridge.”  NDT&E International, Vol. 28, No. 6, pg 339-347. 

Irons, B.M.  (1971).  “Quadrature Rules for Brick Based Finite Elements.”  International 
Journal for Numerical Methods in Engineering, Vol. 3, pg 293-294. 

Kassimali, A.  (1999).  Matrix Analysis of Structures.  Brooks/Cole Publishing Company, 
Pacific Grove, CA. 

Kollbrunner, C.F. and K. Basler.  (1969).  Torsion in Structures: An Engineering 
Approach.  Springer-Verlag, Berlin, Germany. 

Liu, W.D., Ghosn, M., and F. Moses.  (2001).  “Redundancy in Highway Bridge 
Substructures.”  National Cooperative Highway Research Program Report 458.  
Transportation Research Board, National Academy Press, Washington, D.C. 

Lovejoy, S.C.  (2003).  “Determining Appropriate Fatigue Inspection Intervals for Steel 
Bridge Members.”  Journal of Bridge Engineering, ASCE, Vol. 8, No. 2, pg 66. 

McGuire, W., Gallagher, R.H., and R.D. Ziemian.  (2000).  Matrix Structural Analysis: 
Second Edition.  John Wiley & Sons, Inc., New York. 

Microsoft Corporation.  (2001).  Microsoft Notepad.  Version 5.1.  Redmond, WA. 

Ibid.  (2003).  Microsoft Office Excel 2003.  11.8134.8132.  Redmond, WA. 

Ibid.  (2001).  Microsoft Windows XP Professional.  Version 5.1.2600.  Redmond, WA. 

McGuire, W., Gallagher, R.H., and R.D. Ziemian.  (2000).  Matrix Structural Analysis: 
Second Edition, John Wiley & Sons, Inc., New York. 

National Bridge Inspection Standards  (1988).  Code of Federal Regulations.  Title 23, 
Part 650. 

Popp, D.  (2004).  “UTrAp 2.0: Linearized Buckling Analysis of Steel Trapezoidal 
Girders.”  Thesis presented to The University of Texas at Austin, in partial fulfillment of 
the requirements for the degree of Master of Science in Engineering. 

Popp, D., Topkaya, C., and E.B. Williamson.  (2004).  UTrAp 2.0: Analysis of Curved 
Steel Box Girders During Construction.  Version 2.0.  The University of Texas at Austin. 



 217

Quiel, S.  (2003).  “Forensic Analysis of the Steel Girder Fracture in the I-95 Brandywine 
River Bridge.”  University of Notre Dame Research Experience for Undergraduates.  
Newark, DE. 

Ruth, P., Marchand, K.A., and E.B. Williamson.  (2006).  “Static Equivalency in 
Progressive Collapse Alternative Path Analysis; Reducing Conservatism While Retaining 
Structural Integrity.”  Journal of Performance of Constructed Facilities, ASCE, Vol. 20, 
No. 4, pg. 349-364. 

Salmon, C.G., and J.E. Johnson.  (1980).  Steel Structures: Design and Behavior.  2nd 
Edition.  Harper & Row, Publishers, Inc., New York, NY. 

Ibid.  (1996).  Steel Structures: Design and Behavior.  4th Edition.  Harper & Row, 
Publishers, Inc., New York, NY. 

Scheffey, C.F.  (1971).  “Pt. Pleasant Bridge Collapse: Conclusions of the Federal 
Study.”  Civil Engineering, Vol. 41, No. 7. 

Schwendeman, L.P. and Hedgren, A.W.  (1978).  “Bolted repair of fractured I-79 girder.”  
Journal of the Structural Division, ASCE, Vol. 104, No. 10, pg 1567-1669. 

Sennah, K.M. and Kennedy, J.B.  (2002).  “Literature Review in analysis of box girder 
bridges.”  Journal of Bridge Engineering, ASCE, Vol. 7, No. 2, pg 134-143. 

Sennah, K.M. and Kennedy, J.B.  (2001). “State-of-the-art in design of curved box-girder 
bridges.”  Journal of Bridge Engineering, ASCE, Vol. 6, No. 3, pg 159-167. 

Stith, J.C.  (2007).  Personal correspondence. 

Sutton, J.P.  (2007).  “Evaluating the Redundancy of Steel Bridges: Effect of a Bridge 
Haunch on the Strength and Behavior of Shear Studs under Tensile Loading.”  Thesis 
presented to The University of Texas at Austin, in partial fulfillment of the requirements 
for the degree of Master of Science in Engineering. 

Texas Department of Transportation (TxDOT).  (2003)  Traffic Rail: Type T501.  
<ftp://ftp.dot.state.tx.us/pub/txdot-info/cmd/cserve/standard/bridge/rlstde16.pdf>  
Published: February 2003.  Accessed: 02 July 2007. 

Timoshenko, S.P., and J.M. Gere.  (1961).  Theory of Elastic Stability.  2nd Edition.  
McGraw-Hill Book Company, Inc., New York, NY. 

Tolnai, M.A.  (2005). “Analytical simulation of vehicular impact on retrofit bridge 
barriers.”  Thesis presented to The University of Texas at Austin, in partial fulfillment of 
the requirements for the degree of Master of Science in Engineering. 



 218

Topkaya, C.  (2002).  “Behavior of curved steel trapezoidal box girders during 
construction.”  Dissertation presented to The University of Texas at Austin, in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering. 

Topkaya, C. and Williamson, E.B.  (2003).  “Development of computational software for 
analysis of curved girders under construction loads.”  Computers and Structure, Vol. 81, 
pg 2087-2098. 

Topkaya, C., Williamson, E.B., and K.H. Frank.  (2004).  “Behavior of curved steel 
trapezoidal box girders during construction.”  Engineering Structures.  Vol. 26, No. 6, pg 
721-733. 

United Facilities Criteria (UFC).  (2005).  Design of Buildings to Resist Progressive 
Collapse.  UFC 4-023-03.  Washington, DC. 

Washabaugh, P.D. and W.G. Knauss.  (1994).  “A Reconciliation of Dynamic Crack 
Velocity and Rayleigh Wave Speed in Isotropic Brittle Solids.”  International Journal of 
Fracture, Vol. 65, No. 2, pg 97-114. 

Widianto.  (2003).  “General behavior of a steel trapezoidal box-girder during 
construction.”  Thesis presented to The University of Texas at Austin, in partial 
fulfillment of the requirements for the degree of Master of Science in Engineering. 

Williams, G.  (2001).  Linear Algebra with Applications.  4th Edition.  Jones and Bartlett 
Publishers, Sudbury, MA. 

Williamson, E.B.  (2007).  CE 381P class notes and personal correspondence. 



 219

VITA 
 

Catherine Grace Hovell was born in Stamford, Connecticut on May 23, 1983, the 

daughter of Peter F. and Margaret M. Hovell.  She is the sister of John Hovell.  She 

attended Darien High School in Darien, Connecticut, from which she graduated in 2001.  

She obtained her Bachelor of Science in Civil Engineering from the University of 

Virginia in May 2005, having written an undergraduate thesis on low-clearance bridge 

design using Ultra-High Performance Concrete.  She entered the Graduate School at the 

University of Texas in August 2005.  While at the University of Texas, she worked as a 

Graduate Research Assistant at the Phil M. Ferguson Structural Engineering Laboratory.  

She received her Masters of Science in Engineering degree in August 2007. 

 

 

 

Permanent address: 22 Brushy Hill Road 

   Darien, CT 06820 

 

This thesis was typed by the author. 


	Intro1.doc
	 
	Evaluation of Redundancy in Trapezoidal Box-Girder Bridges
	Using Finite Element Analysis
	by
	Catherine Grace Hovell, B.S.C.E.
	Thesis
	Master of Science in Engineering
	The University of Texas at Austin
	August 2007
	 
	Evaluation of Redundancy in Trapezoidal Box-Girder Bridges
	Using Finite Element Analysis

	Intro2.doc
	Acknowledgements
	 Abstract
	Evaluation of Redundancy in Trapezoidal Box-Girder Bridges Using Finite Element Analysis

	Tables.doc
	Table of Contents
	 List of Tables
	 List of Figures

	1-FINAL.pdf
	CHAPTER 1  Introduction and Scope of Research

	2-FINAL.pdf
	CHAPTER 2  History of Fracture-Critical Bridges

	3-FINAL.pdf
	CHAPTER 3  Test Specimen Details

	4-FINAL.pdf
	CHAPTER 4  Using ABAQUS for Structural Analysis

	4-FINAL.pdf
	CHAPTER 4  Using ABAQUS for Structural Analysis

	Tables.pdf
	Table of Contents
	 List of Tables
	 List of Figures

	5-FINAL.pdf
	CHAPTER 5   Details of the Finite Element Model

	6-FINAL.pdf
	CHAPTER 6  Results and Comparisons

	6-FINAL.pdf
	CHAPTER 6  Results and Comparisons

	7-FINAL.pdf
	CHAPTER 7  Conclusions and Recommendations

	App-FINAL.pdf
	APPENDIX A  Introduction to Finite Element Analysis
	APPENDIX B   Full Input File
	APPENDIX C   Table of Longitudinal Node Locations
	APPENDIX D   List of Commonly Used Keywords
	APPENDIX E   Example *mpc File 

	Tables.pdf
	Table of Contents
	 List of Tables
	 List of Figures

	App-FINAL.pdf
	APPENDIX A  Introduction to Finite Element Analysis
	APPENDIX B   Full Input File
	APPENDIX C   Table of Longitudinal Node Locations
	APPENDIX D   List of Commonly Used Keywords
	APPENDIX E   Example *mpc File 




