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Abstract

Moment resisting steel frames (MRFs) designed according to current building
codes are expected to deform well into the inelastic range during severe earthquake
ground motions. Inelastic deformations of MRFs are typically concentrated in critical
regions at the ends of girders and columns, and in column panel zones. The accurate
prediction of the mechanical behavior of the structure during earthquake excitations
depends on the development of reliable analytical models which describe the hysteretic
behavior of the critical regions. The development of such analytical models is the subject
of this study.

The multi-linear hinge element (a one component series hinge type model),
nonlinear panel zone element (a rotational spring element), and composite beam element
(a one component series hinge type model) were developed to model bare steel beams
and columns, column panel zones, and composite beams. The multi-linear hinge element
employes multilinear force deformation relationships, and accounts for the effects of
beam end connection type, for the case of fully welded as well as welded flange-bolted
web type connections. The element also models plastic axial deformations and changes in
axial stiffness due to hinge formation under combined bending and axial force. Hardening
rules handle monotonic, cyclic or random loading. In the hysteretic models of the
nonlinear panel zone element and the composite beam element, a smooth transition from
the elastic stage to the inelastic stage was considered. In the composite beam element, the
capability to account for a moving inflection point was implemented. The member
behavior predicted by the developed elements match well with available experimental
results and with predictions made by a fiber model.

The multi-linear hinge element, the nonlinear panel zone element, and the
composite beam element were combined into thirteen steel subassemblages and five steel
frames to investigate their local and overall response. The analytically predicted overall
responses matched reasonably well with experimental data. The analyses by the multi-
linear hinge elements and the nonlinear panel zone elements produced better overall and
local response predictions than the analyses by existing bilinear hinge elements and
bilinear panel zone elements.

11






Acknowledgment

The writers gratefully acknowledge financial support provided for this work by
the National Science Foundation Young Investigator Award (Grant No. CMS-9358186)
and by the American Institute of Steel Construction, Inc.






LASE OF FIGUIES ...ttt ee ettt et se st e nenenenesnas ix
LSt OF TADIES ...ttt ettt en et ee e Xix
Chapter 1: INTRODUCTION ........cooiveuiirieinieieieeieieesee et 1
L GENETAL ..ottt s 1
1.2 Literature Review of Discrete Member Models ........coccceovvveveeereennnnnn. 2
1.2.1 Lumped Plasticity MOdEIS .......c.ccooverivieiereieiiiceeceececeeeeeeeeee e 2
1.2.2 Distributed Plasticity MOdElS ........cceveereueerieeieececececeeeece e 4
1.3 Objective and SCOPE.......c.coereirerieeirisieeeeeee et 5
1.4 Outline of STUAY ...c.coveveiiiriiiieerrereee e 6
Chapter 2: DEVELOPMENT OF BEAM-COLUMN ELEMENT .......ccooooovvvivieennn.. 7
2.1 GENETAL ...t 7
2.2 General DEeSCIIPLON ....ooevvieieieiinieeteitesieiee et 9
2.3 Degrees Of FreedOm .....cvviveieeiiiieeiceceeeeeeeeee e 12
2.4 Complete Element SIfNEss .....ccvoueeeeeeeeieeeiieiccceeceeee e 13
2.5 Hinge FIeXibility .....coccovieveriieieiieeceee e 16
2.6 YIeld SUITACES ...c.evveuieiiririeieecec ettt 18
2.7 Hardening RUle ........cccoooiiiiiiiiiiececc e 20
2.8 Updating OPIONS .....ovveeeeieietectieeeeeeee ettt ee e eaees 29
2.9 Loading-Unloading CriteTia.........ccevvriiisreeeieeieeeeeeeee s sen e 31
2.10 Drift Control and Normal Vectors at a Vertex of Yield Surface ........ 31
2.11 Determination of Plastic Stffness..........ccoccveeeeeeveievieece e 36
2.12 State Determination ... ...ccoeeiiieuieieeeeeeee et s 39
Chapter 3: FIBER ELEMENT ......ccooiiiiiiiice ettt 43
3.1 GENETAL ... 43
3.2 Equilibrium EqQUAtIONS .....ccccoevevieiiiiceceeceeeec e 44
3.3 Strain-Displacement Relationships ...........ccoeeivveeeeeveceieiieeeeeeeeeeene. 44
3.4 Constitutive EQUAtIONS ....cccoeeveeirieieiieieicececeee e 46
3.5 Governing Differential EQUation ...........ccccoevvveeveeeiieieeeiecceeceevenn 47
3.6 Second Order Effects .....ccoovverieieiiiiieeeeeeeeeeee et 48
3.7 Numerical INteZration ........c.cccuveereeeienieierccececcere et 49
3.8 Uniaxial Stress-Strain Relationships for Steel ..........c.ococccvevieecveeeeinnnn. 51
Chapter 4: CALIBRATION OF BEAM-COLUMN ELEMENT ......ccoceovvmieeeeeeann. 59
4.1 INtrOdUCHION ..ottt ettt 59
4.2 Calibration of Multi-Linear Hinge Model for Members Without
AXIAL FOTCE ...ttt 59
4.2.1 Calibration to Experimental and Analytical Results for Fully
Welded CONNECLIONS ......cccevieuieereieieiiereeeeeee e 60
4.2.2 Calibration to Experimental and Analytical Results for
Welded Flange-Bolted Web Connections ..............cccceevevevenen.e. 66
4.3 Welghting FaCtOT ..........ccreieriiireieeet sttt 79
4.4 Calibration of Multi-Linear Hinge Model for Members with Axial
FOTCE .. 84
4.4.1 Plastic Axial SHENESS ....eoveevereerieiicece e 84
4.4.2 Monotonic Behavior ..........ccocveevecieviiiceecccecceeceece e 87
4.4.3 Cyclic BEhavior.......coiiiiiieeieieeeeeeeeeeeeeeeee e 87
4.4.4 Second Order ADalySes ......ccccoeevvveeririeieriierece et 97
4.5 SUIMNINATY ....oviiriiiiriec ettt e e 110
Chapter 5: PANEL ZONE ELEMENT ......oooiiiiiiiieieiceeeeeeeeeeeee et 111
5.1 INTrOAUCHION ....oveviriicieieetee ettt es 111
5.2 General Characteristics of Panel Zone Element ..........cccoooeveveeeeneenen.. 112

vii



5.3 Mathematical Models for Monotonic Behavior of Panel Zones.......... 114

5.3.1 Review of the Existing Models ...........ocoovevereeeceeeevrierrecereene 114
5.3.2 Modification of the Existing Models ............ccccoveveveeeeericvireennn. 125
5.3.3 Comparison with Test and FEM Results ...............ccooovrerrerennene. 125
5.4 Hysteretic Rules for Cyclic Behavior of Panel Zones ......................... 131
5.4.1 Review of Existing MOdelS ......cccvveereriirieecrceieereeerce e 131
5.4.2 Description of the Proposed Model .............cooovvveeieeeneeiieene. 131
5.4.3 Comparison with Experimental Results ............cccccoovveveireennnn. 135
5.5 SUMIMATY ..oviiviiiierieie et sr e es e s e 146
Chapter 6: COMPOSITE BEAM ELEMENT .......coocooviiiitiiceececee et 147
6.1 GENETAL .....oeviiiieiteee ettt en e 147
6.2 Previous Research ..........ccevvmionnecieeeceeee e 147
6.3 Summary of Lee’s Composite Beam Model ..............coceevvueevenecnnnnen... 148
6.3.1 Effective Width of Concrete Slab ...........cccoeovvveeeeiieceiieieee. 148
6.3.2 Ultimate Strength of Composite Beam at Connection................ 150
6.3.3 Moment-Rotation Skeleton and Hysteresis Models.................... 151
6.3.4 Stiffness of a Plastic HINZE .......cooeveveeveriivreeeeeeeceeeceee 152
6.4 Improvement of Lee's Composite Beam Model ...........c.ccocvreevnnnen... 152
6.4.1 Hysteresis Behavior of Composite Beam ...............cccoccvevnenee... 152
6.4.2 Element Stiffness MatriX .....ccccocoeevrreueeieieiereirceecee e 155
6.5 Comparison to Experimental Results ............ccoeeveeveeieeeieeiiiecrenenee, 157
6.6 SUMIMATY ....oeveireierieieeeeee ettt st see s e senaeas 162
Chapter 7: APPLICATION OF MODELS TO SUBASSEMBLAGES AND
FRAMES ..ottt 163
7.1 INtrodUCHON ...cvivieiciicceee et 163
7.2 Bare Stee] Subassemblages and Frames ........cccocvevveeveeeeeeceneiiiece, 163
7.3 Subassemblages and Frames with Concrete Slab ............ccccevevenen.... 193
74 SUIMIMATY ..ottt e et see s 208
Chapter 8: CONCLUSIONS AND RECOMMENDATIONS. .......c.cooveveeeeecveeee. 209
8.1 CONCIUSIONS .....ocviiiiiiiriceire sttt 209
8.2 Recommendations for Future Research ...........c..cccoooeeeiiiviiinicen, 210
RETEIEICES ....ovvniiii ettt ev e enen 211

viil



List of Figures

Fig. 2.1: Comparison of Kanaan’s Hinge Model with Experiment ............cccoccccooveveven.... 8
Fig. 2.2: Comparison of Kanaan’s Hinge Model with Fiber Model ...........cccoovvereernnn.. 9
Fig. 2.3: Element Components and Degrees of Freedom of Elastic Element................. 11
Fig. 2.4: Strain Hardening Behavior of HINEES .......coovevvviiiveieeeeeeeece e, 11
Fig. 2.5: Element Relative Forces and Deformations in Local Coordinate System ...... 12
Fig. 2.6: Translation of Yield Surface and Normal Vector to Yield Surface ................ 17
Fig. 2.7: Initial and Subsequent Yield Surfaces ..........ccocouevveveeeieieiiieeeeeeeee e, 19
Fig. 2.8: Saturated Curve and Virgin CUIVE .........ccocoovieverieeeeiniiceiceeeee e, 21
Fig. 2.9: Yield Surfaces Prior to Yielding .....ccccovoevieuieiiiiiiereieeeeeeeeeeeeeee e, 22
Fig. 2.10: Translation of Initial Yield SUrface ..........cccooeevoieivciiee e 23
Fig. 211: Translation of Contacted Yield SUITaCes ........cccovvviieiveeeeeeeee e 24
Fig. 2.12: Translation of the Outmost Yield SUrface ..........ccoovevveeveeveeeeeeeeeeeeeeeeeeen. 25
Fig. 2.13: Typical Moment-Rotation Curves for Two Limiting States ......................... 26
Fig. 2.14: Updating Yield SUrfaces .....c.ccccoveerriiiieiiciccicceeeeeeet e 28
Fig. 2.15: Yield Surface Overlap and Correction in Mosaddad’s Model ...................... 29
Fig. 2.16: Detection and Correction of the Overlapping of Yield Surface .................... 30
Fig. 2.17: Scaling the Action Point to the Yield Surface .........cococvveveevvieverreneeeeeenn. 32
Fig. 2.18: Action Point Outside of Yield SUrface .........ccc.oooevveeeiierireeeeeeeese e, 34
Fig. 2.19: A Proportion of Deformation INCIEMEN .........c.eceeveveeeveriirieireceeeeeeeeeeereenne. 34
Fig. 2.20: Reduced Action Increment to Make Action Point Remain on Yield
SUITACE ..ot seeeen e 35
Fig. 2.21: Normal Vector at a Vertex of Yield Surface .........ccccoovvevvveeveeeneeeeeeenn. 36
Fig. 2.22: Axial Force-Deformation Relationship ..........cccccceevveviveevieieeceiciece e 37
‘Fig. 2.23: Moment-Rotation Relationship for Equivalent Cantilever Beam ................. 38
Fig. 2.24: Determination of Yielding Event FACtOr .........c.ccocvovevvvveciveeiiicieeceeee s 40
Fig. 3.1: First-Order Equilibrium of a Beam SHCe ........ccoeeeeveviiiiceeciee e 45
Fig. 3.2: Relative Displacements and Transverse DefleCtions..........co.veeeeeeveereeeneenne. 45
Fig. 3.3: Second Order Equilibrium of a Beam SHce .........ccooevveveeiieieiiiiiecccereeeren 48
Fig. 3.4: Idealization of Cross-Section at an Integration Point ..............cccooeeveveerernennn.. 49
Fig. 3.5: Distribution of Integration Points Along SEZMENtS ...........cceeveeveviivirreereerenene. 50
Fig. 3.6: Deformations at Integration Points Within a Segment .............ccoceverveereennnn.. 51
Fig. 3.7: Monotonic and Cyclic Stress-Strain CUIVES ...........coevcueeveueeveeeiieeiseeeeeeeseeeens 52
Fig. 3.8: Movement of Bound Line.........ccccoroeeiniiiioiiiieeece e, 54
Fig. 3.9: Dafalias-Popov Model for Hysteresis CUrve. ...........cocoovevereveeeiereiieeeeeenenenn, 55

Fig. 3.10: Comparison of Analytical and Experimental Results for Multiple Step

TESt (COfI8 1985). i e 56

Fig. 3.11: Comparison of Analytical and Experimental Results for Strain History

2 (Cofi€ 1985). ot 56

Fig. 3.12: Comparison of Analytical and Experimental Results for Strain History

3 (COfie 1985). vttt 57

Fig. 4.1: Comparison of Multi-Linear Hinge Model and Fiber Model for

Monotonic Vertical Loading. .......cccoovoerrmnieieeriiceeccceeeeceeeee e 61

Fig. 4.2: Comparison of Experimental Results and Predictions Made by the Fiber

Model for Engelhardt Specimen 8. ..........cocoeciieviiuiieeeeieeeecece e 62

Fig. 4.3: Comparison of Experimental Results and Predictions Made by Bilinear

Model for Engelhardt Specimen 8. .........ccccoocoirreeiiiccecccccee e, 62

Fig.4.4: Comparison of Experimental Results and Predictions Made by Bilinear

Model for Popov Specimen 2. .........ccoeeeieiveieiiecceee et 63

Fig. 4.5: Comparison of Experimental Results and Predictions Made by the

Multi-Linear Hinge Model for Tsai Specimen 9. ........c.ocooveveeveeveriieceieen 64

X



Fig. 4.6: Comparison of Experimental Results and Predictions Made by the

Multi-Linear Hinge Model for Tsai Specimen 11. ......cc.cooeovviriieeeeeseenn. 64

Fig. 4.7: Comparison of Experimental Results and Predictions Made by the
Multi-Linear Hinge Model for Popov Specimen 2. .........c.ccoooevevievecvecnenene. 65

Fig. 4.8: Comparison of Experimental Results and Predictions Made by the
Multi-Linear Hinge Model for Popov Specimen 7. .........ccooevvvieveeeeverevneennne. 65

Fig. 4.9 Comparison of Experimental Results and Predictions Made by the Multi-
Linear Hinge Model for Engelhardt Specimen 8. ...........c..ccceevveviiiiieiccreeeen. 66
Fig. 4.10: Comparison of the Experimental Results for Popov Specimens 2 and 4. ..... 68

Fig. 4.11: Comparison of the Experimental Responses for Engelhardt Specimens
B ANM 6. ...ttt e 68
Fig 4.12: Test Specimens with the Reduced Web Area..........c.ccoovevevievecceeceeere. 69

Fig. 4.13: Comparison of Experimental Results and Predictions Made by the
Fiber Model for Popov Specimen 1. ......cccceveuieeeeeieeciiceeceeeeee e 69

Fig. 4.14: Comparison of Experimental Results and Predictions Made by the
Fiber Model for Engelhardt Specimen 6. ............ccccvevveiveieeineeeeeee e 70

Fig. 4.15: Comparison of Experimental Results and Predictions Made by the
Fiber Model for Tsai Specimen 18. ........cccoooiiviieeiieeeice e 70

Fig. 4.16: Comparison of the Predictions Made by the Fiber Model for Popov
Specimen 1 With and Without the Reduced Web Area. ........c.cocecvvvevenenen... 71

Fig. 4.17: Comparison of the Predictions Made by the Fiber Model for Engelhardt
Specimen 6 With and Without the Reduced Web Area. ........cococovevveeeennn. 71

Fig. 4.18: Comparison of the Predictions Made by the Fiber Model for Tsai
Specimen 18 With and Without the Reduced Web Area. ..............c............. 72

Fig. 4.19: Comparison of Experimental Results and Predictions Made by Bilinear
Model for POpov Specimen 4. ........cooveivieeeiieeeeeeeeeeeeeeeeeees e 73

Fig. 4.20: Comparison of Experimental Results and Predictions Made by Bilinear
Model for Engelhardt Specimen 6. .........ccoevvevieiieeieiceeceeceeeeeeeee e 73

Fig. 4.21: Comparison of Experimental Results and Predictions Made by the
Multi-Linear Hinge Model for Popov Specimen 1. ........ccccoceevvvivcceieeieneen. 75

Fig. 4.22: Comparison of Experimental Results and Predictions Made by the
Multi-Linear Hinge Model for Popov Specimen 4. ...........ccoovvveveeveeverenennn. 75

Fig. 4.23: Comparison of Experimental Results and Predictions Made by the
Multi-Linear Hinge Model for Popov Specimen 5. ........ccovecvvvieicvciceeeeenee., 76

Fig. 4.24: Comparison of Experimental Results and Predictions Made by the
Multi-Linear Hinge Model for Popov Specimen 6. ...........c..covveveereveeeeennn. 76

Fig. 4.25: Comparison of Experimental Results and Predictions Made by the
Multi-Linear Hinge Model for Tsai Specimen 17. .......ccoovvevvieeccvveneerenen. 77

Fig. 4.26: Comparison of Experimental Results and Predictions Made by the
Multi-Linear Hinge Model for Tsai Specimen 18. .........cccooeviieeeicrereenne, 77

Fig. 4.27: Comparison of Experimental Results and Predictions Made by the
Multi-Linear Hinge Model for Engelhardt Specimen 5. .........ccooveivvveeneeee.. 78

Fig. 4.28: Comparison of Experimental Results and Predictions Made by the
Multi-Linear Hinge Model for Engelhardt Specimen 6. ...........c.ccoeveveuneee.... 78
Fig. 4.29: Procedure for Weighting Factor .........c.coovvvveeveicieececeeeeeee e 80

Fig. 4.30: Comparison of the Multi-Linear Hinge Model and Other Models for
Displacement History NO. 1 ......ccooiririiiniiceceeceeeeee s 81

Fig. 4.31: Comparison of the Multi-Linear Hinge Model and Other Models for
Displacement HisStory NO. 2 ......ccooeiiiiiieieeeeeeee et 82

Fig. 4.32: Comparison of the Multi-Linear Hinge Model and Other Models for
Displacement HiStory NO. 3 .....c.ccovimiiiinneeeiiee et 82

Fig. 4.33: Comparison of the Multi-Linear Hinge Model and Other Models for
Displacement History INO. 4 ........ccoiviiiriineeeeeee e 83



Fig
Fig

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

. 4.34: Comparison of the Multi-Linear Hinge Model and Other Models for
Displacement History NO. 5 ..oo.oocieiiiiieiececeseseeeeeeeeeee e 83

. 4.35: Comparison of the Multi-Linear Hinge Model and Other Models for
Displacement HiStory NO. 6 .....ccooeiiiiiiieece e 84

Fig. 4.36: Comparison of Multi-Linear Hinge Model and Fiber Model for
Monotonic AXial Loading ......cccoeveveiiieeiceeeece e 86

4.37: Comparison of Multi-Linear Hinge Model and Fiber Model for Cyclic
AXIAl LOAAINE ..ottt e 86

4.38 : Bending Moment-Axial Force Interaction of Multi-Linear Hinge
Model for Monotonic Loading with Constant Axial Force ...........cccveu...... 87

4.39a: Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model Neglecting Plastic Axial Deformation Under P = 0.2P, .....89

4.39b: Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Multi-linear Yield Surface Under P = 0.2P i 89

4.39c: Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Nonlinear Yield Surface Under P = 0.2P, i 90

4.39d: Transverse Load-Axial Deformation Relationships Obtained by the
Multi-Linear Hinge and Fiber Models Under P =0. 2P, 90

4.40a: Comparison of Predicted Results by Fiber Model and Multi-Linear

Hinge Model Neglecting Plastic Axial Deformation Under
P =0.3P e e 91

4.40b: Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Multi-linear Yield Surface Under P = 0.3Py .o, 91

4.40c: Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Nonlinear Yield Surface Under P = 03P, 92

4.40d: Transverse Load-Axial Deformation Relationships Obtained by the
Multi-Linear Hinge and Fiber Models Under P = 0.3Py oo 92

4.41a: Comparison of Predicted Results by Fiber Model and Multi-Linear

Hinge Model Neglecting Plastic Axial Deformation Under
P=0.4P e 93

4.41b: Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Multi-linear Yield Surface Under P = 0.4P,. oo, 93

4.41c: Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Nonlinear Yield Surface Under P = 0.4P .o 94

4.41d: Transverse Load-Axial Deformation Relationships Obtained by the
Multi-Linear Hinge and Fiber Models Under P = 0.4P . oo 94

4.42a: Comparison of Predicted Results by Fiber Model and Multi-Linear

Hinge Model Neglecting Plastic Axial Deformation Under
P m0.5P e e 95

4.42b: Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Multi-linear Yield Surface Under P = 0.5P i 95

4.42¢: Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Nonlinear Yield Surface Under P = 0.5P . o, 96

4.42d: Transverse Load-Axial Deformation Relationships Obtained by the
Multi-Linear Hinge and Fiber Models Under P = 0.5P i, 96



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

4.43a:

4.43b:

4.43¢:

4.43d:

4.44a:

4.44b:

4.44c:

4.44d:

4.45a:

4.45b:

4.45¢:

4.45d:

Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model Neglecting Plastic Axial Deformation for P = 0.2P; e 98
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Multi-linear Yield Surface for P = 0.2P, i 98
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Nonlinear Yield Surface for P = 0. 2P s 99
Comparison of Transverse Load-Axial Deformation Relationships
Obtained by the Multi-Linear Hinge and Fiber Models for P = 0.2P,...... 99
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model Neglectiing Plastic Axial Deformations for P = 0. 3Py ... 100
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Multi-linear Yield Surface for P = 0.3Py oo, 100
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Nonlinear Yield Surface for P = 0.3Py i 101

Comparison of Transverse Load-Axial Deformation Relationships
Obtained by the Multi-Linear Hinge and Fiber Models for

P=0.3P) . s 101
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model Neglectiing Plastic Axial Deformations for P = 0.4P,..... 102
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Multi-linear Yield Surface for P = 0. APy, 102
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Nonlinear Yield Surface for P = L 103

Comparison of Transverse Load-Axial Deformation Relationships
Obtained by the Multi-Linear Hinge and Fiber Models for

P = 0.4P, oot 103

4.46: Comparison of Experimental Results and Predictions Made by the

Fiber Model for Popov Specimen 2. ........cccceciviiieiieeeee e 104
4.47a: Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model Neglecting Plastic Axial Deformation for P = 0.2P, ... 104

4.47b: Comparison of Predicted Results by Fiber Model and Multi-Linear

4.47c¢:

4.474d:

4.48a:

4.48b:

4.48c:

4.48d:

Hinge Model With Multi-linear Yield Surface for P = 0.2P, oo 105
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Nonlinear Yield Surface for P =0.2P, .................... 105
Comparison of Transverse Load-Axial Deformation Relationships
Obtained by the Multi-Linear Hinge and Fiber Models for P = 0.2P,.... 106
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model Neglectiing Plastic Axial Deformations for P = 0.3P, ... 106
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Multi-linear Yield Surface for P = 0.3Py v 107
Comparison of Predicted Results by Fiber Model and Multi-Linear
Hinge Model With Nonlinear Yield Surface for P = 0.3Py v 107

Comparison of Transverse Load-Axial Deformation Relationships
Obtained by the Multi-Linear Hinge and Fiber Models for

P = 03P, corceeeeeesenes s ees e s 108

xii



Fig. 4.49a: Comparison of Predicted Results by Fiber Model and Multi-Linear

Hinge Model Neglectiing Plastic Axial Deformations for P = 0.4P,..... 108

Fig. 4.49b: Comparison of Predicted Results by Fiber Model and Multi-Linear

Hinge Model With Multi-linear Yield Surface for P = 0. 4P 109

Fig. 4.49c: Comparison of Predicted Results by Fiber Model and Multi-Linear

Hinge Model With Nonlinear Yield Surface for P = 0. AP 109

Fig. 4.49d: Comparison of Transverse Load-Axial Deformation Relationships

Obtained by the Multi-Linear Hinge and Fiber Models for

P=0.4P, . oo 110
Fig. 5.1: Comparison of Test Results and Analytical Results Obtained by Using

Center-to-Center Line Dimension Modeling ...........cococcveeeveiereiireeieieennn, 112
Fig. 5.2: Idealization of Beam-to-Column JOint ...........ccccovveiveveeoveeeeeeeeee e, 113
Fig. 5.3: Boundary Forces and Equivalent Shear Forces on Panel Zone...................... 115
Fig. 5.4: Existing Panel Zone Moment-Panel Zone Deformation Models .................. 116
Fig. 5.5 Post Elastic Stiffness MOelS........c.couvuirriiriiieiieiecccceeeeeeeeeeee e 118
Fig. 5.6a): Krawinkler's SPECImMen A .........c..ivrvereeiniiieieiec e 119
Fig. 5.6b): Krawinkler's Specimen B .........cccoovoiviiiiiiineeceeeee e, 119
Fig. 5.6¢): Fielding's SPECIMEN .....couecieiriiiiieieii ettt 119
Fig. 5.6d): SIutter's SPECimen 1 .......ccovivueeerieieecieieeceee e 119

Fig. 5.7: Comparison of the Existing Models and Test Data for Krawinkler
SPECIMEN A2 ..ottt ea et er e ses v nas 120

Fig. 5.8: Comparison of the Existing Models and Test Data for Krawinkler
Specimen B2 ......oiiiiiiiiec e e 120

Fig. 5.9: Comparison of the Existing Models and Test Data for Fielding
SPECIIMETI ...ttt ettt ettt e b e b e st s ebeevsesseseesteenneeavestenrens 121

Fig. 5.10: Comparison of the Existing Models and Test Data for Slutter
SPECIMEN 1 ...ttt sttt 121

Fig. 5.11: Comparison of the Existing Models and FEM Result for Slutter
Specimen 1 with tef =0.3557 .. ... 122

Fig. 5.12: Comparison of the Existing Models and FEM Result for Slutter
Specimen 1 with tcf = 0.5325” ... 122

Fig. 5.13: Comparison of the Existing Models and FEM Result for Slutter
Specimen 1 with tef = 0.717 ..o 123

Fig. 5.14: Comparison of the Existing Models and FEM Result for Slutter
Specimen 1 with tcf = 1.077 ..ot 123

Fig. 5.15: Comparison of the Existing Models and FEM Result for Slutter
Specimen 1 with tef = 1,427 ..ot 124

Fig. 5.16: Comparison of the Existing Models and FEM Result for Slutter
Specimen 1 with tcf = 1.775” ..ooiviieeeee e, 124

Fig. 5.17: Comparison of the Modified Models and Test Data for Krawinkler
SPECIMEN A2 ...ttt a et ea e RTTTUURRRN 126

Fig. 5.18: Comparison of the Modified Models and Test Data for Krawinkler
Specimen B2 ... 126

Fig. 5.19: Comparison of the Modified Models and Test Data for Fielding
SPECIIMIEIL ...ttt ettt re et ee e 127

Fig. 5.20: Comparison of the Modified Models and Test Data for Slutter
SPECIMEN 1 ..ottt ettt r e s 127

Fig. 5.21: Comparison of the Modified Models and FEM Result for Slutter
Specimen 1 with tcf = 0.3557 ..., 128

Fig. 5.22: Comparison of the Modified Models and FEM Result for Slutter
Specimen 1 with tcf = 0.53257 ..o 128

Xiil



Fig. 5.23: Comparison of the Modified Models and FEM Result for Slutter
Specimen 1 with tcf = 0.717 .o 129

Fig. 5.24: Comparison of the Modified Models and FEM Result for Slutter
Specimen 1 with tef = 1,077 ....ccooiieecee e 129

Fig. 5.25: Comparison of the Modified Models and FEM Result for Slutter
Specimen 1 with tcf = 1.427 ... 130

Fig. 5.26: Comparison of the Modified Models and FEM Result for Slutter
Specimen 1 with tef = 1.775” ..o 130

Fig. 5.27: Comparison of Test Results and the Existing Bilinear Panel Model for
the Panel Zome ...........ccooviiiiiiiicincece et 131

Fig. 5.28: Comparison of Test and the Analysis Using the Bilinear Panel Model
for Overall RESPONSE ......c.cvevruieeciieceteeeree e 132
Fig. 5.29: Shape Factor for Inelastic Behavior .........ccccoeeceiviiiieceeiiieciecceeeeee 133
Fig. 5.30a): Elastic Limit Range After Unloading .......c..ccceeevvieeeeeeeceireeeieeceeeen, 134
Fig. 5.30b): Movement of Bound Line ........cccoovveiviicieeiieiee e 134
Fig. 5.30 : Hysteretic Rules for Panel Zones ............cccoeceiviieeecee e 134
Fig. 5.31a): Slutter Specimens 2 and 4 (Slutter 1980) ........coueveeeoeeeeereeeeeeee e eeeeen 136
Fig. 5.31b): Popov Specimen 3 (PoOpov 1985) ...cc.ccvoevieirieieeieeeeeeeeeeeeeeee e 136
Fig. 5.31c): Popov Specimens 2, 4, and 6 (Popov 1985) ......c.ccevveueereereeeiiiiieeeeeenns 137
Fig. 5.31d): Popov Specimen 8 (Popov T985) e 137

Fig. 5.32: Comparison of the Developed Hysteretic Rules and Test Data for
Krawinkler Specimen Al .......ccoovivneineneeeseceeceeee e 140

Fig. 5.33: Comparison of the Developed Hysteretic Rules and Test Data for
Krawinkler Specimen AZ ........cccooirenriniiieieeieeee e 140

Fig. 5.34: Comparison of the Developed Hysteretic Rules and Test Data for
Krawinkler Specimen Bl .......cccoooiiiiiiiiicce e, 141

Fig. 5.35: Comparison of the Developed Hysteretic Rules and Test Data for
Krawinkler Specimen B2 ........cccooeiiviriniiieieceeeeceeeeee e 141

Fig. 5.36: Comparison of the Developed Hysteretic Rules and Test Data for
Slutter SPECIMEN 1 ....cviiiiiiiie et 142

Fig. 5.37: Comparison of the Developed Hysteretic Rules and Test Data for
POPOV SPECIMEN B. ....oviiiiiiiiiiiiriieienesese ettt et 142

Fig. 5.38: Comparison of the Developed Hysteretic Rules and Test Data for
POPOV SPECIMEN 2 ...t 143

Fig. 5.39: Comparison of the Developed Hysteretic Rules and Test Data for
Popov Specimen 3 ...t 144

Fig. 5.40: Comparison of the Developed Hysteretic Rules and Test Data for
Popov SPeCImMEn 4 .........ccooiiiiiiiire e 144

Fig. 5.41: Comparison of the Developed Hysteretic Rules and Test Data for
SIUtter SPECIMEN 4 ..ottt ettt 145

Fig. 5.42: Comparison of the Developed Hysteretic Rules and Test Data for
SIutter SPECIMEN 2 ...ttt 145

Fig. 5.43: Comparison of the Developed Hysteretic Rules and Test Data for
POPOV SPECIMEN 8 ..ottt 146
Fig. 6.1: Moment-Rotation Skeleton Model of Composite Beam (Lee 1987) ............ 149
Fig. 6.2: Moment-Rotation Hysteresis Model of Composite Beam (Lee 1987)........... 149
Fig. 6.3: Plastic Stress Distribution of Composite Beam. .........cccccoevvueeieveirierecrennene. 150
Fig. 6.4: Proposed Hysteretic Moment-Rotation Model of Composite Beam.............. 154
Fig. 6.5: Plastic Stiffness of Inelastic Moment-Rotation Curve .............ccccooeveevennn.... 155
Fig. 6.6: Relative Deformations of Composite Beam Element..............ccoooeveueevennnn... 157
Fig. 6.7: Cross-Sections of Test Specimens (Lee 1987 ......cccovevveveeeeeccciriieeeeeenn, 158

Fig. 6.8: Comparison of Experimental and Analytical Results of Specimen EJ-
W et ettt ettt 159
Fig. 6.9: Comparison of Experimental and Analytical Results of Specimen CG3...... 159

X1v



Fig. 6.10: Comparison of Experimental and Analytical Results of Specimen CG4.... 160
Fig. 6.11: Comparison of Experimental and Analytical Results of Specimen
TAZAWA 8O ..o e 160
Fig. 6.12: Comparison of Experimental and Analytical Results of Specimen
TAGAWA 8O ... e 161
Fig. 6.13: Comparison of Experimental and Analytical Results of Specimen
Tagawa 89 .......cooiiiiiii 161
Fig. 7.1a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Krawinkler
Specimen A-1 (Krawinkler 1971). ..cocooeoiviiniiiecieeeeceeeee e, 165
Fig. 7.1b: Comparison of Experimental and Analytical Results Obtained by
Bilinear Hinge Model and Bilinear Panel Zone Model for Krawinkler
Specimen A-1(Krawinkler 1971). c.ooooeiieciiiieeeceeeeeceee e 166
Fig. 7.1c: Comparison of Experimental and Analytical Horizontal Force-Beam
Rotation Relations of Krawinkler Specimen A-1 (Krawinkler 1971). ...... 166
Fig. 7.1d: Comparison of Experimental and Analytical Panel Moment-Rotation
Relations of Krawinkler Specimen A-1 (Krawinkler 1971). ...cccovvvuvenn.... 167
Fig. 7.2a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Krawinkler
Specimen A-2 (Krawinkler 1971). occooveieieiiieeeeeeeceeeec e 167
Fig. 7.2b: Comparison of Experimental and Analytical Results Obtained by
Bilinear Hinge Model and Bilinear Panel Zone Model for Krawinkler
Specimen A-2 (Krawinkler 1971). cooooevieceieieiececeeeeeeeeeeeveevesva 168
Fig. 7.2c: Comparison of Experimental and Analytical Horizontal Force-Beam
Rotation Relations of Krawinkler Specimen A-2 (Krawinkler 1971). ...... 168
Fig. 7.2d: Comparison of Experimental and Analytical Panel Moment-Rotation
Relations of Krawinkler Specimen A-2 (Krawinkler 1971). ..................... 169
Fig. 7.3a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Krawinkler
Specimen B-1 (Krawinkler 1971). .ccccoceieiiiieeeeiiececeeee e 169
Fig. 7.3b: Comparison of Experimental and Analytical Results Obtained by
Bilinear Hinge Model and Bilinear Panel Zone Model for Krawinkler
Specimen B-1 (Krawinkler 1971). ....coooiiiiiciceeecececeeeeeeee et 170
Fig. 7.3c: Comparison of Experimental and Analytical Horizontal Force-Beam
Rotation Relations of Krawinkler Specimen B-1 (Krawinkler 1971)........ 170
Fig. 7.3d: Comparison of Experimental and Analytical Panel Moment-Rotation
Relations of Krawinkler Specimen B-1 (Krawinkler 1971). ....coeovvevnne.... 171
Fig. 7.4a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Krawinkler
Specimen B-2 (Krawinkler 1971). ..ccooeieivenieieeee e, 171
Fig. 7.4b: Comparison of Experimental and Analytical Results Obtained by
Bilinear Hinge Model and Bilinear Panel Zone Model for Krawinkler
Specimen B-2 (Krawinkler 1971). ..cccocvvvivivieeiieeecveceeeeeeeeeeee s 172
Fig. 7.4c: Comparison of Experimental and Analytical Horizontal Force-Beam
Rotation Relations of Krawinkler Specimen B-2 (Krawinkler 1971)........ 172
Fig. 7.4d: Comparison of Experimental and Analytical Panel Moment-Rotation
Relations of Krawinkler Specimen B-2 (Krawinkler 1971). ..................... 173
Fig. 7.5a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Popov
Specimen 3 (POPOV 1985). w.ocviiereiceeeeeeeee e 174
Fig. 7.5b: Comparison of Experimental and Analytical Results Obtained by
Bilinear Hinge Model and Bilinear Panel Zone Model for Popov
Specimen 3 (POPov 1985). ..ooirieeieiceeeeie e 174

XV



Fig.
Fig.

Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

7.5¢: Comparison of Experimental and Analytical Panel Moment-Rotation
Relations of Popov Specimen 3 (Popov 1985). ...ccccevveieveeeieceeeceen 175

7.6a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Popov
Specimen 6 (POPov 1985). ..o, 175

7.6b: Comparison of Experimental and Analytical Results Obtained by
Bilinear Hinge Model and Bilinear Panel Zone Model for Popov

Specimen 6 (POPov 1985). ...cvvuiieiieiiiee et 176
7.6¢c: Comparison of Experimental and Analytical Panel Moment-Rotation
Relations of Popov Specimen 6 (Popov 1985). .....cccccoevveevveiviciceeeeene, 176

7.7a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Popov

Specimen 2 (POPov 1985). ... 177
7.7b: Comparison of Experimental and Analytical Panel Moment-Rotation
Relations of Popov Specimen 2 (Popov 1985). ......ccceevvvevivreecrereeereneee, 177

7.8a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Popov

Specimen 4 (Popov 1985). ..ot 178
7.8b: Comparison of Experimental and Analytical Panel Moment-Rotation
Relations of Popov Specimen 4 (Popov 1985). ......ccvveveveeeeeceeieceeee 178

7.9a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Popov

Specimen 8 (POPoV 1985). ..ot 179
7.9b: Comparison of Experimental and Analytical Panel Moment-Rotation
Relations of Popov Specimen 8 (Popov 1985). .....ccccceeceeveiiveiieceeecen 179

7.10a: Comparison of Experimental and Analytical Results Obtained by
Multi-linear Hinge Model and Nonlinear Panel Zone Model for
Engelhardt Specimen 2B (Engelhardt 1994). .....ccooveivieieiiiceeeee, 180

7.10b: Comparison of Experimental and Analytical Results Obtained by
Bilinear Hinge Model and Bilinear Panel Zone Model for Engelhardt

Specimen 2B (Engelhardt 1994). ........ccocoeeeeieiciececeeeeeeecveceeeee 180
7.10c: Comparison of Analytical Beam Moment-Rotation Relations of
Engelhardt Specimen 2B (Engelhardt 1994). .........cccovevveiveciecreernnn. 181

7.11a: Comparison of Experimental Results and Analytical Panel Moment-

Rotation Relations Obtained by Nonlinear Panel Zone Model for
Popov Specimen C-2 (POpov 1975). ..coceveeiiieiee e 182

7.11b: Comparison of Experimental and Analytical Results Obtained by

Multi-linear Hinge Model and Nonlinear Panel Zone Model for Popov
Specimen C-2 (POPOV 1975). c.cccceieitcieeeeieeee e 182

7.11c: Comparison of Experimental and Analytical Results Obtained by

Bilinear Hinge Model and Bilinear Panel Zone Model for Popov

Specimen C-2 (POPOV 1975). oot 183

7.11d: Comparison of Analytical Beam Moment-Rotation Relations of Popov
Specimen C-2 (POPOV 1975). oottt 183

7.11e: Comparison of Analytical Column Moment-Rotation Relations of
Popov Specimen C-2 (Popov 1975). c..ceveeveeeeeie it 184

7.11f: Comparison of Analytical Panel Moment-Rotation Relations of Popov
Specimen C-2 (POPoV 1975). it 184

7.12a: Comparison of Experimental Results and Analytical Prediction Made
by Multi-linear Hinge Model for Wakabayashi Specimen FC5
(Wakabayashi 1974). ....c.ccoeiiiiieeeeeeeceeececeeeee ettt nes e 186
7.12b: Comparison of Experimental Results and Analytical Prediction Made
by Bilinear Hinge Model for Wakabayashi Specimen FC5
(Wakabayashi 1974). ..ot 186

Xvi



Fig
Fig

. 1.12¢c: Comparison of Analytical Beam Moment-Rotation Relations of
Wakabayashi Specimen FC5 (Wakabayashi 1974). ..........ccccveovvevveenen. 187

. 7.12d

Fig. 7.13a:

Fig

Fig
Fig
Fig

Fig

Fig

Fig

Fig

Fig

Fig

. 7.13b:

. 1.14a:

. 7.14b:

. 7.14c:

.7.15a:

.7.15b:

.7.15¢c:

. 7.16a:

: Comparison of Analytical Column Moment-Rotation Relations of

Wakabayashi Specimen FC5 (Wakabayashi 1974). ........cccecocvvvvennne. 187

Comparison of Experimental Results and Analytical Prediction Made
by Multi-linear Hinge Model for Wakabayashi Specimen FCO

(Wakabayashi 1974). .......cooriiieeeeee e 188

Comparison of Experimental Results and Analytical Prediction Made
by Bilinear Hinge Model for Wakabayashi Specimen FCO

(Wakabayashi 1974). ....c.oouviiiiieeeeeeeeeee e, 188
. 7.13c: Comparison of Analytical Beam Moment-Rotation Relations of
Wakabayashi Specimen FCO (Wakabayashi 1974). ..........c.cccoevveveenee, 189
. 7.13d: Comparison of Analytical Column Moment-Rotation Relations of
Wakabayashi Specimen FCO (Wakabayashi 1974). ..........ccccoeeuvevevnnn.. 189

Comparison of Experimental Data and Analytical Results Obtained by
Multi-linear Hinge Model and Nonlinear Panel Zone Model for

Carpenter Specimen Frame A (Carpenter 1973)......ccccocovvvvvivecceeeecrenne. 190

Comparison of Experimental Data and Analytical Results Obtained by
Multi-linear Hinge Model and Nonlinear Panel Zone Model for

Carpenter Specimen Frame A (Carpenter 1973)......cccecceeeecievveieceieeene. 191

Comparison of Experimental Data and Analytical Results Obtained by
Bilinear Hinge Model and Bilinear Panel Zone Model for Carpenter
Specimen Frame A (Carpenter 1973). .coocooevviviviiieieieeeeeeeeee e,
Comparison of Experimental Data and Analytical Results Obtained by
Multi-linear Hinge Model and Nonlinear Panel Zone Model for
Carpenter Specimen Frame B (Carpenter 1973). ......ccocoeevveieveiecerceee.
Comparison of Experimental Data and Analytical Results Obtained by
Multi-linear Hinge Model and Nonlinear Panel Zone Model for
Carpenter Specimen Frame B (Carpenter 1973). ......cccoceeeveviecvceiieeien,
Comparison of Experimental Data and Analytical Results Obtained by
Bilinear Hinge Model and Bilinear Panel Zone Model for Carpenter
Specimen Frame B (Carpenter 1973)......ccccecevieieeeicececeeeeeeeeeeee,
Comparison of Panel Zone Response Obtained by the Test and the
Nonlinear Panel Zone Model Using the Material Parameters of Bare
Steel Beam-to-Column Joint for Lee Specimen EJ-FC (Lee 1987). ........

Fig. 7.16b: Comparison of Overall Response Obtained by the Test and the

Fig

Fig

Fig

Fig

Fig

. 7.17a:

Analysis Using the Material Parameters of Bare Steel Beam-to-
Column Joint for Lee Specimen EJ-FC (Lee 1987). ..cccooevveeveeeene.
Comparison of Panel Zone Response Obtained by the Test and the
Nonlinear Panel Zone Model Using the Material Parameters of Bare
Steel Beam-to-Column Joint for Lee Specimen IJ-FC (Lee 1987). ........

. 7.17b: Comparison of Overall Response Obtained by the Test and the

. 7.18a:

. 7.18b:

Analysis Using the Material Parameters of Bare Steel Beam-to-
Column Joint for Lee Specimen IJ-FC (Lee 1987). ..ocoovvvvvveeeeeeeeeeene.
Comparison of Panel Zone Response Obtained by the Test and the
Nonlinear Panel Zone Model Using the Parameters for the Panel Zone
of the Exterior Composite Beam-to-Column Joints (Lee 1987). ..............
Comparison of Panel Zone Response Obtained by the Test and the
Nonlinear Panel Zone Model Using the Parameters for the Panel Zone
of the Interior Composite Beam-to-Column Joints (Lee 1987)................

. 71.19a: Comparison of Overall Response Obtained by the Test and the

Analysis Using the Parameters for the Panel Zone of the Exterior
Composite Beam-to-Column Joints (LLee 1987). ..couvvoeeieeeeeeeeeeeeenn.

Xvii

191

192

192

195

195

196

196

198

198

199



Fig. 7.19b: Comparison of Panel Zone Response Obtained by the Test and the
Analysis Using the Parameters for the Panel Zone of the Exterior
Composite Beam-to-Column Joints (Lee 1987). ..ocovveveiiiiieieceeereeene. 199
Fig. 7.19c: Beam Moment-Rotation Relation Obtained by the Analysis Using the
Parameters for the Panel Zone of the Exterior Composite Beam-to-
Column Joints (&€ 1987). weovuieieeeieeiceereee ettt 200
Fig. 7.20a: Comparison of Overall Response Obtained by the Test and the
Analysis Using the Parameters for the Panel Zone of the Interior
Composite Beam-to-Column Joints (LLee 1987). ...ccooovevveviirieeeceeeeenee, 200
Fig. 7.20b: Comparison of Panel Zone Response Obtained by the Test and the
Analysis Using the Parameters for the Panel Zone of the Interior
Composite Beam-to-Column Joints (Lee 1987). ...ccooveeeviviveieeeeeeeerene 201
Fig. 7.20c: Beam Moment-Rotation Relation Obtained by the Analysis Using the
Parameters for the Panel Zone of the Interior Composite Beam-to-
Column Joints (1Lee 1987). .ooceiereieeeeeee et 201
Fig. 7.21: Comparison of Overall Response Obtained by the Test and the Analysis
Modeling Composite Beams as Bare Steel Beam Elements for Wenk
Specimen CA-1 (Wenk 1977). it 203
Fig. 7.22a: Comparison of Overall Response Obtained by the Test and the
Analysis Using the Ultimate Moment Obtained by Assuming
Compression Yield of Reinforcing Bars at Interior Joint. ...................... 203
Fig. 7.22b: Comparison of Overall Response Obtained by the Test and the
Analysis Using the Ultimate Moment Obtained by Assuming

Tension Yield of Reinforcing Bars at Interior Joint. ............cccocvvunee.n. 204

Fig. 7.23a: Maximum Slab Forces at Interior Joint (Wenk 1977). .....ccoocvevveiveevvennenne. 204
Fig. 7.23b: Maximum Stress at Positive Moment Region of Interior Joint (Wenk

LOTT). ettt ettt ettt ens 205

Fig. 7.24a: Comparison of Overall Responses Obtained by the Test and the
Analyses Using Different Methods to Consider Changing Inflection

Point for Wenk Specimen CA-1 (Wenk 1977). ..ooveveeeeeeecniieeeeenn. 206
Fig. 7.24b: Comparison of Beam Moment-Rotation Relations of Right Composite
Beam Obtained by the Analyses Using Different Methods to Consider

Changing Inflection Point for Wenk Specimen CA-1 (Wenk 1977). ........ 207
Fig. 7.24c: Comparison of Beam Moment-Rotation Relations of Left Composite
Beam Obtained by the Analyses Using Different Methods to Consider

Changing Inflection Point for Wenk Specimen CA-1 (Wenk 1977). ........ 207

Xviil



List of Tables

Table 3.1: Stress-Strain Parameters for Cofie’s Model .........cc.coovvvieeeeeveneeireeesenn, 57
Table 4.1: Parameters Defining Moment-Rotation Relationships for Fully Welded
CONNECHONS. ...ttt ettt st s s en e 60

Table 4.2: Material Properties and Beam Sections of Test Specimens with Fully
Welded Connections (Popov 1972, Tsai 1988, and Engelhardt 1992) ........ 60
Table 4.3: Material Properties and Beam Sections of Test Specimens with Welded

Flange-Bolted Web Connections ............ccocvueieeieiceeeeieececeeeeee e 72
Table 4.4: Parameters Defining Axial Force-Deformation Relationships...................... 85
Table 5.1: Material Properties and Connection TYPES .........ccoceveeevevveeeeieiercereeeeeean 118
Table 5.2: Material Properties and Joint Details for Test Specimens .............ccuc........ 138

Table 6.1: Material Properties of Test Specimens (Lee 1987, Uang 1985, and
Tagawa 1986, 1989). ....ooiiiicieieee e e e e e ee e 158

Table 7.1: Material Properties of Test Specimens (Engelhardt 1994, Popov 1975,
Wakabayashi 1974, and Carpenter 1973). ......occooeeveereeceeeeceeeeeceeeen 164

Table 7.2: Material Properties of Test Specimens with Concrete Slab (Lee 1987
ANd WEDK 1077). et 193

Table 7.3: Parameters to Define Hysteretic Rules for the Panel Zone of Composite
Beam-to-Column JOINtS. .......ccvueirieeirreieeeieier et 197

Xix






1.1 General

Moment resisting steel frames (MRFs) have been a very widely used building
system for seismic resistant design in the western U.S. and in other areas of the world.
This system is made of beams rigidly connected to columns, resisting lateral load through
bending and shear of these members. MRFs provide architectural and functional
advantages by permitting large spaces that are not obstructed by walls or bracing. Further,
prior to the 1994 Northridge Earthquake, steel MRFs were widely viewed as being
among the most ductile and safe of all structural systems for earthquake applications.

MRFs designed according to current building codes are expected to deform well
into the inelastic range during severe earthquake ground motions. Therefore, the framing
must provide sufficient ductility to sustain the inelastic activity without collapse. Inelastic
deformations of MRFs are typically concentrated in critical regions at the ends of girders
and columns, and in column panel zones. The accurate prediction of the mechanical
behavior of the structure during earthquake excitations depends on the development of
reliable analytical models which describe the hysteretic behavior of the critical regions.
The development of such analytical models is the subject of this study.

The determination of the structural properties of MRFs is an essential step in the
evaluation of earthquake response. Typically, initial stiffness, ultimate capacity, and
global and local ductility demands are some of the parameters included in this
assessment. A complete assessment of the seismic resistant design of structures often
requires a nonlinear dynamic analysis. Due to the complex interactions between the
various components of real structures, their dynamic characteristics up to failure cannot
be identified solely from dynamic tests of scale models. Moreover, the cost of such tests
is often substantial, particularly for large scale specimens.

Historically these difficulties have been overcome by static tests on components
and on reduced-scale subassemblages of structures under cyclic load reversals. Results
from these tests are then used in the development and calibration of hysteretic models that
permit the extrapolation of the limited test data to other cases and to the dynamic
response of complete structures. In this study, several models for the nonlinear response
analysis of structures have been developed.

Many analytical models have been developed in the past two decades. These
models can be divided into three categories in accordance with an increasing level of
refinement and complexity.

The first category is global models, in which the nonlinear response of a structure
is concentrated at selected degrees of freedom. For example, the response of a multistory
building may be represented as a system with one lateral degree of freedom at each floor.
Each degree of freedom has the hysteretic characteristics of the inter story shear-lateral
drift response. Such models are useful in the preliminary design phase for estimating inter
story drifts and global displacement ductility demands. The recovery of internal member
forces and local inelastic deformation demands from the limited number of degrees of
freedom is not possible.



The second category is discrete element models, in which the structure is modeled
as an assembly of interconnected elements that describe the hysteretic behavior of
structural members. Material nonlinearity is either introduced at the element level in an
average sense or at the section level. Correspondingly, two types of element formulation
are possible: lumped plasticity models and distributed plasticity models.

The third category is the microscopic finite element models, in which members
and joints are discretized into a large number of finite elements. Material and geometrical
nonlinearity is typically described at the stress-strain level or averaged over a finite
region.

Global models yield little information on the forces and deformations in the
members and joints of the structure. Microscopic finite element models permit the most
accurate study of critical regions, but are often computationally prohibitively expensive
for large scale nonlinear dynamic analyses. The present study concentrates on the second
class of models. The discrete member models represent a reasonable compromise
between simplicity and accuracy in nonlinear seismic response studies, and represent the
simplest class of models that still allows significant insight into the seismic response of
members and of the entire structure. '

1.2 Literature Review of Discrete Member Models

A review of existing analytical models relevant to the nonlinear analysis of steel
frame members is presented in this section. Lumped plasticity models are presented first
and distributed plasticity models follow. Analytical models for column panel zones and
for composite beams will be reviewed later in chapters 5 and 6.

1.2.1 Lumped Plasticity Models

Under seismic excitation, the inelastic activity in moment resisting frames often
concentrates at the ends of girders and columns. In a lumped model, following from this
observation, plastification is assumed to occur at a plastic hinge at the end of the frame
member, while the remainder of the member remains elastic. Lumped models typically
consist of several springs that are connected in series or in parallel. Each spring or
“component” has a predetermined force-deformation response. An element is then
constructed by connecting the components in parallel or in series. The force-deformation
response of the resulting element is a combination of the component responses.

A parallel component element was introduced by Clough and Benuska (1966) and
allowed for a bilinear moment-rotation relation. The element consists of two components;
a fully elastic component to represent strain hardening and an elasto-perfectly plastic
component to represent yielding. The stiffness matrix of the member is the sum of the
stiffnesses of the components.

Kanaan and Powell (1973) used a modification of Clough’s parallel component
model for their beam column element. The reduction of section plastic moment capacity
due to an axial force was introduced by using an interaction formula. However, the
variation of axial stiffness with progressive yielding was neglected in their formulation.
This model has been very widely used in the inelastic analysis of multistory building
frames.

The one component series model was formally introduced by Giberson (1969),
although it had been reportedly used earlier. The element consists of a linear elastic
element with one equivalent nonlinear rotational spring attached to each end. Although
the model has several components in series, the name "one component model” is used
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commonly in the literature. In a parallel component model two components participate in
modeling inelastic behavior at each end of a member, whereas in the one component
series model only a single nonlinear rotational spring takes part in modeling the inelastic
behavior at a member end. The inelastic deformations of the member are lumped into the
end springs. This model is more versatile than the parallel component models, since it can
describe more complex hysteretic behavior by the selection of appropriate moment-
rotation relations for the end springs. This makes the model attractive for the
phenomenological representation of the hysteretic behavior of composite and of
reinforced concrete members.

Otani (1974) developed inelastic models for reinforced concrete beam members.
In the derivation of the element stiffness matrix, independent hysteretic rules were used
for the moment-free end displacement and for the moment-free end rotation relations.
The use of two different hysteretic rules resulted in an unsymmetric element stiffness
matrix. To overcome this lack of symmetry of the stiffness matrix, Otani assumed that the
inelastic deformations were lumped in two equivalent springs at the ends of the member,
thus reducing his inelastic beam element to the one component series model proposed by
Giberson.

In the model introduced by Soleimani (1979), a zone of inelastic deformation
gradually spreads from the member end into the member as a function of loading history,
while the rest of beam remains elastic. The model was developed for reinforced concrete
members. The length of the inelastic segments at the member ends is determined from the
moment diagram and the level of the yield moment at a particular loading step. The total
member end rotations of the element are the sum of the member end rotations for the
elastic beam and those for the plastic segments. In this sense, it can be considered that the
plastic hinges, which account for a change in the inelastic length, are inserted at the
member ends. Therefore, even though a change in the length of the plastic segment is
considered in the element formulation, it can also be considered that the model belongs to
the family of lumped plasticity models. The yielding in the model is concentrated at the
ends of the member under the assumption of an anti-symmetric moment distribution, as
in the series and parallel models. The flexibility matrix of the plastic segments is
obtained by using the principle of virtual work and the effective stiffness of the plastic
segments, which is the average of the section stiffnesses of the moment-curvature
relations at the two ends of the plastic segment.

A very similar model to Soleimani’s model was developed for reinforced concrete
members by Meyer (1983). The flexibility coefficients of the model are identical to those
proposed by Soleimani. A slightly different method of calculating the stiffness of the
plastic zone during reloading was proposed. The original model was later extended by
Roufaiel and Meyer (1987) to include the effect of shear and axial forces on the flexural
hysteretic behavior based on a set of empirical rules. Although the axial forces in the
columns vary in time as the result of the overturning moment and vertical accelerations
due to earthquake motions, in the model the axial forces are assumed to remain constant
and equal to the gravity load effect present at the beginning of earthquake excitations.

Another variation of Soleimani’s model was introduced for the analysis of
reinforced concrete members by Keshavarzian and Schnobrich (1985). The main
modification is that this model includes the effect of changing axial force on the element
stiffness as well as on the yield moment. The axial force is assumed to be a linear
function only of the average axial strain, while the bending moment is assumed to be a
function of both curvature and axial force. The stiffness of the moment-curvature relation
at the member end is calculated by introducing appropriate shifts between the members of
the family of moment-curvature relations for various constant axial forces. Although
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being one of the most promising among the family of Soleimani models, the model
neglects the effect of bending moments on the axial stiffness and employs complex
procedures to account for the effect of axial force on the member stiffness and the yield
moment.

Chen and Powell (1982) developed a lumped plasticity beam-column element,
where it is assumed that inelastic behavior is concentrated in plastic hinges at the element
ends and the remaining part of the element remains elastic. In this model, inelastic
interaction between bending moments, torque and axial force has been considered by
means of four dimensional yield interaction surfaces and a flow rule of plasticity theory.
In this model, four multilinear force-deformation relationships are required for plastic
hinges. Subsequent yield surfaces are not geometrically similar to the initial yield surface
and the overlapping of yield surfaces is allowed, causing potential difficulties in the
algorithm for computer implementation. To account for the different shape of yield
surfaces, a modified Mroz kinematic hardening rule is employed for post-yield behavior.
In this model it is difficult to establish the general parameters required for the force-
deformation relationships and the four dimensional yield surfaces, which are governed by
the cross-sectional dimensions and the hysteretic force-deformation characteristic of the
member material.

As a simple extension of the one component model, Hsu (1974), and Takayanagi
and Schnobrich (1979) proposed a multiple spring model for analyzing wall members.
The member is divided into several subelements along its axis, each represented by a
nonlinear spring. The flexural properties of each of the subelements is defined by a
trilinear moment-rotation primary curve, and a set of hysteresis rules is used to describe
the unloading and load reversal stages. In this model it may be difficult to define an
appropriate set of phenomenological rules that govern the interaction of flexural and axial
deformations. Although the multi-spring model can represent the behavior of a frame
element subjected to a relatively general moment distribution along its length, it still does
not directly account for the effect of axial load on member behavior.

1.2.2 Distributed Plasticity Models

A more accurate description of the inelastic behavior of frame members is
possible with distributed plasticity models. In contrast to lumped plasticity models,
material nonlinearity can take place at any element section and the element behavior is
derived by weighted integration of the section response. In practice, since the element
integrals are evaluated numerically, only the behavior of selected sections at the
integration points is monitored. The constitutive behavior of the cross-section is explicitly
derived by discretization of the cross-section into fibers. A common assumption of these
models is that plane sections remain plane, such that the strains are linearly distributed
over the cross-section.

In fiber models, the element is subdivided into longitudinal fibers. The geometric
characteristics of the fiber are its location in the cross-section and the fiber area. The
constitutive relation of the cross-section is not specified explicitly, but is derived by
integration of the response of the fibers, which follow the uniaxial stress-strain relation
of the particular material. Many fiber models have been proposed. These fiber models can
be divided into two categories in accordance with the procedure employed in the
derivation of the element stiffness matrix.

In the first category, fiber models are based on the finite element displacement
approach using cubic Hermitian polynomials to approximate the deformations along the
element. Using this fixed shape function during the analysis, Kang and Scordelis (1980)
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developed two dimensional fiber model for reinforced and prestressed concrete members.
Later, Mari and Scordelis (1982) extended the formulation to include three dimensional
behavior of frame members. Firmansjah and Hanson (1992) proposed a three dimensional
fiber model for steel members. A major limitation of the finite element displacement
approach is the assumption of cubic shape functions, which results in a linear curvature
distribution along the element. When the structural member undergoes significant
yielding, the curvature distribution becomes highly nonlinear in the inelastic region. This
requires the use of a very fine discretization of fiber elements in the inelastic region.

In the second category, the element stiffness is formulated based on the section
flexibility matrix and the force interpolation functions, which relate the member end
forces to the section forces. Latona and Roesset (1970) proposed the fiber model based on
force interpolation functions. Adams (1973) extended the formulation to include second
order effects and the change of geometry for steel frame members. Later, Mark (1976)

applied the fiber model to reinforced concrete members. B dcklund (1976) developed the
fiber model based on force interpolation functions and showed the comparison with the
model based on the finite element displacement approach. Kaba and Mahin (1984)
applied a two dimensional fiber model based on force interpolation functions to
reinforced concrete members. In the model, flexibility dependent shape functions, which
are continuously updated during the analysis as inelastic deformations spread into the
member, are employed to relate the member deformations to the section deformations in
obtaining the member resisting forces. Later, Taucer and Filippou (1992) extended the
model to account for three dimensional behavior of reinforced concrete members. Carol
and Murcia (1988), and Moon (1994) applied two dimensional fiber models to
prestressed concrete members. In their models, the flexibility dependent shape functions
are employed to relate the section forces to the member resisting forces.

1.3 Objective and Scope

Ideally, analytical models should be based on an accurate representation of
material behavior taking into account the controlling states of stress or strain and
identifying the main factors which influence the hysteretic behavior of each critical
region in any structural component during the earthquake response. At the same time
these models should be computationally efficient.

In practice, it is very difficult to find an analytical model satisfying both an
accurate representation of material behavior and computational efficiency. Although
lumped plasticity models sacrifice accuracy to some degree, these models have the
capability to provide a reasonable compromise between simplicity and accuracy in
nonlinear seismic response studies. Hinge type models for frame members and rotational
spring models for joints are widely used in the evaluation of earthquake response of steel
moment resisting frames due to their computational efficiency. However, they are highly
simplified and have been subjected to inadequate verification by comparison with
experiments or other sophisticated analytical models. In this study, the investigation will
be mainly focused on lumped plasticity models due to their computational efficiency.
Fiber models and finite element models are used for the calibration of hysteretic rules and
the verification of lumped plasticity models.

The objective of this research is to develop a library of analytical models for
frame members and joints for the inelastic dynamic analysis of steel moment resisting
frames. Existing simple analytical models will be examined by making comparisons with
experimental data or with other analytical models. Where these comparisons show poor
performance of the existing models, the model will be improved or new models will be
developed. The study will include analytical models for bare steel beams and columns,
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composite beams, and column panel zones. The developed models will be added to
ANSR 1 computer program (Mondkar and Powell 1975) for the analysis of nonlinear
structural response, the element library of which includes the bilinear beam-column
element and the bilinear panel zone element for the analysis of steel moment resisting
frames.

1.4 Outline of Study

The bare steel beam-column element, based on an one-component series model, is
developed in chapter 2, and is calibrated and verified in chapter 4. Multilinear hysteretic
models, which are calibrated to experimental data, are employed and the influence of
beam connection type (fully welded versus welded flange-bolted web) is taken into
account. The element has the capability to model plastic axial deformation and employs
hardening rules to handle monotonic, cyclic or random loading. In chapter 3, a fiber
element is presented which will be used for the calibration and verification of the bare
steel beam-column element.

After reviewing previous research on column panel zones and existing models for
monotonic and cyclic loading, an improved panel zone model is presented in chapter 5.
Response predictions of the model are compared with finite element results and with
available experimental results.

Based on observations from the experimental behavior of composite beams, and
on existing composite beam models, an improved one component series model for
composite beams is developed in chapter 6. The model accounts for the influence of a
moving inflection point on the beam element stiffness. The results predicted by the model
are compared with existing experimental data.

The elements developed for bare steel beam-columns, column panel zones and
composite beams are combined into subassemblages, bare steel frames and frames with
concrete slabs in chapter 7. Analytical results are compared with the experimental data.
Finally, conclusions are presented in chapter 8.



Chapter 2: DEVELOPMENT OF BEAM-COLUMN ELEMENT

2.1 General

In this chapter, a beam-column element is developed for modeling bare steel
members in moment resisting frames. This element models members subject to cyclic
bending moment, shear force and axial force. Inelastic response under bending and axial
force is considered using a lumped plasticity approach. This element is intended to
represent the clear span portion of beams and columns in moment frames. Beam-column
joints will be modeled with a joint element that will be presented in Chapter 5.

The current design philosophy for seismic resistant steel MRFs adopted by
building codes in the western U.S. (Uniform Building Code 1994; SEAOC 1990)
discourages the formation of plastic hinges in the clear span portion of columns, while
encouraging the formation of hinges in beams or in beam-column joints. Thus, accurate
modeling of cyclic inelastic response of members subject to bending, but without
significant axial force (i.e., beams), is essential for accurate modeling of MRF response.
However, models for inelastic response of members subject to both bending and
significant axial force (i.e., columns) is needed to investigate frames where the code
philosophy is not achieved in the design or to investigate alternate design philosophies
that permit plastic hinges in columns. The beam-column element developed in this study
is intended for both purposes, i.e., to model members with purely flexural yielding, as
well as members with yielding under combined flexure and axial force.

An overview of beam-column elements proposed by previous researchers was
given in Chapter 1. Among these, the model proposed by Kanaan and Powell (1973) has
been among the most widely used for inelastic dynamic analysis of steel MRFs. This
model employs a bilinear moment-rotation relationship, and incorporates the effects of
axial force by adjusting the yield moment according to a moment-axial force interaction
relationship. The model does not, however, consider any change in axial stiffness due to
inelastic action. This bilinear hinge model has been used in several recent analytical
studies of steel MRF behavior in earthquakes (Tsai 1988; Schiff 1988; Schneider 1991).

Despite the common use of the bilinear hinge element, there appears to have been
little scrutiny by past researchers on the accuracy of this element for predicting actual
inelastic steel beam or beam-column response. The accuracy of this model can be
evaluated, for example, by comparison with experimental results, or by comparison with
the results of more sophisticated models. In the following paragraph, the performance of
the bilinear element is briefly investigated.

Figure 2.1 compares an analytical prediction using Kanaan and Powell's bilinear
element with an experimentally determined cyclic load-deflection response for a
cantilever. The experiment was conducted on a W21x57 beam (Engelhardt 1992), with a
fully welded connection to a column. The yield moment for the model was taken as the
actual plastic moment of the beam (based on actual reported material yield stress). The
post-yield stiffness of the model was taken as 3% of the initial elastic stiffness, a common
assumption in MRF modeling. Figure 2.1 shows that the analytical model captures some
of the general characteristics of the inelastic response, but also misses some potentially
important aspects of the real response. For example, the model underestimates the actual
strength by about 20%. The bilinear model, of course, also provides a poor representation
of the actual curvilinear load deformation response. The significance of these
inaccuracies depends on the objectives of the analysis. Past researchers have pointed out

7
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that rather significant changes in hinge model parameters often result in little change in
the predicted global frame response. For example, Tsai (1988) observed that a 100%
change in post yield stiffness had little effect on overall displacement of the model. Thus,
if the analysis goal is to predict global frame response, expending a great deal of effort in
refining the frame element models may not be justified. On the other hand, if the analysis
goal is to study local response characteristics, e.g. hinge rotations, the accuracy of the
element model may be of greater significance.

Figure 2.2 considers the response of a cantilever subject to a cyclic lateral force
combined with constant axial compression. The purpose of this analysis is to illustrate the
behavior of the bilinear hinge element when used to model a member under combined
flexure and axial force. Very little experimental data is available for such loading
conditions. Consequently, the hinge model predictions are compared with the predictions
of a more sophisticated model; in this case, the fiber model. The fiber model permits
more accurate modeling of beam-column elements, and is discussed in detail later in
Chapter 3. For the analysis shown in Figure 2.2, the parameters to define the cyclic
stress-strain rules for the fiber model (see section 3.8) was first calibrated to the
experimental results in Figure 2.1, for the case of zero axial load. This calibrated fiber
model was then used for the analysis in Figure 2.2 for the case of applied axial force. The
hinge model parameters were the same as above. A typical simplified moment-axial force
interaction relationship (AISC Specification 1989) was used. Comparing the results of the
bilinear hinge model with the predictions of the fiber model leads to similar conclusions
as above. The hinge model captures general characteristics of the inelastic response, but
misses much of the detailed response. In this case, the hinge model underestimates the
strength predicted by the fiber model by 30%.

The comparisons in Figures 2.1 and 2.2 were shown to suggest that the commonly
used bilinear hinge model, while perhaps suitable for many analyses objectives,
nonetheless leaves considerable room for improvement. In particular, it appears that
considerable improvement may be possible in the prediction of the detailed force-
deformation response and overall strength response of the element, as well as in the
treatment of axial force effects.
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Fig. 2.2: Comparison of Kanaan’s Hinge Model with Fiber Model

In this chapter, an improved bare steel beam-column element is developed. The
element can be considered as an one-component series hinge type model. It employs
multilinear force deformation relationships, and accounts for the effects of beam end
connection types, for the case of fully welded as well as welded flange-bolted web type
connections. The element also models plastic axial deformations and changes in axial
stiffness due to hinge formation under combined bending and axial force. Hardening rules
are developed to handle monotonic loading and random cyclic loading.

The general formulation of the element is developed in Section 2.2. The element
is then calibrated in Chapter 4, by comparison with experimental results and by
comparison with fiber model predictions. These comparisons also illustrate the
limitations of this new element. Since the fiber model will be used as a basis of
comparison, Chapter 3 provides a description of the fiber model.

2.2 General Description

In the remainder of this chapter, the development of a two dimensional beam-
column element is described. Some of the basic features, assumptions, and
simplifications that characterize this model are listed below.

1) The element will model the response of members subject to moment, axial force and
shear. Inelastic response due to yielding under moment and/or axial force is modeled
using a lumped plasticity approach, i.e., a plastic hinge approach. Inelastic effects due
to shear are not modeled. No interaction is considered between shear and moment, or
between shear and axial force in the development of yield surfaces. Elastic shear
deformations are modeled.

2) The element models bare steel members only, and the influence of a composite
concrete deck is not considered. Composite beam response is considered later in
Chapter 6.



10

3) The element models inelastic response using multilinear force-deformation
relationships, in an attempt to more closely mimic experimentally observed behavior.

4) For the case of beam members (no axial force), the element models the effects of
beam-to-column connection type. Two common connection types are considered: all-
welded beam-to-column connections, and welded flange-bolted web beam-to-column
connections.

5) For members yielding under combined axial force and moment, the element model
changes in both flexural and axial stiffness.

6) The element employs hardening rules to model response under monotonic, symmetric
cyclic, and random loadings.

7) The effects of local buckling or lateral-torsional buckling are not considered.

8) The element employs a simplified geometric stiffness to approximately model second-
order frame effects, i.e., P- A effects.

The two dimensional beam-column element consists of a linear elastic beam-
column element with a nonlinear hinge at each end, as shown in Fig. 2.3a. To facilitate
the discussion, this element will be referred to as the "complete element," consisting of
both hinges and the elastic beam-column element. The hinges are considered to have a
zero length. Inelastic behavior of the element is concentrated in the hinges, where each
hinge is affected by axial force and moment. Both hinges are assumed to be initially rigid.
Therefore the initial stiffness of the complete element is that of only the elastic beam-
column element. As the forces at the element ends increase, the hinges can yield,
resulting in a reduced stiffness of the complete element.

Each hinge possesses two rigid-plastic force-deformation relationships; the
moment-rotation relationship and the axial force-extension relationship. Each hinge has
several yield surfaces to account for the interaction between bending moment and axial
force, where the yield surfaces of the hinge are arranged in a consecutive manner as
shown qualitatively in Fig. 2.4 for a two-dimensional force space. To produce multilinear
relationships for the complete element, the rigid plastic force-deformation relationships
for a hinge are combined with the linear force-deformation relationships for the elastic
beam-column element. Under increasing deformation, the hinges strain harden, following
the multilinear force-deformation relationships as shown in Figs. 2.4a and 2.4b. Strain
hardening results in a translation and expansion of the yield surfaces, as shown in
Fig.2.4c.

The basic Mroz kinematic hardening theory for yielding of metals is implemented
numerically and combined with an isotropic hardening rule to extend its modeling
capabilities for arbitrary loading. These hardening rules are required to establish tangent
stiffness relationships between the forces and deformations of a yielded hinge. The
tangent stiffness of the hinges is then combined with the stiffness of the elastic beam-
column element to produce the tangent stiffness of the complete element. If the forces at a
hinge decrease, the hinge becomes rigid again as unloading occurs. Under such
conditions the stiffness of the complete element is equal to that of the elastic beam-
column element.
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2.3 Degrees of Freedom

The complete element has two external nodes and two internal nodes, as shown in
Fig. 2.3a. The internal nodes exist at the end of the elastic element. The hinges connect
the internal nodes with the external nodes. The external nodes connect to the global
structure and have three degrees of freedom each, namely translations and rotation in the

local coordinate system, as shown in Fig. 2.5. Nodal forces are indicated by R, to R .

Nodal displacements are indicated by U, V, and 0 at the "I" and "J" ends of the member.
In the local coordinate system, if the rigid body motions are removed, the element can be
considered as a simply supported beam. The resulting element deformations in the local

coordinate system can be represented by three relative deformations (v,, v,, and v,) and
three relative forces (s,, s,, and s,) as shown in Fig. 2.5.

RO HA—,
Rs 'Ry

Fig. 2.5: Element Relative Forces and Deformations in Local Coordinate System

On the basis of equilibrium, all the components of local nodal forces R can be
computed from the values of relative forces s. The transformation from the nodal forces
R to relative forces s is defined as

-1 0 O

0 YL IL
S

o 1 o |

R=As= L o0 o0 S, (2.1a)

S3

0 -/L -1/L

0 0 1 |

where R' = {R,, R,, R;, R, R,, R} (2.1b)
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From geometry, the transformation from the local displacements r to the relative
deformations v is accomplished by

v=A"r (2.2a)

where i’ = {U,V,6,U,,V,,6,} (2.2b)
T

and v = {Vl’ Vao V3} (2.2¢)

The elastic element has degrees of freedom q which act at the internal nodes, as
shown Fig. 2.3b, and are defined as

q" ={q,.q,.q,} 23)

The hinges at nodes I and J have deformation degrees of freedom WL and w;,
respectively, where

w = {(vl-q])l, (Vz'qz)} (2.4a)
L w, = {(v-a), (vi-a5)} (2.4b)

The hinge deformations w, and w; represent the plastic deformations of the
complete element. The axial hinge deformation is shared between the hinges at nodes I
and J, hence:

I J
vi-q; = (V1 "ql) + (Vl - ql) (2.5)
The remaining terms in w; and WIJJ represent plastic rotational deformations. The

deformations v of the complete element are obtained by summing the deformations of the
elastic element and deformations of both hinges as follows.

v=q+w, (2.6)
where w includes the deformations of both hinges defined as
w, = {(vi-q) (v2-a,), (vs-a,)} @7

2.4 Complete Element Stiffness

A flexibility matrix is first formed for the elastic element in terms of degrees of
freedom q. Thus, the elastic element stiffness relationship in matrix form can be written
as s=kq (2.82)
where s and Kk, respectively, are the nodal force vector and stiffness matrix for the elastic
beam-column element, in which

s = M, M} = [, 8.} (2.8b)
A i
— 0 0
L
EI EI
and k=10 —k, —kij (2.8¢)
L L
EI EI
0 —k, —k,
i L L
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where EI = bending rigidity about z axis,
EA = axial rigidity,
k;=k;=4 and k;=2 for an uniform member
Fand M = axial force and moment about local z axis, respectively.

The stiffness matrix expressed by Eq. 2.8c is inverted to obtain a flexibility matrix
for the elastic beam-column element. Elastic shear deformations are accounted for by

adding a shear flexibility matrix f_ to the flexibility matrix of the elastic element, where

000
f=— o011 2.9)
GAL
011

in which GA is the effective shear rigidity associated with shear deformations about the
Z axis.

Thus, the elastic element flexibility relationship is obtained which includes the
effects of shear, as follows;

q=1s (2.10a)
or in the incremental form
dq = f-ds (2.10b)

where dq and ds, respectively, are the deformation increment and action increment at the
internal nodes, and f is the flexibility matrix for the elastic element defined as

L
— 0 0
EA
L 1 L 1
f=|0 —F. + -—Fij + (2.10¢)
EI GA L EI GA L
L 1 L 1
0 -—F;+ —Fy+——
i EI GA L EI GASL_

where F, = F.= 1/3 and F, =1/6 for an uniform member. This elastic flexibility matrix

f is modified by adding the flexibility of the hinges, resulting in the flexibility matrix for
the complete element.

In two-dimensional action space, each hinge has a 2x2 flexibility matrix f‘; in

terms of its axial deformation and flexural deformation. A hinge flexibility relationship
can be written as
dw, = £, -ds" (2.11)

P
where dw;’ and f g, respectively, are the deformation increment and the flexibility matrix

of a hinge, and ds" is the action increment acting on the hinge, defined as
ds"" = {dF, am"} (2.12)
The superscript h refers to the hinge at the I or J end of the member.
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Before yielding of a hinge occurs, the flexibility matrix of the hinge is null and
therefore has no effect on the flexibility of the complete element. For the hinge at node I,
the incremental action-deformation relationship can be expressed as

dv, -dq, dd; dF
aw! = ((@i-da) |l £y (2.13a)
dv, -dq, de, dM
Likewise, for the hinge at node J
dv, -dg, )’ ds, dF
dw; - ( Vi ‘L) _ Jp - f]JJ. } (2.13b)
dv, -dq, do;, dM

where
dw; , dwf) = vectors of plastic hinge deformations at node I and J,

dSL, d8; = incremental plastic axial deformations at node I and J,
de;, d, = incremental plastic rotations at node I and J,

f., f, =hinge or plastic flexibility matrices at node I and J.

As can be noted from Eqgs. 2.13a and 2.13b, the hinge at node I affects the degrees
of freedom v, and v,, while the hinge at node J affects the degrees of freedom v, and v,.

Therefore, the hinge flexibility coefficients of f; and f; can be simply added to the

appropriate coefficients of the elastic element flexibility matrix f in order to obtain the
tangent flexibility matrix F, for the complete element.

F, =f+ fp (2.14a)
where
_ 1 |-
f11+f11 f12 f]3
f, =f +f =| f, f, 0 © (214b)
J J
L fis 0 fy i
EI:X”{] it £, i3
Fo=|  f,  SRae—tsf, lp ! (2.140)
2 Bl " GAL % EI ' GAL
f1, —LFi.+ 1 £R+—~~——1 +f1,
i EI * GAL EI ? GAL i

Thus, using Egs. 2.10b, 2.13a, and 2.13b, the action-deformation relationship is
obtained for the complete element expressed in terms of the degrees of freedom v.

dv =dq + dw, = F -ds (2.15)
where dw, = f_-ds (2.16a)
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dq, + (dvx -dq, )I + (dvl - dql)J dv,
dq + dwp = dq, +(dv2 - dqz) = :dv, (2.16b)
dq, +(dv, - dq,) dv,
and
ds” = {dF, dM’, dM’} 2.17)

Having determined the 3x3 tangent flexibility matrix F,, this matrix is inverted to
obtain a 3x3 tangent stiffness matrix K. That is

K, = F (2.18)
2.5 Hinge Flexibility
The vector of actions s" affecting the deformations of a hinge is defined as
s = {F, M"}
’ (2.19)

As the action s" increases, the hinge can yield, which is assumed to be initially rigid.
After the hinge yields, the increment of action ds" produces the plastic deformation
increment of the hinge. Let dw; be the vector of the increment of plastic deformations,
where
T h
dw; = {ds}, do}} (2.20)

in which dﬁg and deg, respectively, are the axial and rotational plastic deformations of
the hinge. It is necessary to obtain for the hinge a flexibility relationship of the form

dw, = £} -ds" (2.21)
where f‘; is the hinge flexibility matrix. To achieve this, the following assumptions are
made:

i) Let d)(sh) be the yield function defining a surface which translates in action space
due to strain hardening. After some amount of hardening has taken place, the yield

function is CI)(sh - oc), where ¢ is the vector defining the location of the origin of

the yield surface. This is illustrated in Fig. 2.6 for a two dimensional action space.
The direction of translation is governed by the hardening rule, to be discussed later.
i1) Drucker's postulate (Drucker 1960) that the work done on the increments of strain

by the corresponding increments of stress is nonnegative, applies in two
dimensional action space. Consequently, the following holds:

a) The yield surface is convex for a stable work-hardening material.

b) Any increment of plastic deformation is perpendicular to the yield surface.

¢) An increment of plastic deformation is linearly related to the action increment.

If the action point is on the yield surface, continued loading generates an
increment of plastic deformation dw; . According to Drucker's postulate, this deformation
is perpendicular to the yield surface as shown in Fig. 2.6b, hence:

dw, = n-\ (2.22)
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where n is an outward normal unit vector from the yield surface at the point of action, and
A is a scalar defining the magnitude of plastic deformation of the hinge. Because the
yield surface is considered to be a plastic potential function, the direction of the outward
normal to the yield surface is the gradient of the yield function. Hence:

n
n= D )0 2.23)
\ (I)s;r -(I),S N,
in which @, is the gradient of the yield function. That is:
0d 0P
d,] ==, — 2.24
* { oF BM} (229)
F A
Current State
s" - )
h /
S
0
O\_/ M
a) Initial Position of Yield Position b) Translated Yield Surface

Fig. 2.6: Translation of Yield Surface and Normal Vector to Yield Surface

Consider an increment of action ds" shown in Fig. 2.6. The component of ds” in

the direction of m is ds’, and is defined by

ds; = n-(n"-ds") (2.25)
Since, by Drucker's postulate, the plastic deformation increment is linearly related to the
action increment, assume that

ds’ = K, -dwp (2.26)
in which K is a diagonal plastic stiffness matrix from the individual action-deformation
relationships for the hinge. That is, the off diagonal terms in K, are zero, with the
diagonal terms defined as

k. 0
K, = [Jf « J 2.27)

pm
The selection of diagonal terms must be carefully specified in order to provide
appropriate post-yield stiffness of the complete element. This will be discussed later.
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If Egs. 2.22 and 2.25 are substituted into Eq. 2.26, and the result premultiplied by
n”, it follows that

n"-ds" =n"-K, n-} (2.28)
Therefore,
n’-ds"
n K, n

With A now defined, the increment of plastic deformation for the hinge can be computed
due to an increment of action. Upon substituting for A into Eq. 2.22,
T
aw' = 20 g¢t (2.30)
* nK,n
Therefore, by referring to Eq. 2.21, the required flexibility matrix of a yielded hinge is
obtained as follows.

T n’ n.n
f; = Tn . = 32 1 2 f fvm (2.31)
n K n neky+np ko Inn, 0l
2.6 Yield Surfaces

The moment and axial force interact with each other to produce initial yield of the
hinge. The interaction is determined by a yield surface. First yield is governed by the
initial yield surface. The shape of the yield surface is generally chosen to be similar to an
axial force-moment interaction diagram for a fully plastic cross-section. For each change
of stiffness, there is a corresponding yield surface as shown in Fig. 2.7. These surfaces
are assumed to have a shape similar to that of the initial yield surface. Either the multi-
linear (piecewise-linear) or the nonlinear shape shown in Fig. 2.7 can be employed as the
yield surface. If the action point is on a yield surface, continued loading generates
translation of the yield surface. When the yield surface is a nonlinear shape, the current
action point is not on the yield surface after translation of the yield surface. The drift of
the action point outward from the nonlinear yield surface will be discussed later. In this
study, the AISC approximate moment-axial force interaction equations (AISC
Specification 1989) and the exact interaction equations for wide flange sections subjected
to strong axis bending, respectively, are chosen as the multi-linear and nonlinear initial
yield surfaces. Each of these two types of yield surfaces consists of eight line segments as
shown in Fig. 2.7. For the upper right quadrant of yield surfaces shown in Fig. 2.7, the
equation of the yield surface ‘i’ is defined as

i-(M-ocM) + —Zi-(F—ocF) + 2—3-(F—OLF)2 =1 (2.32)

a, 2 2
where o, and o are the moment and axial force coordinates of the origin of the yield
surface, respectively. Therefore, the yield function is expressed by

® = —l-w(M-ocM) + S (Fo0p) + 2(F-0,) (2.33a)
a, a, a
The coefficients of the yield function for the multi-linear yield surface are defined as
M M. M.,
a, = —r—,a,=—2,a =0 forF> 0.15F , —%  (2.33b)
0.85F , 0.85 M,

and



=M a, =0

2 yi 2 93

For the nonlinear yield surface, the coefficients are

and

where

AO Ato A
a, = ,a2:—Fyi,a3:
2b; 4b, 4be3yi
A
al=O,a7—“M.,a3:
2 yi
4tWFyi
A =bd-A,
A, = 2bd-A,

A = section area,

A, =section web area,

b, = section flange width,
d = section depth,

t,, = section web thickness.
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M,
forF< 0.15F , —*  (2.33¢c)
y
M

yl
M,

forF > —A—WFyl 2 (2.33d)
A "M,
M,

forFs Dep v (233)
A "M
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Fig. 2.7: Initial and Subsequent Yield Surfaces

The gradient of the yield function ®,_ can be represented by

s

oF oM a,

a,

6T - {_ag acp}___ {2.%.(;«*-%)’ i} 234

and the outward normal unit vector n to the yield surface is expressed in terms of a, and
a, as follows:
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X

n a,
H:L:{lf}:ﬂT 2 (2.35)

q)a;r'q):s Iy, 1+x° _l_

a,

where X = a,+2-a,- (F - OLF). The normal unit vector at a vertex of the yield surface
will be discussed later. By substituting Eq. 2.35 into Eq. 2.31 the flexibility matrix of a

yielded hinge f 3 is also obtained by
£ = ___*1__{;( X} (2.36)

x>k ko x 1

2.7 Hardening Rule

In the hardening model, it is assumed that the stress-strain curve continues to rise
after yielding. For a strain-hardening material, the yield function changes progressively.
The hardening rule defines how this function changes. Several hardening rules have
been proposed in the past; these include the classical isotropic hardening theory of Hill
(1950), the kinematic hardening theory of Prager (1956), the series and parallel
formulations of Iwan (1967), the constant plastic moduli of Mroz (1967; 1969), and the
bounding surface models of Dafalias-Popov (1973; 1975) and Peterson-Popov (1977;
1978). In the study by Mosaddad and Powell (1982), it was concluded that the Mroz
model is the most flexible model for numerical implementation. Based on this model,
they developed an extended model suitable for an arbitrary cyclic loading.

The hardening rule originally proposed by Mroz is basically a kinematic
hardening model. This model corresponds to the translation of the yield surface without
changes in size and shape, and the general stress-strain behavior is approximated by a
series of yield surfaces with constant hardening moduli. Each yield surface is represented
by two constants, yield stress and plastic modulus. In uniaxial tension, the stress-strain
relationship for the Mroz model is approximated by a multilinear curve.

The kinematic model is generally incorrect for predicting material behavior under
cyclic loading. This model predicts a steady-state cyclic behavior for constant cyclic
strain, whereas for actual materials, steady-state hysteresis loops are reached only after a
period of transition. The nature and duration of this transition varies for different
materials and may depend on a variety of parameters, including loading path,
temperature, manufacturing process, etc. On the other hand, the isotropic model predicts
elastic shakedown under cyclic loading, which is incorrect. The actual material behavior
under cyclic loading generally can be represented by two limiting states, the virgin state
and the saturated state as shown in Fig. 2.8. The virgin state represents the strength and
hardening properties of the material for the first half-cycle of loading. The saturated state
represents the strength and hardening properties of the material when it reaches the steady
state cyclic behavior. As the plastic strain accumulates, the properties of a metal migrate
from the virgin state toward the saturated state.

To account for cyclic behavior, the concept of the constant hardening model of
Mroz is extended to a variable field model proposed by Mosaddad and Powell (1982). In
their model, the transition from the virgin state to the fully saturated state is controlled by
a weighting function, which is based on the accumulated plastic strain. In this study, this
extended Mroz hardening rule is applied to the force-deformation relationships.
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Fig. 2.8: Saturated Curve and Virgin Curve

After the initial yielding occurs, the behavior of a hinge is assumed to obey the
Mroz hardening rule for yield in metals. The location of the initial yield surface for the
hinge is plotted in a two-dimensional action space as shown in Fig. 2.9. Assume the

current state, defined by s;, has reached a point P, on the yield surface Y.S.,, causing
the hinge to yield. Continued loading will cause yield surface Y.S., to translate toward
yield surface Y.S.,, in the direction defined by a vector from P, to the corresponding

point P, (see Fig. 2.10). The point P, lies on yield surface Y.S., and is defined by s.
For points P, and P, to be corresponding, their outward normals must be parallel, i.e.,

n," -n, =1, and the direction of vector s"-o, should be the same as that of Sh -0l .

Therefore, the vector of actions s‘z’ at point P, can be determined knowing the sizes and

current positions of yield surfaces Y.S., and Y.S.,. In two-dimensional space this is
defined as
M

h _ y2
Sz—-

(s} -oy) + o, (2.37)
yl

in which o, and «,, respectively, are the current positions of the origins of the yield

surfaces Y.S., and Y.S.,.

The translation of yield surface Y.S., is depicted in Fig. 2.10. Yield surface Y.S.,
does not begin to translate until yield surface Y.S. reaches yield surface Y.S.,.

Observing that the vector s, -s; defines a vector from point P, to P, in Fig. 2.10, it
follows that the increment of translation da, of the yield surface Y.S., is equal to

do, = (s} -s})-dm, (2.38)
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where dm, is a scalar defining the magnitude of translation of yield surface Y.S.,. To
determine dm,, Eq. 2.37 is substituted into Eq. 2.38 to obtain

do, = &—1 s - Myz-oc -0, | {-dm (2.39)
1 M 1 M 1 2 1

yi yl
From the definition of the yield function, point P, lies on yield surface Y.S., when
h Os) —o,) = 1 (2.40)
The fact that the action point P, must remain on the yield surface Y.S. during
translation, requires that
d® = @,/ (ds} - do,) = 0 (2.41)
Upon substituting Eq. 2.39 into 2.41,

M M
@,; ds; —,, - {[M—ﬂ—l]-si’-[Mﬂ -ocl—oczj]-dm} =0 (2.42)

yl yl

Hence,

dm, = :
M M
@ ([_M—_IJ[M '“““2]]
yl yl

Thus, yield surface Y.S., undergoes an increment of translation do, due to an increment

(2.43)

of action ds}, where

sy

=y

Fig. 2.9: Yield Surfaces Prior to Yielding
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do, =

(2.44a)

or do, = (2.44b)

A

Fig. 2.10: Translation of Initial Yield Surface

The Mroz hardening rule requires that yield surfaces never overlap and that the
point of contact be the current action point P, as shown in Fig. 2.11, rather than some

other points. When several yield surfaces are in contact, therefore, a hardening rule is
needed to be employed for only the outermost yield surface of contacted yield surfaces. If

by the increment of action the yield surface Y.S., translates toward and reaches the yield
surface Y.S.,, yield surfaces Y.S. and Y.S., will translate together toward a
corresponding point P, on yield surface Y.S.,. This situation is illustrated in Fig. 2.11.

In the general case where the yield surface Y.S. translates toward yield surface
Y.S.;, the translation increment do; is defined as

M. M..

do, = My My
q),;['_ M}Q__l .s?- M-X)—(xl-—-(x
Myi Myi :

(2.452)
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T.ds"
or do. = ;%;SJS,T)(S?-S?) (2.45b)

An exception to this rule occurs when the outermost yield surface Y.S., is reached. For
this situation the direction of translation is obtained by assuming that an additional

M,,
infinitely large yield surface exists. Thus, the term — in Eq. 2.45a is infinite, and it can
y3
be shown that the translation of yield surface Y.S., is equal to

(s3 —o,) - @,7 dst

do, = T (2.46a)
or
T, ds"
do, = n—fl'lzs‘;——sia{;j (st —at,) (2.46b)

The translation of yield surface Y.S.; represented by Eq. 2.46b occurs along the radial

direction connecting the origin o, of Y.S., to the current action point s., as shown in
Fig. 2.12. This is what is known as Ziegler's hardening rule (Ziegler 1959).

| /

\j

Fig. 211: Translation of Contacted Yield Surfaces
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A

Fig. 2.12: Translation of the Outmost Yield Surface

To account for general cyclic behavior, the Mroz model extended by Mosaddad
and Powell (1982) is applied to the action-deformation relationships. In their model, the
transition from the virgin state to the fully saturated state is controlled by a weighting
function, which is based on the accumulated plastic strain. As plastic deformations
accumulate, the properties of the material deviate from those in the virgin state and tend
toward those in the saturated state. During this transition, the yield surfaces both expand
(or contract) and translate in action space. When the accumulated plastic deformations
reach a specified value, the transition stage is complete, and the subsequent behavior
follows a pure kinematic hardening rule, governed by the saturated properties. Typical
moment-rotation curves for the virgin and saturated state, together with a typical weight

function are shown in Fig. 2.13. During the transition, the instantaneous values of M,
and F; are assumed to be
M, = o-Mj + (1 -®)-M; (2.47a)
and
F, =o-F; + (1-0) F; (2.47Db)
where
My and F; = virgin state yield moment and axial force of yield surface i
M, and F; = saturated state yield moment and axial force of yield surface i
© = weighting factor, which is a function only of accumulated plastic rotation in
this work. That is, @ = ©(%6,), 0<® <1 (2.48)

in which 3.6, is the accumulated plastic rotation.
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b) Saturated State

0.0 .
2.0

P
c) Weighting Function

Fig. 2.13: Typical Moment-Rotation Curves for Two Limiting States

The plastic stiffness K and K 3 of moment-rotation relationships for the

virgin and saturated state can be determined according to the following equation.
Vo Mn_:_ Kme Kr:l
K —Ky Ko =Ko

Likewise, the plastic stiffness K ; and K of axial force-deformation relationships can

be determined for the virgin and saturated state, respectively. From the plastic stiffness
obtained from Eq. 2.49 , the plastic stiffness during transition is calculated as follows.

K = 0K + (1-0)-K & (2.502)

pmu

. K= (2.49)

and
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K, =w-K:

pfi pfi

+ (1-o)- K (2.50b)
For the action increment ds", the current yield surface is first translated without

change in size, according to Egs. 2.45 and 2.46. The sizes of all surfaces are then updated
to correspond to the new value of ®, according to Eq. 2.47. Figure 2.14 illustrates the

procedure. Surface Y.S, is the current yield surface, after translation toward the next
yield surface Y.S.,,. The vector s; defines the state of action at the end of action
The

updating of the surfaces Y.S,,, and Y.S.,,...., etc. involves only expansion or
contraction, with no translation. For example, surface Y.S.[, is the updated yield surface

of surface Y.S,,,. Surfaces Y.S., Y.S.,,...,Y.S.,, which pass through the current action
point P;, must, however, be kept tangent to each other at P; (only Y.S., and Y.S, are
shown in Fig. 2.14 for simplicity) and hence must be expanded (or contracted) such that
they remain tangent to each other at P, . This requires that the centers of these surfaces, as

well as their sizes, be adjusted. The new coordinates of centers of these surfaces can be
determined by simple geometry to be

increment ds", and o, and a,,, locate the origins of surfaces Y.S, and Y.S.,,.

MI

o, =0, + (1——&]-(8? —oci) fork=1, 2, ..., i (2.51)
M,

in which oy locates the origin of updated surface Y.S.}, and M,; and My, are the sizes

of surface Y.S, and Y.S.;, respectively.

Computational difficulties may arise if surface Y.S.,,, contracts to such an extent
that surfaces Y.S., and Y.S.[,, overlap, as shown in Fig. 2.15. In Mosaddad and Powell’s
model, if this happens, surface Y.S.[, is translated to bring the corresponding point P,,,
on surface Y.S.[,; into contact with surface Y.S.[ at the current action point P,.
However, if the overlapping of two yield surfaces occurs and the current action point P,
is within yield surface Y.S.[,, as shown in Fig. 2.16, their model can not detect the

overlapping of yield surfaces. To overcome this problem a new procedure is developed.
To detect the overlapping of yield surfaces the inner bounding surface Y.S., of

surface Y.S.[,, is employed, as shown in Fig. 2.16. This surface Y.S.

1

represents the
limit of position of the vector o locating the origin of surface Y.S.!, such that updated
surfaces Y.S.[,; and Y.S.[ never overlap. Whenever o is within the surface Y.S.
therefore, the overlapping of yield surfaces Y.S.; and Y.S./,, never occurs. The equation

for the surface Y.S.; is determined by simple geometry as follows.

oi ?

® = (1 M, ] @’ (2.52)
od M;H_l i+1 *

where @/, = yield function of updated yield surface Y.S./,,

M, and My;,, = the sizes of updated surfaces Y.S.; and Y.S.]

i+1°
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Fig. 2.14: Updating Yield Surfaces

’
i+

When the overlapping of updated yield surfaces Y.S.] and Y.S.[, occurs, the

yield surface Y.S..,, is translated in the direction of a vector (& —oi,,) such that it
) and
r

and the vector

contacts with updated surface Y.S.. as shown in Fig. 2.16. Surfaces (Y.S.i’ o
and Y.S.

(oci' +1)tr locates the origins of surfaces (Y.S.i’ " )tr and (Y.S.m)u. The vector (oci' " )u can be
determined from the following equation.

(‘xfﬂ)u = o, + pe(of-af,) (2.53)

(Y'S'ai)u are the translated locations of surfaces Y.S.[, s
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’

where |L-is a proportion of the magnitude of the vector (o] — o] 1) such that the vector

o lies on the surface (Y.S.ai)u, which is the location of surface Y.S., translated by a

vector [- (o - o +1). This approach is more reasonable in that it can always detect the

overlapping of updated yield surfaces and that the overlapping can be prevented by

4
i+l

by the possible shortest distance L - (oci' - o ) .

i+l

translating updated yield surface Y.S.

Fig. 2.15: Yield Surface Overlap and Correction in Mosaddad’s Model

2.8 Updating Options

The basic Mroz theory requires that yield surfaces which are in contact at the
current action point be translated together for a given action increment, while remaining
tangent to each other at the current action point. Computationally, however, it is not
necessary to move all the yield surfaces. Instead, the state can be obtained more

efficiently by translating only the current yield surface. That is, if yield surfaces Y.S,
through Y.S.; are contacted at the current action point, only surface Y.S., needs to be

translated toward surface Y.S,,; as long as loading continues. If loading continues until
yield surface Y.S,,, is reached, the surface Y.S, can also be left alone, and only the

motion of surface Y.S.,, needs to be monitored. Ultimately, with this procedure, it is
necessary to restore the material
“memory”, by translating surfaces Y.S., through Y.S, to their final positions, as shown

in Fig. 2.14 (only surfaces Y.S, ; and Y.S.are shown for simplicity). However, this
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needs to be done only when unloading occurs. Equations similar to Eq. 2.51 are used for
this purpose.

g J

e ... .-

Fig. 2.16: Detection and Correction of the Overlapping of Yield Surface

For the extended model, when the action point lies on surface Y.S., updating of
the properties can similarly be carried out by updating the sizes and plastic stiffnesses
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only for yield surfaces Y.S,, Y.S..;,...,Y.S., as long as loading occurs, using Egs. 2.47
and 2.50. When unloading occurs, the properties for all yield surfaces are updated. With
the continuous updating option, the properties are updated at the end of every inelastic
subincrement of a state determination process. With this option the multilinear nature of
the action-deformation relationships is no longer preserved, and the element tangent
stiffness matrix changes continuously. With the discontinuous updating option, the
properties are updated only when unloading occurs and are otherwise kept constant along
each loading path. For most practical applications, the cyclic behavior of beam-column
element can be modeled sufficiently and accurately using this option. It has the
advantages of being more efficient computationally and of preserving the multilinear
nature of the action-deformation relationships. Therefore, in this study the discontinuous
updating option is implemented into the computer program.

2.9 Loading-Unloading Criteria

The loading-unloading criteria must differentiate between plastic flow and elastic
unloading from any current plastic state for any specified deformation increment. The
procedure used herein is based on the criterion that the magnitude of plastic deformation

defined by A (Eq. 2.29) must be positive during continued loading from the yield surface.

Hence, given that the current state s" is on the yield surface, the loading of a
hinge continues to occur if the increment of action is such that

T b
A = —-‘-T‘—%- >0 (2.54a)
n K -n
while unloading of the hinge occurs if
n’ -ds"
A= ——<0 (2.54b)
n"-K -n
P

Since the diagonal matrix K is always positive definite, the scalar n' ‘K, -n is always

positive. Hence, the loading-unloading criterion is expressed in simple form. Continued
loading occurs if

n"-ds" >0 (2.55a)
while unloading occurs if
n"-ds" <0 (2.55b)

2.10 Drift Control and Normal Vectors at a Vertex of Yield Surface

Suppose that the shape of the yield surface consists of two vertical lines and the
Mroz hardening rule is applied to this yield surface. For this case, since the direction of
the yield surface translation is the same as that of normal vector at the current action
point, the increment in translation of the yield surface is equal to the increment of action
causing the translation. This is a property of the Mroz hardening rule, where a surface
with a constant gradient will have the action point remain on the yield surface. For a
curved yield surface, such as an ellipse, the gradient is not constant and as a result the
action point will drift outside the translated yield surface. From Fig. 2.17, it can be seen

that if a finite sized action increment dsil is taken, the final action point P,
corresponding to sih', may depart from the yield surface. This discrepancy can be

practically eliminated by ensuring that the load increments considered in the solution are
sufficiently small. However the point P can be returned to the yield surface by simply
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scaling the vector s} — o/ in the radial direction. From the geometry shown in Fig. 2.17
and the yield function (Eq. 2.32), the appropriate scaling factor RF is readily seen to be

_ R # VR, +4a,8,(F - )’ (2.56)
2a,(F-ot )’
where R, =(M" -0, )+a,(F-o;) (2.56b)
The reduced action vector s! can be written as
s = of + RF-(s}"-at]) 2.57)

If relatively large load increment sizes are to be permitted, the process described
above can lead to an inaccurate prediction of the final point P; on the yield surface if the
action point is in the vicinity of a region of large curvature of the yield surface. This is
illustrated in Fig. 2.17 where the action point P; is scaled down to the yield surface to

give point P{". Greater accuracy can be achieved by scaling the action vector s’ to the
yield surface in several stages.

Fﬂ

P/(M",F)

3

Y

Fig. 2.17: Scaling the Action Point to the Yield Surface

To scale the action vector s/ to the yield surface in several stages, the element
deformation increment is divided into several equal parts and each deformation
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subincrement is used to calculate the hinge action subincrement. At the end of each of the
hinge action subincrements, the action vector is scaled down to the translated yield
surface. Obviously the greater the number of steps into which the deformation increment
is divided, the greater the accuracy. However the amount of computation for each step is
relatively large since the normal vector n and the element tangent stiffness matrix K
have to be calculated at each stage. Clearly a balance must be sought and in this study the
following criterion is adopted. The element deformation increment is divided into m
parts where m is given by the nearest integer which is less than

h
I g (2.58)
M, -M,,

y2
where dM" is the moment component of the hinge action increment ds; and M,,-M,,

is the difference between the moment sizes of the yield surfaces 1 and 2. This criterion
can be readily amended by the user.

When the yield surface is a multi-linear shape, there may also be a possibility that
the action point will be outside the translated yield surface. This situation is illustrated in
Fig. 2.18. The inside of the dotted circle in Fig. 2.18 is enlarged in detail in Fig. 2.19. In

Figs. 2.18 and 2.19, the translation increment do; of yield surface Y.S., was calculated
by using Eq. 2.45b for a given action increment ds. From these figures, it can be found
that the action point P; defined by a vector s!" is not on translated yield surface Y.S.

because the action increment vector ds; intersects the vector P, which has the origin at

jis

the vertex V and is parallel to the vector do,.

To prevent the action point from being outside the yield surface, a proportion of
deformation increment 1, shown in Fig. 2.19, is determined such that the reduced action

increment mds! corresponding to the proportioned deformation increment reaches the

vector P;. Thus, from the geometry of Fig. 2.19, a proportion of deformation increment
T is expressed as

(M’ -M)(F' —F)+(F -F)}(M' -M")
(M’ —M')dF - (F’ - F')dM

For the reduced action increment nds;, the action point P; will always be at a vertex of

translated yield surface Y.S.[, as shown in Fig. 2.20. Then, the remaining action

n = (2.59)

increment (1- n)dsih which is calculated by using a tangent stiffness updated at a vertex
and the deformation increment left over, is applied at a vertex.

When the action point lies at a vertex of a yield surface, the determination of the
yield surface translation becomes complicated if the Mroz hardening rule is applied
directly to the two dimensional action space. Firstly, the gradient at the corners of yield
surface can not be computed from the yield function. Secondly, unless the action

increment ds is in the direction of the yield surface translation , depicted in Fig. 2.21 as

being the vector sh s defined by points P; and P;, the action point may drift off the

yield surface. Thirdly, the loading-unloading criteria, which depend on the normal vector
at the current action point, must be able to differentiate between plastic flow and elastic
unloading from any plastic state for any specified deformation increment. These criteria
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may fail to differentiate between plastic flow and elastic unloading because there is no
normal vector to satisfy these criteria regardless of the direction of the action increment.

F Fy e - -
s -s"
. i i n.
>, i
' P N Pj '
| N \
r dO(.i Sh %dOCi )
, \ YR
! 2 s ' P;; !
tOL. , N h' : ,
L3 1 1 h
' . - 5 K dsi Pi

Fig. 2.19: A Proportion of Deformation Increment
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v

Fig. 2.20: Reduced Action Increment to Make Action Point Remain on Yield Surface

To overcome the complexity of the problems at the corners of a yield surface, in
this study, two unit normal vectors at a vertex are applied for different purposes. The first
normal vector is used to determine the element tangent stiffness and plastic deformations.
The second one is applied to the translation of the yield surface and the loading-
unloading criteria.

The first normal vector is determined from the sum of two unit vectors n,' and
niz, which are normal to the facets 1 and 2 of a vertex shown in Fig. 2.21. Thus, the

normal vector m;* which is used to determine the element tangent stiffness and plastic
deformations, is expressed as

a 1 2
n- = m'(nil +1, ) (260)

This normal vector n;* realistically models the unit normal vector at the corresponding
point of a higher order yield surface which accounts for the moment-force interaction
more exactly, and plays a transitional role to keep the tangent stiffness and the direction
of plastic deformation at a plastic state from changing abruptly.

The second normal vector is chosen according to the direction of the action
increment, such that the action point always remains on the yield surface during the
translation and the loading-unloading criteria are always able to differentiate between

plastic flow and elastic unloading. One of the unit vectors n,' and n,> shown in Fig. 2.21
is chosen as the normal vector according to the direction of the action increment as

follows. When the Z component of cross product (s:‘ -s?) x ds! is positive in the
rectangular coordinate system shown in Fig. 2.21, the normal vector is the unit vector
which produces the larger of the Z components of the cross products (s;‘ - sf) xn,' and

(s}‘ - sf‘) x n;>. Otherwise, the normal vector is the unit vector which gives the smaller Z

component of the cross product (sj‘ -s?) x n,*, where the superscript k is 1 and 2. For
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example, when the action increment is represented by a vector dsi12 shown in Fig. 2.21,

the Z component of cross product (s;1 - sf‘) X ds}’2 is positive. Thus, the normal vector is
the unit vector n,”, which gives the larger Z component of cross product (s;‘ - sf’) xn~,

When the action increment is represented by the vector ds§11 which produces the negative

1 . .
Z component of cross product (sj‘ - s:’) x ds;", the normal vector is the unit vector n,',

which gives the smaller Z component of cross product (s;‘ -s?) x n;*. The unit normal

vector chosen by this approach always makes the action point remain on the translated
yield surface. When this chosen vector is applied to the loading-unloading criteria using
the scalar product of the normal vector and the action increment vector, the distinction
between plastic flow and elastic unloading is always accomplished correctly.

F“

st -S? \ do;

Z /Y.S.i Y.S,

Fig. 2.21: Normal Vector at a Vertex of Yield Surface

£V

2.11 Determination of Plastic Stiffness

As noted previously, the post yield behavior of the complete element is governed
by the diagonal plastic stiffness matrix K, of each hinge. For each hinge, the
determination of the diagonal terms of K, requires a knowledge of the complete action-
deformation relationships. Since the matrix K, is diagonal, each action-deformation

relationship is uncoupled. Thus the individual terms in K, for a hinge can be obtained

from separate applied actions, as indicated in Figs. 2.22 and 2.23. The relationship for
axial load is straightforward because the corresponding internal force is constant along
the length of the member. In the hinge model, it is assumed that each hinge at the member
ends shares the plastic axial deformations evenly. Consequently, the axial force-
deformation relationship is obtained for each half of the element, as shown in Fig. 2.22.
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Fig. 2.22: Axial Force-Deformation Relationship

In specifying the flexural plastic stiffness, however, a complication arises from
the fact that moment-curvature nonlinearities are being modeled by using concentrated
hinges. In an actual beam the moment typically varies along the length, and plastic
deformations occur over finite regions. Consequently, the flexural stiffness depends on
the moment variation along the beam. In a concentrated hinge model, it is not possible to
account for all possible moment variations which may occur, and hence, some
assumptions must be made in specifying the hinge properties. Under seismic loading,
beams and columns of steel moment resisting frames typically have a linear variation of
bending moment over the element length, with equal and opposite values at the member
ends, as shown in Fig. 2.23a. Thus, one could consider obtaining a moment-rotation
relationship for an equivalent cantilever representing each half of the element, as shown
in Figs. 2.23b and 2.23c.

To determine the plastic stiffness coefficient of K, for a hinge, the reciprocal of

the slope of the action-deformation relationship for the current state is equated to the
combined flexibilities of the elastic cantilever beam and the hinge. Thus, if the hinge

yields due to the axial force exceeding the yield strength F,,, then
1 1 1
= +
Kfl Kfe Kpfl
Thus, the plastic stiffness coefficient Kpfl for the hinge associated with axial force is
given as

(2.61)

= KeKn

- 2.62
. Kfe - Kfl ( )
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where K, and K, respectively, are the axial stiffness of the elastic beam, and the slope
of the axial force-deformation relationship between the strengths F,, and F ,, as shown

in Fig. 2.22. If the axial force of the hinge exceeds the yield strength F;, then
i = Kels (2.63)
Kfe - Kﬁ

Similarly, if the bending moment of the hinge exceeds the yield moment M,; shown in

Fig. 2.23c, the plastic coefficient K. for the hinge associated with bending moment is

expressed as

K_K_.
K = —me m 2.64
o Kme—‘Kmi ( )
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Fig. 2.23: Moment-Rotation Relationship for Equivalent Cantilever Beam
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2.12 State Determination

When the inelastic analysis of a structure is performed, it is necessary to carry out
a state determination after computing the increment in local element displacements dr, in

order to determine the updated internal resisting forces R’ of the elements. As a result,
the unbalanced global nodal loads R" can be determined for the current state, where

R' = R* - R! (2.65)

in which R is the external applied loads. If the specified norm of RV is greater than an
allowable tolerance, then an iteration scheme is required to satisfy equilibrium to within
the allowable tolerance.

Having computed the increment of local displacements dr for the element, it is

necessary to compute resisting forces R' due to the associated element deformations dv.
The computation procedure is as follows:

1) Calculate the element deformation increment dv:
dv = AT .dr (2.66)
where dv = vector of element deformation increment,

A" = displacement transformation matrix,
dr = vector of local nodal displacement increment.

ii) Calculate linear action increments for the element ds:

ds = K, -dv (2.67)
where K, = element tangent stiffness, which, in general, varies during the
increment.

iii) Determine hinge action increment ds" from ds according to Eq.2.12.
* The following procedure is implemented only for the nonlinear yield surface.

a) If the moment component dM" of ds" is less than the criterion
M,-M ) .
CM= —y*l—oﬂ used in Eq. 2.58, go to the next step iv.

b) Otherwise, the element deformation increment dv is divided into m parts by
using Eq. 2.58 and for each deformation subincrement the hinge action
increment is calculated.

iv) Check for the occurrence of an event for each hinge, and calculate the
corresponding event factor FAC for each hinge as a proportion of the deformation
increment. Possible events are:

a) If the current state is elastic, calculate the proportion of deformation
increment FAC to reach the initial yield surface as shown in Fig. 2.24. From
the geometry of Fig. 2.24, the proportion FAC is calculated as follows:

re A M) (F )
\/(th)z +(dF)?

(2.68)
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If this proportion FAC is greater than 1.0, the state continues to be elastic and
event factor is 1.0. Otherwise, an event occurs and the event factor is set equal
to the calculated proportion FAC.

b) If the current state is plastic, calculate loading-unloading criterion
n” -ds". If the value exceeds zero, continued loading is indicated.

1) For continued loading, two types of events will be possible.

Firstly, to check whether the action point reaches the next yield surface at
the end of action increment, the yielding factor FAC is calculated by using
an equation similar to Eq. 2.68. Secondly, the drift control factor m is
calculated to prevent the action point from drifting outside the yield surface
by using Eq. 2.59. Select the smallest factor from factors FAC and m. If the
smallest factor is greater than 1.0, the state does not change and the event
factor is 1.0. Otherwise, an event occurs and the event factor is set equal to
the calculated smallest factor.

Y.S,

Fig. 2.24: Determination of Yielding Event Factor

2) If unloading occurs, the stiffness matrix is reformed as the elastic stiffness,
and the calculation proceeds from step ii after the following procedure is
performed.

e Calculate the weight function @ for the accumulated plastic deformation
26,

* Adjust the sizes and the plastic stiffnesses for all yield surfaces according
to Eqs. 2.47 and 2.50.

* Adjust the center coordinates o's for the initial yield surface Y.S,

through the current yield surface Y.S, according to Eq. 2.51.
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* Check the overlapping of yield surfaces Y.S., and Y.S.,, fork =1, i+1,

.., 0-1, using o and Eq. 2.52. In case of overlapping, the center o, of
surface Y.S.,,, will be adjusted according to Eq. 2.53.

v) Calculate the element plastic deformations dw, using Eq. 2.16a.

vi) Select the smallest event factor, FACT, from the event factors for two hinges at
the element ends.

vii) Use the event factor FACT, to compute new hinge forces, new total plastic
deformations, and a new origin for the current yield surface, as follows:

s" = s" + FACT-ds"

=

= W+ FACT-dwp
o. =

(2.69a)
i = o+ FACT -da;

(2.69b)
(2.69¢)
* Only for the nonlinear yield surface the new hinge forces are scaled to the
yield surface by using Eqgs. 2.56 and 2.57.
viii) Calculate the complement of the event factor as:
CF =1 - FACT

(2.70)
ix) Reform the tangent stiffness matrix for the element if any event has occurred.
x) If all of the deformation increment for the element has been used up, go to step xii.
Otherwise, continue to the next step.

xi) Calculate the remaining element deformation increment for the next cycle from:
dv = CF-dv
Then go to step ii.

(2.71)

xii) Obtain the element actions, s, using the hinge forces s"'s determined in step vii

xiii) Calculate the internal resisting force for the element, Ri, using:
R = As

(2.72)






Chapter 3: FIBER ELEMENT

3.1 General

Later in this report, the beam-column hinge type element developed in Chapter 2
will be calibrated and verified by comparison with experimental data or by comparison
with response predictions made using a fiber element analysis. This chapter provides a
description of the fiber element.

The fiber element is a beam-column type element for modeling the response of
structural members subjected to bending moment and axial force. Unlike the hinge type
element, which lumps inelastic effects into nonlinear springs at the member ends, the
fiber element more realistically models the spread of yielding, both over the depth of the
cross-section and over the length of the member. Whereas the user of a hinge type
element must specify the properties of a hypothetical hinge, the user of a fiber element
must only specify the cross-sectional geometry of the member and the uniaxial stress-
strain behavior of the material. The response of the fiber element is derived from the
fundamental kinematic assumption that plane sections remain plane.

In the fiber model, the element is subdivided into longitudinal fibers or layers.
The geometric characteristics of a fiber are its location in the cross section and its area.
Material nonlinearity is introduced at any element section and the element behavior is
derived by the weighted integration of the section response. In practice, since the element
integrals are evaluated numerically, only the behavior of selected sections at the
integration points is monitored. The constitutive behavior of the cross section is not
specified explicitly, but is derived by integration of the response of the fibers or layers,
which follow the uniaxial stress-strain relation of the particular material.

Many fiber models have been proposed in the past two decades. These fiber
models can be divided into two categories in accordance with the procedure employed in
the derivation of the element stiffness matrix.

The first category of fiber models is based on the finite element displacement
approach using cubic Hermitian polynomials to approximate the deformations along the
length of the element. A major limitation of the finite element displacement approach is
the assumption of cubic interpolation functions, which results in a linear curvature
distribution along the element. When the structural member undergoes significant
yielding, the curvature distribution becomes highly nonlinear in the inelastic region. This
requires the use of a fine discretization in the inelastic region of fiber elements.

In the second category of fiber models the element stiffness is formulated based
on the section flexibility matrix and on force interpolation functions, which relate the
member end forces to the section forces. The curvature distribution is determined from
the section forces and the section flexibility matrix, which is continuously updated during
the analysis as the inelastic deformations spread into the member. Therefore, the
curvature distribution can be determined in a more exact manner without being restricted
by the fixed shape function, as in the finite element approach. In this study this
flexibility-based approach is adopted to formulate the element stiffness and the section
deformations. The mathematical formulation is based on the approaches suggested by
Carol and Murcia (1989), and Moon (1994), with some modifications for shear
deformations.

43
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The general formulation is based on the assumption that plane cross-sections
perpendicular to the element axis always remain plane and perpendicular to the element
axis after deformation. Shear deformations are separately taken into account by using the

effective shear rigidity GA,, where A, is the effective shear area. With these

assumptions, the basic formulation is derived for the undeformed position of the element.
Later, second-order effects are considered by satisfying equilibrium in the deformed
position. The change of geometry is accounted for by continuously changing the local
coordinate system at every step. Thus, the joint displacements are added to the old joint
coordinates, and a new set of rotation matrices and lengths are computed for each
member.

3.2 Equilibrium Equations

Cross-sectional forces (N,Q) and moment (M), and distributed applied load ( P")
acting on a differential beam slice placed in its undeformed position are shown in Fig.
3.1. From equilibrium of the beam slice, the well known system of differential
equilibrium equations can be obtained. These differential equations result in the
following solution:

N(x) = s, (3.1a)
* X X
Mx) =M +s, -(———1) + 8, — (3.1b)
L L
Q) = - [dM + 2y S—3J (3.1c)
dx L L

where s,, s, and s, are three independent forces shown in Fig. 3.2. In these equations,
M is a particular solution of Egs. 3.1 for the distributed load P*(x). This particular

solution has been chosen for zero values of 8;» 8, and s, at the ends, which lets M
correspond to the solution of the simply supported beam with applied distributed load

P’(x). Therefore, the section forces C can also be written in a matrix form as

)
N 1 0 0 s, .
dM
Q=10 -1/L -1/L S, ¢+ 9~ \ (3.2)
dx
M 0 (x/L-1) x/L ||s, .
L M J

or, in a more compact notation,

C=bs+C (3.3)
This expression can be considered as an exact interpolation for cross-sectional forces C
within the element. It depends on the independent forces s and on particular solution C,.

3.3 Strain-Displacement Relationships

Having assumed that plane cross-sections perpendicular to the element axis
remain plane and perpendicular, the longitudinal strain € of any fiber placed in the cross-
section at a distance y over the reference axis can be written as a linear function of the

reference fiber strain €_ and the curvature ® as
E=¢ +y-O (34)
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v

These two variables € and @ therefore represent the entire cross-section strain state, and
can be related to the axis displacements U,V and rotation of reference axis 6 shown in

Fig. 3.2 by the equation.
dU
g = — 3.5a
f T i (3.5a)
o = d‘Y (3.5b)
dx”
0 = av (3.5¢)
dx
P*

Q+dQ

M
N dx N+dN
4—€ -~ %*’

M+dM

Fig. 3.1: First-Order Equilibrium of a Beam Slice

Fig. 3.2: Relative Displacements and Transverse Deflections

The previous strain-displacement relationships can also be expressed in the following

integral form
(3.62)

= U, + [, dx

=V, -6, L- [®(L-x)dx (3.6b)
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L
0, =8, + [®dx (3.6¢)
Equations 3.6 can be written in matrix form as
U;-b, 1 0

16, —(v,-Vv, )Lt = J'L 0 (x/L-1) -{Z}dx 3.7

0
0 x/L
;- (VJ —V; )/ L
or, in a more compact notation,

L
v = J'b;f e, dx (3.8)
0

where v is the vector of relative displacements shown in Fig. 3.2, b, is the same matrix

as in Eq. 3.2 with the exception that the row associated with the shear is omitted, and e,
is the generalized strain vector for the cross-section.

When the shear deformations are separately accounted for by using the effective
shear rigidity GA,, the principle of virtual forces can be used to derive the strain-
displacement relationships. The work done by virtual forces during the actual

displacements is called the complementary virtual work. The virtual section forces 8C
must satisfy the equation of internal section force equilibrium, and the virtual member

forces 0s must satisfy equations for boundary equilibrium. The section strains derived

from the virtual section forces 8C need not necessarily satisfy the equations of
compatibility.

The complementary virtual work done by the virtual forces 8s corresponding to
the actual relative displacements v can be written as

SWexe = V' -85 3.9)
The complementary virtual internal work can be found to be
SWi = [€7-8C (3.10)

in which C is the section force vector defined by Eq. 3.2 or Eq.3.3, and e is the cross-
section strain vector including the shear strain y expressed as

e’ = {e, v, 0} (3.11)
Substituting C = b-s into Eq. 3.10 and equating the resulting equation to Eq.3.9 lead to

v .8 = U eT-b)~85 (3.12)
Since the virtual forces &s are arbitrary, then

v=[b"-e (3.13)

This equation implies that the relative displacement v including the shear deformation
effects can also be determined by using the interpolation matrix b relating the relative
forces s to the section forces C.

3.4 Constitutive Equations

The uniaxial stress-strain relationship of a fiber can be generally written as
do = E, -de (3.14)
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where
de = de, + y-dd (3.15)
E, is the tangent stiffness and y is a distance from the reference axis to a fiber. From

these equations, the incremental section forces dC can be related to the incremental
section strain vector de as follows:

AN JEdA 0 [yBdA | (g
dQr=| 0 GA, 0 |{dy (3.16)
dM 2 dd

_J.yEtdA 0 [y B dA

where GA, is the effective shear rigidity. This equation can be written in a more compact
notation

dC = D-de (3.17)
in which D is the cross-section stiffness matrix. This equation is used as the cross
sectional constitutive equation.

3.5 Governing Differential Equation

The governing equation for the element behavior can be derived from the
equilibrium equations, the strain-displacement relationship, and the constitutive equation.
The strain-displacement relationship is expressed in an incremental form

dv = [b'-dedx (3.18)
The constitutive equation can be rewritten in terms of the section flexibility matrix D™:
de = D'-(Cf - C,) =D"(b:s + C, - C,) (3.19)

in which the incremental section forces are written as the difference between the section

forces Cf at the current iteration k of the load step 1 and the section forces C,, at the
previous load step i-1, in order to take into account the second order effects later.
Therefore, the incremental relative displacements are expressed as

dv=F -s+[b-D'"(C, - C,)dx (3.20a)
and

F. = [b -D'-bdx (3.20b)
in which F| is the element flexibility matrix. This equation can be written as

s+F'[b D (Cp - Ci_,) dx = F,'-dv (3.21)

in which the two terms in the left-hand side of Eq. 3.21 represent the incremental nodal
forces due to the applied joint forces and member loads. This equation can be rewritten in
the local coordinate system, using Egs. 2.1a and 2.2a.

R+AF"'[b D (C, - C,)d = K,-dr (3.22a)
and

K, =AF"AT (3.22b)
where K, is the element stiffness matrix, R is the nodal force vector in the local
coordinate system, and dr is the corresponding incremental nodal displacement vector.
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3.6 Second Order Effects

A differential beam slice placed in its deformed position is presented in Fig. 3.3,
with the cross-sectional forces and external applied loads acting on it. Although they are
considered to move together with the cross-section, the axial and shear forces will be
considered in this work as having the direction of the initial axis of the beam. The basic
assumption made herein concerning the magnitude of deformations is that dV << dx,
which is equivalent to assuming that the slope of the deflected axis of the beam is small.
With this assumption, Egs. 3.5 and 3.13 remain valid.

The differential equilibrium equations obtained from Fig. 3.3 result in the
following:

N(X) = s, (3233)
* X X r
M) =M +s5, -[—-——1] +8;-— +5,-V, (3.23b)
L L
M s, s, V,-V,
Q(X) - _ 4+ =4 = S, - (3230)
dx L L L

in which V[ is the deflection along the reference axis, but measured from the straight
line connecting the deformed position of ends I and J, as shown in Fig. 3.2. Compared to
the corresponding first order solution, Eqgs. 3.1, two new terms appear in the 2nd order
solution. The first is a new term in the expression of moments, and corresponds to a
moment increment proportional to s, and to V. This term accounts for 2nd order effects
resulting from member deflections relative to a chord connecting the member ends. These

are often referred to as "P-6" effects. The second new term in Eq. 3.23c, accounts for 2nd
order effects resulting from the deflection of one member end with respect to the other
end. These are often referred to as "P - A" effects.

P*
y‘
IV G100
M T M+dM
A
— Néi N+dN
\Y2 Q o 0+ do V+dVv
Lo | i
5 U a X
U+dU

Fig. 3.3: Second Order Equilibrium of a Beam Slice
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The section forces C can also be written in matrix form as

r 3 ' 3

0 0
N 1 0 0 ||s, .
=10 1/L 1/L [{s +<dM>+< VJ_VH
Q / 2 " T (3.24)
M 0 x/L-1 x/L S, . i
M LSV
or, in a more compact notation,
C=bs+C, +C, (3.25)
Substituting Eq. 3.25 into Egs. 3.19 and 3.18 results in
s+F'[b"-D"- (C, + C, - C,)dx = F,'-av (3.26)

Premultiplying this equation by the transformation matrix A gives the incremental
governing equation in the local coordinate system

R+AF'[b.D"(C,+C -C,)d = K, dr (3.27)

3.7 Numerical Integration

In the previous section, the governing equation for the nonlinear behavior of an
element was formulated. However, the equation consists of many integrals that cannot be
evaluated in a closed form. Therefore, it is necessary to employ some numerical schemes
to evaluate the integrals. Furthermore, when the second order effects are taken into
account, a suitable numerical scheme should also be applied for the computation of
transverse deformations within the element, because the structural analysis gives only the
nodal displacements of the element.

The element properties are characterized by the integrated values of cross
sectional variables at a certain number of points which are distributed along the axis of
the element. The cross sectional variables include axial stiffness, flexural stiffness,
internal forces, etc. For purposes of integration, each cross section at integration points is
subdivided into layers over its height as shown in Fig.3.4. A uniaxial state of stress is
assumed for each layer. The geometric characteristics of the layer are its location in the
cross-section and the layer area.

Integration Point

Fig. 3.4: Idealization of Cross-Section at an Integration Point
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To determine the sectional stiffness matrix D (Eq. 3.16) at an integration point,

Simpon's rule ( Backlund 1976) can be employed for the integration over the height of the
cross-section. The restrictions of Simpon's rule are that an odd number of integration
points should be equally spaced and the number of integration points must be greater than
two. Simpon's rule gives an exact value of area and moment of inertia if the shape of the
section is rectangular or trapezoidal.

The Gaussian integration method is employed to integrate the element flexibility
matrix F, (Eq. 3.20b) along the axis of the element. To employ the Gaussian integration
method efficiently, the element can be divided into a certain number of segments. If a
short segment is placed on the region where yielding occurs, as shown in Fig. 3.5, a better
distribution of integration points within the element is obtained and the element
flexibility matrix can be more exactly obtained by summing its integrated values over the
segments.

NNNN

a) Curvature Diagram

Integration point

xxx] x* X X

V\ Segment /

b) Distribution of Integration Points

Fig. 3.5: Distribution of Integration Points Along Segments

To account for the second order effects, it is necessary to compute the transverse

deformations V[ at integration points along the element (see Eq. 3.24). The moment area
method and the finite difference method are applied to determine these transverse
deformations. The moment area method can provide theoretically exact transverse
deformations at the ends of segments, using the curvatures obtained from the section
forces at the Gaussian integration points as follows.

Vi = v, x5 — [Px-@dx (3.28)
where Vg is the transverse deformation at the end B of the segment shown in Fig. 3.6
and v, is the relative rotation at the end I shown in Fig. 3.2.

To determine the transverse deformations V| at the Gaussian integration points
shown in Fig. 3.6, the finite difference method is employed. In this method the

deformations V; and Vj at the end of segment are used as the boundary values and the
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curvatures @; at the Gaussian integration points are used as the basic known variables.
The finite difference method is usually employed for equally spaced intervals. Therefore,
the typical interpolation coefficients for uniform intervals are modified by the Lagrangian
interpolation function because the Gaussian method does not allow uniform intervals.
The modified coefficients are expressed as

_ (x—xi)(x-xm)
P = (Xi-l =X )(xm - xi-l) 525
(X ~Xia )(x - Xm)
h, = - (3.29b)
(Xl 17 Xi)(xx X1+1)
_ (x'xi-l)(x'xi)
Pin = (Xi+1 - Xi )(Xi - Xi+1) (.2%¢)

By using the second derivatives of Egs. 3.29 with respect to the distance x, the curvature

can be written as
-0, = Hi-lvir-] + BiVir + ﬁiHVi-:l (3.30)
Applying Eq. 3.30 to each integration point within a segment leads to the transverse

deformations V] at integration points as follows.

vi h, h, 0 —CI)]—HAV,:
Vit = |h, h, h,|-{-®, (3.31)
\' 0 h, hy| |-®,-h,V;

Vl‘

AL xZ x x |B

integration point

Fig. 3.6: Deformations at Integration Points Within a Segment

3.8 Uniaxial Stress-Strain Relationships for Steel

When steel is subjected to complex cyclic loading in the inelastic range, an
accurate stress-strain model is needed for a correct assessment of behavior. However, an
accurate description of material behavior under random cyclic loading becomes
complicated due to the effects of prior load history and the complex characteristics of the
cyclic loading phenomenon. Cofie and Krawinkler (1985) proposed a cyclic stress-strain
relationship based on the concept of the bounding surface model developed by Dafalias
and Popov (1975; 1976). In their model it was suggested that the cyclic behavior of
structural steel is governed by two reference curves; the monotonic stress-strain curve and
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the cyclic steady state stress-strain curve (see Fig.3.7). In this work Cofie’s model is
adopted to describe uniaxial stress-strain relationships of steel under random cyclic
loading.

From cyclic uniaxial tension tests, it has been found that the material always
progresses towards the cyclic steady state curve during the course of the loading history.
The cyclic steady state stress-strain curve is defined as the curve through the locus of tips
of the saturation stresses at various strain amplitudes. If steel is subjected to constant
strain amplitude cycling, the shape and size of the stress-strain hysteretic loops stabilize
as the number of load cycles increases. After the loops have stabilized, the peak stress
achieved at the peak strain is referred to as the saturation stress. Cyclic hardening refers
to the phenomenon in which the stress level between two particular strain limits increases
with the number of reversals. Cyclic softening, as opposed to cyclic hardening, is
associated with a decrease in the stress amplitude as the number of reversals is increased
at a particular strain amplitude. It has been observed that after steel has been worked at a
higher strain amplitude, it softens when cycled at a smaller amplitude. The rate of cyclic
hardening generally significantly exceeds the rate of softening. Mean stress is defined as
the average of the stresses at the peaks of two successive reversals. Mean stress relaxation
is observed in steel under cyclic loading. It refers to the phenomenon in which a mean
stress, if present, decreases as the number of reversals increases.

cA cyclic curve

monotonic curve

Fig. 3.7: Monotonic and Cyclic Stress-Strain Curves

In Cofie’s model three basic cyclic loading parameters are employed to describe
cyclic hardening, cyclic softening, and mean stress relaxation. The difference Ac
between the stress amplitude ©, of excursion A-B and the corresponding saturation stress
O,, as shown in Fig. 3.8, is an indication of how far the material is from saturation. The
hardening factor F; describes the rate at which the available hardening A is used up in
each excursion. The softening factor Fj identifies the rate at which the material softens
back to the saturation stress if previous cycling has caused a stress amplitude that exceeds



53

the corresponding saturation stress (Ac<0). Unless the mean stress of an excursion is
zero, cyclic hardening or softening is accompanied by mean stress relaxation. Similar to
the hardening and softening factors, a mean stress relaxation factor F, can be defined to
describe the rate at which the mean stress relaxes to zero. The main feature of Cofie’s
model is that these cyclic loading parameters are applied to move the bound line such that
the material works its way towards the steady state curve during cyclic deformation.

After any excursion of a loading history ( e.g., excursion A-B in Fig. 3.8), a
positive and a negative bound exist whose position is a function of the past loading
history. One of the two bounds is updated after the excursion in order to account for the
hardening or softening and mean stress relaxation that are expected to occur during the
next excursion. The procedure for updating the bound line is presented as follows;

i) Whenever load reversal occurs, the mean values and the amplitudes of the current
excursion A-B shown in Fig.3.8, are calculated.

6, = 0.5(c,+0;) ; e, = 0.5(g, +¢) (3.32a)

c, = O.SIO'A—GBl €, = 0.5|£A——eB| (3.32b)
where the subscripts ‘m’ and ‘a’ stand for a mean value and an amplitude,
respectively.

ii) Calculate the difference between the stress amplitude &, and the saturation stress
o, on the cyclic steady state curve corresponding to the strain amplitude €,
Ao = o, - o, (3.33)

s

iii) If Ac>0, cyclic hardening is predicted to take place in the next excursion. Update
the bound by moving it outward by an amount equal to 2F,Ac, where F,, is the
hardening factor.

(0w) ., = (0w),, — 2FuAc (3.34)

iv) If Ac<0, cyclic softening is predicted to take place in the next excursion. Update
the bound by moving it inward by an amount equal to 2F;Ac, where F; is the
softening factor.

(0w)., = (04) , — 2FAc (3.35)

v) Further move the bound line by an amount equal to FG, , where F, is the mean
value relaxation factor.

(0w).,, = (ow)_ - Feo, (3.36)

The initial positive bound for the first excursion (monotonic deformation) is
determined by drawing a horizontal line at the end of the monotonic loading to have an
intersection with the stress axis, and by rotating the line about its intersection point to

have the predetermined slope E';l of the bound line. At the first reversal, the negative
bound has the intersection at -G,. on the stress axis.
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Fig. 3.8: Movement of Bound Line

For the first excursion, the monotonic stress-strain curve is represented by three
branches shown in Fig.3.7, and is described by the following equations;

c=2E,¢ for 0<e<e, (3.37a)
G =0, for g <e<gy (3.37b)
g/e, = ofo, + (cs/(kmoy))nm for e>eg, (3.37¢c)

The parameters k  and n are obtained from curve fitting to experimental data.

The cyclic steady state curve shown in Fig. 3.7 is obtained from multiple step
tests. In a multiple step test, a specimen is subjected to step-wise increasing strain
amplitude cycles with a sufficient number of cycles performed at each amplitude to attain
a stabilization of peak stresses. The curve can be described by the expression similar to
the third branch of the monotonic stress-strain curve as follows.

e/e, = o/C, + (0/(kccsy))n° (3.38)

in which the parameters k_ and n_ are obtained from curve fitting.

A hysteresis curve, which describes the stress-strain response for an excursion,
consists of the elastic range with a stiffness equal to the monotonic elastic stiffness and a
nonlinear portion that approaches the stress bound line asymptotically, as shown in Fig.
3.9. The elastic range oo, is assumed to remain constant for each excursion. A model

proposed by Dafalias and Popov is used to describe the nonlinear portion of the hysteresis
curve. In this model the bound line is used as an asymptote that is approached by the
hysteresis curve. In the nonlinear range, the plastic modulus is defined by the following
equation
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aG bl ~
B, = =~ = E}[1+h-8/(8, -9)] (3.39)
P
in which Ep is the plastic modulus; €, is the plastic strain; E B' is the plastic modulus
associated with the bound; 6, is the distance from the yield point to the bound, measured

along the stress axis (see Fig.3.9); § is the distance between the instantaneous stress and
the bound; h is the shape factor chosen to fit the experimental data. This equation
describes a plastic modulus that decreases continuously in the manner shown in Fig. 3.9.
The relationship between the tangent modulus E, and the plastic modulus E, is given by

the equation
I/E, = 1/E, + 1/E, (3.40)

Bound Line

>
&

€, = plastic strain

00+, = elastic limit range after unloadin
v . y g g

Fig. 3.9: Dafalias-Popov Model for Hysteresis Curve.

Cofie (1985) provided a comparison between the predicted and the experimentally
obtained results for a multiple step test, as shown in Fig. 3.10. Cofie also compared his
model for several irregular strain histories for which experimental results were available.
The comparisons are presented in Figs. 3.11 and 3.12 The agreement is satisfactory in all
cases except for the first one or two excursions following the monotonic loading and
excursions with small strain amplitudes. Although the predictions at the small amplitudes
are not very accurate, the model is able to predict fairly accurately the cyclic response for
subsequent large excursions.

The parameters used to obtain the analytical results in Figs. 3.10, 3.11, and 3.12
are listed in Table 3.1. The steel used to generate the experimental data was classified as
ASTM A36 steel. Note that the parameters needed for a cyclic stress-strain model cannot
be fully determined from a typical monotonic tensile coupon test. Cyclic testing is
required.
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o, €, E, E" h oo,
45.6 ksi 12¢, 29000 ksi | 0.0075 Etg 45 120,

km nm kc nc 1:‘H FS FR
0.51 0.23 0.9 0.19 0.45 0.07 0.05

Table 3.1: Stress-Strain Parameters for Cofie’s Model






Chapter 4: CALIBRATION OF BEAM-COLUMN
ELEMENT

4.1 Introduction

In this chapter the action-deformation relationships, used in the development of
the multi-linear hinge model in Chapter 2 are calibrated to experimental results and to
results predicted by the fiber model. In the multi-linear hinge model, the action-
deformation relationships are required for each of two limiting states, i.e., the virgin state
and the saturated state, shown in Fig. 2.13. To account for the transition from the virgin
state to the saturated state, a weighting factor is determined by calibration to results
predicted by the fiber model under various cyclic displacement histories.

To verify the multi-linear hinge model employing the calibrated action-
deformation relationships, the model is applied to the analyses of beams and columns of
bare steel frames in this chapter. In Chapter 7, the model will be applied to the analyses
of subassemblages, bare steel frames and frames with composite concrete slabs. To
investigate the performance of the model as a bare steel beam element, the model is
compared to available experimental data for test specimens subjected to no axial force.
The model is also applied to cantilever beams subjected to combined flexure and axial
force, to investigate the performance of the model as a bare steel column element. The
results predicted by the multi-linear hinge model are compared with results predicted by
the fiber model. Second order effects are included in the analyses of columns by both the
multi-linear hinge model and fiber model.

4.2 Calibration of Multi-Linear Hinge Model for Members Without Axial Force

In this section, the response of the multi-linear hinge model is investigated for
modelling bare steel beams without axial force. The hinge model response will be
calibrated against or compared with experimental results. Since the amount of
experimental data is limited, hinge model response will also be compared with fiber
model response predictions. For these comparisons, the fiber model will first be
calibrated against experimental results. The calibrated fiber model will then be used to
predict beam response under loading conditions for which no experimental data is
available.

Available experimental data suggests that the cyclic inelastic response of beams in
steel moment frames is dependent on the beam-to-column connection details. This study
will consider two common connection types: fully welded beam-to-column connections
and welded flange-bolted web connections. In fully welded connections, both beam
flange and the beam web are welded directly to the column. In the welded flange-bolted
web connection, the beam flanges are welded directly to the column. The beam web,
however, is bolted to a single plate shear tab, which is in turn welded to the column. In
some cases, additional fillet welds are provided between the beam web and the shear tab
to supplement the bolts. In the following sections, both connection types will be
considered. Response predictions will be investigated for cantilever beams subjected to
monotonic and cyclic tip loads. The cantilever was chosen because the majority of
experiments have been conducted on cantilever type test specimens. Model predictions
for more complex subassemblages and for complete frames will be investigated later in
this report.
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4.2.1 Calibration to Experimental and Analytical Results for Fully Welded
Connections

The parameters that control the response of the multi-linear hinge model were
calibrated against experimental results and fiber model predictions for cantilevers with
fully-welded end connections. Parameters for the virgin state were calibrated to the
monotonic responses of cantilever beams. Parameters for the saturated state were
calibrated to the cyclic steady state load-displacement curves obtained from symmetric
cyclic loading experiments. The cyclic steady state load-displacement curve is defined as
the curve through the locus of tips of the peak loads at various displacement amplitudes.

The calibration process resulted in the multi-linear hinge model parameters listed
in Table 4.1. In this table, Mp and K__ are the section plastic moment and the elastic

flexural stiffness of the cantilever beam (moment per unit rotation). The superscrips v and
s refer to the virgin and saturated state models. The parameters listed in Table 4.1 were
chosen to provide the best match, on average, to the experimental or fiber model results
used in the calibration process. In the remainder of this section, the response of the multi-
linear hinge model, using the parameters in Table 4.1, is compared with experimental and
fiber model results.

The moment-rotation relationship for the virgin state is presented in terms of the
tip load-displacement relationship of a W21x57 cantilever, similar to Engelhardt
Specimen 8 (Engelhardt 1992), in Fig. 4.1. To obtain the prediction made by the fiber
model, the yield stress of specimen 8 shown in Table 4.2 is used, along with the
monotonic stress-strain parameters listed in Table 3.1. From Fig. 4.1, it can be seen that
even though there is some difference between the multi-linear hinge and fiber models in
the vicinity of initial yielding, the predictions made by the hinge model are reasonable
when the simplicity of the model is considered.

M M/, M, M, M, M,
1.OM, LIM, 1L.2M, 0.8M, LIM, 1.25M,
Ko Ko Ko Ko Ko Ko
0.02K,, | 0.01K__ [ 0.001K .| 0.3K_. 0.1K,.. | 0.03K_.
Table 4.1: Parameters Defining Moment-Rotation Relationships for Fully Welded
Connections. :
Specimen Beam Beam Flange Yield | Web Yield
Section Length Stress Stress
Popov # 2 W18X50 83” 45 ksi 47 ksi
Popov # 7 W24X76 83” 36 ksi 37 ksi
Tsai#9 W18X46 62.9” 37.2 ksi 41.5 ksi
Tsai# 11 W21X44 63.2” 37.2 ksi 41.5 ksi
Engelhardt # 8] W21X57 96” 38.4 ksi 36.5 ksi

Table 4.2: Material Properties and Beam Sections of Test Specimens with Fully
Welded Connections (Popov 1972, Tsai 1988, and Engelhardt 1992)

In this work, no attempt is made to further evaluate the monotonic predictions
made by the multi-linear hinge model, because the cyclic behavior of the hinge model is
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the primary concern of this research. The parameters for the virgin state shown in Table
4.1 are mainly of interest to define member response in the early inelastic stages of a
cyclic loading history.

In the remainder of this chapter, the cyclic loading predictions made by the multi-
linear hinge model are compared with experimental data or with fiber model predictions.
For fiber model comparisons, the same yield stress is used in the multi-linear hinge model

(to compute M) as for the fiber model. The cyclic stress-strain parameters for the fiber

model were chosen by calibration to the cyclic experimental response of Engelhardt
Specimen 8. Based on this calibration, the resulting parameters are the same as those

listed in Table 3.1, except that the cyclic steady state curve parameter, n_, is taken as

0.18. The predictions made by the fiber model are compared with the experimental
response of specimen 8 in Fig. 4.2.

Several researchers such as Popov (1972 ), Tsai (1988), and Engelhardt (1992)
conducted cyclic tests on large scale cantilever beams to investigate the performance of
fully welded connections. To compare the cyclic moment-rotation relationships of the
developed hinge model with experimental results, the hinge model is applied to test
specimens with fully welded connections. The test beams are attached to a heavy column
stub, and a portion of the beam tip displacement is due to column deformations. For that
case, the analytical results are compared with the test data that are obtained by subtracting
the beam tip displacement due to the column deformations from the original experimental
data. The material properties and beam sections of the test specimens with all welded
connections are listed in Table 4.2.

In Figs. 4.3 and 4.4, the transverse load-displacement relationships obtained by
Kanaan’s bilinear model are compared with the experimental results. As expected, the
bilinear model can not provide the smooth transition of stiffness from the elastic range to
the strain hardening range and underestimates the strength considerably.
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Fig. 4.1: Comparison of Multi-Linear Hinge Model and Fiber Model for Monotonic
Vertical Loading.



62

80

W21X57

60 — \I A = ,

40 _— I 1;96” l

S

20 —

Load, V (kips)
=)

220 —
40 —

-60 — — experiment

----- fiber model

| | | |
-2 -1 0 1 2

Displacement, A (in.)

Fig. 4.2: Comparison of Experimental Results and Predictions Made by the Fiber Model
for Engelhardt Specimen 8.
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Fig. 4.3: Comparison of Experimental Results and Predictions Made by Bilinear Model
for Engelhardt Specimen 8.
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Fig. 4.4: Comparison of Experimental Results and Predictions Made by Bilinear Model
for Popov Specimen 2.

In Figs. 4.5 and 4.6, the results predicted by the multi-linear hinge model are
compared with the experimental results by Tsai. The match is good before local buckling
occurs. In Fig. 4.7, comparison is made with Popov Specimen 2. From this figure, it can
be seen that the match between the analytical results and test results is satisfactory. The
comparison of the analytical and experimental results for Popov Specimen 7 is shown in
Fig. 4.8. The match is good on the negative load side, but the model underestimates the
strength on the positive side. Note that test results are not symmetrical on the positive and
negative sides. Figure 4.9 shows the comparison of the responses obtained by the model
and test for Engelhardt Specimen 8. Even though the model underestimates the strength,
the agreement between model prediction and test results is reasonable.

The developed multi-linear hinge model has been compared to five specimens
with fully welded connections to investigate the cyclic moment-rotation relationships.
When compared to the bilinear hinge model, the multi-linear hinge model showed
significantly better agreement. Note that in the above comparisons, the same model
parameters (Table 3.1) were used in each case. For any one of these five cases, better
agreement between analysis and experiment would have been possible by tuning the
model parameters to match the specific experimental result. Such a process, however,
may not lead to a broadly applicable model. For modeling a MRF, experimental data will
generally not be available for the particular member sizes and frame geometries being
modeled. Consequently, the data will not be available to tune model parameters. A single
set of model parameters which appear to satisfactorily predict, on average, a broad range
of experimental results leads to a more generally applicable and useful model.
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Fig. 4.5: Comparison of Experimental Results and Predictions Made by the Multi-Linear
Hinge Model for Tsai Specimen 9.
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Fig. 4.6: Comparison of Experimental Results and Predictions Made by the Multi-Linear
Hinge Model for Tsai Specimen 11.



LOAD, V (Kips)

Fig. 4.7: Comparison of Experimental Results and Predictions Made by the Multi-Linear

LOAD, V (Kips)

80

WI18x50 V |

60 —

40 —

L

s
>

8

Fully Welded

——— experiment
multi-linear hinge model

|
1

DISPLACEMENT, A (in.)

Hinge Model for Popov Specimen 2.

] 1
2

50 —

v
S
1

-100 ~

-150

Fully Welded

experiment
multi-linear hinge model

-1 0 1
DISPLACEMENT, A (in.)

|
2

]
3

65

Fig. 4.8: Comparison of Experimental Results and Predictions Made by the Multi-Linear
Hinge Model for Popov Specimen 7.
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Fig. 4.9 Comparison of Experimental Results and Predictions Made by the Multi-Linear
Hinge Model for Engelhardt Specimen 8.

4.2.2 Calibration to Experimental and Analytical Results for Welded Flange-Bolted
Web Connections

A connection detail that has been widely used in U.S. practice is the welded
flange-bolted web type connection. The strength, stiffness and ductility of this moment
connection under cyclic loading has been studied in several experimental investigations
using large scale test specimens (Popov 1972; Tsai 1988; Engelhardt 1992). The
important conclusions that can be drawn by studying the available cyclic test data on
welded flange-bolted web details, are presented as follows.

As far as the stiffness is concerned, welded flange-bolted web connections
develop slightly smaller stiffness than that of all welded connections. However, the
discrepancy is negligible as shown in Figs. 4.10 and 4.11. In this study, therefore, it is
assumed that the stiffness of welded flange-bolted web connections can be defined by the
stiffness parameters presented in Table 4.1, which are used to describe the moment-
rotation relationships of fully welded connections.

It has been shown that connections with bolted webs sometimes develop less
ductility and less strength than connections with welded webs. The performance of bolted
web connections has been erratic, with some specimens performing well and others
performing poorly. The large variability in the experimental observations can perhaps be
related to the large number of design and detailing variables that may influence the
performance of these connections. The factors which may have an influence on the
strength and ductility of the welded flange-bolted web connection, are described in the
research report by Engelhardt (1992).
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As far as the strength is concerned, it is believed that the relative flexural
contribution of the beam web to the full moment capacity of the beam plays an important
role on the reduction of strength of bolted web connections when compared to all welded
connections. The relative flexural contribution of the web can be evaluated in terms of the
ratio Z,/Z, where Z; is the plastic modulus of the flanges only and Z is the plastic

modulus of the entire beam section. In Figs. 4.10 and 4.11, the experimental data for
bolted web connections are compared with those for fully welded connections. From
these figures, it can be seen that for the relatively large ratio Z;/Z=0.75 the strength of

the bolted web connection matches well with that of all welded connection. For the
smaller ratio Z,/Z=0.68 the bolted web connection develops noticeably smaller strength

than the all welded connection.

Cyclic tests on welded flange-bolted web connections often show little or no
yielding of the web, indicating that the bolted web connection does not develop the
flexural capacity of the beam web in the vicinity of the connection. To model this
phenomenon by using the fiber model, portions of the web area are eliminated in the
vicinity of the bolted web connection, as shown in Fig. 4.12. The portion of the web to be
eliminated is determined by trial and error such that the analytical results match well with
the experimental data. For test specimens with these reduced web areas, the predictions
made by the fiber model are compared with the experimental data in Figs. 4.13, 4.14, and
4.15. To investigate the influence of the ratio Z;/Z on the reduction of strength of the

bolted web connection, the analytical results for test specimens without reduced web
areas are also obtained by the fiber model and are compared with those for test specimens
with reduced web areas in Figs. 4.16, 4.17, and 4.18. From these figures, it appears that
for the relatively large ratio z;/Z=0.75, the strength of the beam with the reduced web

area is essentially the same as that without the reduced web area. However, as the ratio
Z;/Z becomes smaller, the difference between the strengths of beams with and without

the reduced web area becomes larger.

To account for this influence of the ratio Z,/Z on the reduction of strength of the
bolted web connection, the moment-rotation relationships for welded flange-bolted web
connections are reduced by multiplying the moment-rotation relationships for fully
welded connections by an reduction factor RF, which is a function of the ratio Z:|Z.
Thus, the yield moments M'y’lW to define the moment-rotation relationships for welded
flange-bolted web connections, can be written as

MY = RF-MY (4.12)
RF =1 f ~Zi>0 75
where = or— =% (4.1b)
Zz z
RF = (1.6—1‘—0.2) for —£<0.75
Z z (4.1c)
Miﬁ” = yield moments to define the moment-rotation
relationships for fully welded connections shown in
Table 4.1.

The reduction factor RF is empirically determined from the calibration to the
experimental and analytical results.
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Several researchers (Popov 1972; Tsai 1988; Engelhardt 1992) conducted cyclic
tests on large scale cantilever beams to investigate the performance of welded flange-
bolted web connections. To compare the cyclic moment-rotation relationships for welded
flange-bolted web connections of the developed model with experimental data, the
developed model is applied to test specimens with welded flange-bolted web connections.
The material properties and beam sections of the test specimens with welded flange-
bolted web connections are presented in Table 4.3.

In Figs. 4.19 and 4.20, the transverse load-displacement relationships obtained by
the bilinear hinge model are compared with the experimental data. As expected, the
bilinear model can not provide the smooth transition of stiffness from the elastic range to
strain hardening range. Further, for low values of Z;)Z, the bilinear model may

overestimate strength.

Specimen Beam Beam Flange Yield | Web Yield
Section Length Stress Stress
Popov # 1 WI18X50 83” 45 ksi 47 ksi
Popov # 4 W18X50 83” 45 ksi 47 ksi
Popov # 5 W24X76 83” 36 ksi 37 ksi
Popov # 6 W24X76 83” 36 ksi 37 ksi
Tsai # 17 W18X35 63.2” 46.3 ksi 55.7 ksi
Tsai # 18 W21X44 63.2” 42 ksi 42 ksi
Engelhardt #5| WI18X60 96” 40.9 ksi 43 ksi
Engelhardt #6 | W21X57 96” 38.4 ksi 36.5 ksi

Table 4.3: Material Properties and Beam Sections of Test Specimens with Welded
Flange-Bolted Web Connections
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In Figs. 4.21 through 4.28, the predictions made by the developed model are
compared with the experimental responses. The analytical responses for Popov
Specimens 1 and 4 are plotted against the experimental results in Figs. 4.21 and 4.22.
Popov Specimens 1 and 4 use the same W18X50 ( Z;/Z=0.75) wide flange section. The

only difference between the specimens 1 and 4 is that five 7/8" diameter A325 bolts are
used in web connection of specimen 1, whereas four 3/4" diameter A325 bolts are used in
specimen 4. Although the model can not account for the difference of the beam web
connection details, the correlation of the analytical and experimental results is reasonable.
For these specimens, the same yield moments as those for all welded connections are
employed in the developed model because the ratio Z,/Z has the relatively large value of

0.75. The analytical results for Popov Specimens 5 and 6 are compared with the
experimental data in Figs. 4.23 and 4.24. Popov Specimens 5 and 6 use the same
W24X76 (z;/2=0.72) wide flange section, but employ different beam web connection

details. The match of the analytical and experimental results for Popov Specimen 5 is
reasonable. However, for Popov Specimen 6 the developed model overestimates the
strength on the positive load side.

In Figs. 4.25 and 4.26 the correlation of the predictions made by the developed
model and the test results for Tsai Specimens 17 and 18 is presented. Tsai Specimens 17
and 18, respectively, use wide flange sections W18X35 (Z;/2=0.66) and W21X44

(Z;/Z2=0.62). From these figures, it can be seen that the match between the analytical
results and test results is good.

The comparison of the analytical and experimental results for Engelhardt
Specimens 5 and 6 is shown in Figs. 4.27 and 4.28. Engelhardt Specimens 5 and 6,
respectively, use wide flange sections W18X60 (z;/2=0.76) and W21X57 (Z;/2=0.68).
For Specimen 5, the same yield moments as those for all welded connections are
employed in the developed model because the ratio Z, /Z has the relatively large value of

0.76. From these figures, it can be found that the match is satisfactory.

The developed model has been applied to eight specimens with welded flange-
bolted web connections to investigate the cyclic moment-rotation relationships. When
compared to the bilinear model, the developed multi-linear hinge model showed
significantly better performance. Reasonable agreement has been established between
model predictions and test results. As before, the agreement has been achieved using a
single set of model parameters.
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4.3 Weighting Factor

To account for general cyclic behavior, the transition from the virgin state to the
fully saturated state is controlled by a weighting factor (Eq.2.48), which is based on the
accumulated plastic rotation. This weighting factor is empirically determined from
calibration to experimental results and analytical results obtained by the fiber model
under various cyclic loading histories. In this study the weighting factor is expressed by
the implicit function of the accumulated plastic deformation. The procedure to obtain the
weighting factor is presented as follows.

1) When the loading follows the curve a-b, the virgin state, in Fig. 4.29, the
weighting factor ®,, for the virgin state is equal to one.

i) When unloading occurs at the point b of the loading path a-b in Fig. 4.29, the
weighting factor for the path b-c is computed as follows.

a) First, the positive bound line for the virgin state is obtained in the
following manner. The position of bound line is determined by drawing
the line with the slope K, at the last yield moment My, on the saturated
moment-rotation relationships and by making the resulting line have a
intercept on the moment axis. The bound line is rotated about its

intersection point with the moment axis to have a slope of K

m3?

where
K3 is the last slope of the virgin moment-rotation relationships.

b) Second, the distances &} from the point of yield to the bound and &P

between the point b and the bound are measured along the moment axis.
The weighting factor for the path b-c is determined by the following

equation.
bwwﬂw—w»}

O, = wab'{l-e 42)

c) If a displacement reversal occurs in the elastic range b-b, while

approaching the negative bound line, the moment-rotation behavior is
elastic until the moment is reached on the previous moment-rotation curve

a-b and deformation continues along this curve a-b- b,. The previous @,
is discarded in this case.

iif) When unloading occurs at the point c of the loading path b-c in Fig. 4.29, the
weighting factor for the path c-d is computed as follows.

a) The negative bound line has the intercept with the moment axis, which is

opposite to the intersection point of the positive bound line with the
moment axis, and has a slope of K};;, where K';f3 is the last slope of the

moment-rotation relationships to describe the path b-c in Fig. 4.29.

b) The weighting factor is written as

bwwﬂw—w»}

W, = O -{l—e 4.3)
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iv) When unloading occurs at the point d of the path c-d, the positive bound line is
rotated about its intersection point with the moment axis to have a slope of
K, where K, is the last slope of the moment-rotation relationships to

describe the path c-d in Fig. 4.29. The weighting factor for the following
loading path can be determined by the similar equation to Eq. 4.2

v) In this study, the value of oi=1 is applied to Eqgs. 4.2 and 4.3. It should be noted
that when a smaller value of o is applied, the moment-rotation relationships
reach the saturated moment-rotation relationships more rapidly.

MA
Positive Bourid Line
"""""" S e
bl V/ d
...... b
< -
0
Km3 . .
ﬂ/é/ Negative Bound Line
K? = K:3

\J

Fig. 4.29: Procedure for Weighting Factor

The developed multi-linear hinge model employing the weighting factor is tested
on a W2Ix57 cantilever similar to Engelhardt Specimen 8, subjected to various
displacement histories. The prediction results made by the developed model are compared
with the analytical results obtained by the fiber model and by the bilinear hinge model in
Figs. 4.30 to 4.35.

In Fig. 4.30, the developed model is tested on repetitive load reversals under the
virgin state and is compared with the fiber model. The agreement is satisfactory. The
bilinear model develops larger strength because it employes a strain hardening ratio
which is intended to model cyclic behavior.

In Fig. 4.31, the comparison for constant displacement amplitude cycles is
presented. From this figure, it can be seen that the transition from the virgin state to
saturated state is reasonably accomplished by the weighting factor. As the number of
cycles increases, the prediction made by the developed model matches better with the
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fiber model results. The bilinear model shows the same performance regardless of the
number of cycles.

For several cycles of small displacement amplitude after a relatively large
displacement in one direction, the performance of the developed model is shown in Figs.
4.32 and 4.33. The correlation of predicted results by the developed model and the fiber
model is reasonable. However, the performance of the bilinear model is rather poor after
a relatively large displacement in one direction.

The developed model is tested on a couple of large displacement amplitude cycles
after several small displacement amplitude cycles and is compared to the fiber model and
bilinear model in Figs. 4.34 and 4.35. The agreement is reasonable. From these figures, it
can be found that for several small displacement amplitude cycles, the developed model
produces the gradual transition from the virgin state to saturated state by using the
weighting factor. After small displacement cycles, the behavior of the developd model is
close to the saturated state and easily reaches that of the fiber model for large
displacement cycles.

The developed multi-linear hinge model has been tested on several irregular
displacement histories. It has been shown that the developed model can produce a smooth
transition from the virgin state to the saturated state by using the weighting factor. When
compared to the bilinear model, the developed model shows significantly better
performance.
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4.4 Calibration of Multi-Linear Hinge Model for Members with Axial Force

4.4.1 Plastic Axial Stiffness

In this section, the response of the multi-linear hinge model is investigated for
modeling bare steel members under combined bending and axial force. The axial force-
deformation relationships for the multi-linear hinge model were calibrated to the fiber
model predictions for an equivalent cantilever, representing each half of a member, as
shown in Fig. 2.22. The axial force-deformation relationships for the virgin state were
calibrated to the monotonic response of cantilever beams. The axial force-deformation
relationships for the saturated state were obtained by calibrating to the envelop curve
through the tips of the saturated forces at various displacement amplitudes. This
calibration process resulted in the axial stiffness parameters listed in Table 4.4. The
superscripts v and s refer to the virgin and saturated state models. In Table 4.4, K,, is the

elastic axial stiffness of the equivalent cantilever beam (axial force per unit axial
displacement). When the initial yield axial force F,; for the virgin state is known, the
remaining yield axial forces F's of the axial force-deformation relationships for two

limiting states can be determined from the yield functions (Eq. 2.32) and yield moment
parameters presented in Table 4.1. In this work, the section yield force, equal to AF go 18

used as the initial yield axial force F o1- Combined with the parameters listed in Table 4. 1,

the parameters presented in Table 4.4 can be used to describe the moment-rotation and
axial force-deformation relationships employed in the multi-linear hinge model as a bare
steel beam-column element.
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In Figs. 4.36 and 4.37, the developed multi-linear hinge model using the
calibrated parameters is compared with the fiber model for a W21x57 cantilever similar
to Engelhardt Specimen 8, under monotonic and cyclic axial loadings. It can be seen that
the chosen parameters for the axial force-deformation relationships are reasonable. Note
that the conventional bilinear hinge model is completely incapable of modeling plastic
axial deformations.

Kf‘; Kf‘;_ Kf‘; Kfsl Kfsl Kfs3
0.001K,, | 0.001K,, | 0.005K, | 03K, | 0.K, | 0.03K,

Table 4.4: Parameters Defining Axial Force-Deformation Relationships

Suppose that a cantilever beam is subjected to constant axial force smaller than
the section yield force. When vertical load is then imposed at the free end of this beam,
yielding due to the bending moment starts to occur at the member support. As the vertical
load is further increased, the yielding spreads over a finite region at the support. The
yielding over the finite region reduces not only the flexural stiffness, but also the axial
stiffness.

The reduction of axial stiffness due to the yielding on the finite region caused by
the bending moment, can not be properly described by the axial force-deformation
parameters presented in Table 4.4. To overcome this difficulty, the length of an
equivalent cantilever beam, for which the plastic axial stiffness of the axial force-
deformation relationships is obtained, is varied according to the level of axial force. To
vary the length of equivalent cantilever beam according to the level of axial force,
empirical relationships were determined from calibration to the fiber model results. The

length L., of equivalent beam for the nonlinear yield surface is expressed as

w = L/{40+27850-¢*L  for 0<p<o02 (4.42)
w = Lf{4.2+998.¢50)} for 0.2<B<0.5 (4.4b)
L., = L/(7-5B) for 0.5<B<1 (4.4c)

where L and [ are the element length and the ratio F/F, of axial force to the section

yield force. For the multi-linear yield surface, the length of equivalent cantilever beam is
written as

« L/{3+200-e(‘8"3)} for 0<B<0.5 (4.52)
L, = L/(12-10-B) for 0.5<B<1 (4.5b)

eq
From Egs. 4.4 and 4.5, it can be found that when the axial force is equal to the section
yield force, the length of equivalent cantilever beam is half of the element length, and as
the value of axial force approaches zero, the length becomes very short and the plastic

axial stiffness becomes very large. For a zero value of axial force, the plastic axial force
is infinite and there is no plastic axial deformation.
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4.4.2 Monotonic Behavior

The bending moment-axial force interaction of the developed model for the virgin
state is shown in Fig. 4.38. In this figure, ‘m.Ly.s.” and ‘n.Ly.s.” denote the multi-linear
and nonlinear yield surfaces, respectively. The developed model using the multi-linear
yield surface matches well with the fiber model under low axial forces, but
underestimates the strength for relatively large axial forces. The developed model using
the nonlinear yield surface matches well with the fiber model regardless of the level of
axial force, except that as the axial force increases, the discrepancy between the predicted
initial yielding force by both models increases. The developed model with the multi-
linear yield surface produces initial yielding at a smaller load for relatively large axial
forces than the developed model with the nonlinear yield surface. This can be attributed
to the fact that the multi-linear yield surface has a smaller yield moment for relatively
large axial force than the nonlinear yield surface, as shown in Fig. 2.7.

Even though there is some difference between the developed and fiber models, the
predicted results by the developed model with the nonlinear yield surface are reasonable.
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Fig. 4.38 : Bending Moment-Axial Force Interaction of Multi-Linear Hinge Model for
Monotonic Loading with Constant Axial Force

4.4.3 Cyclic Behavior

To investigate the bending moment-axial force interaction during cyclic loading,
the developed model is applied to Engelhardt specimen 8 subjected to various constant
axial forces and cyclic transverse loading. Since it is difficult to obtain cyclic
experimental data for test specimens subjected to constant axial force, the predicted
results by the developed model are compared with the analytical results obtained by the
fiber model.

Figures. 4.39 through 4.42 present predictions made by the developed multi-linear
hinge model and the fiber model for the cantilever beam subjected to various constant
axial forces and cyclic transverse loading. The response for first order analyses are shown
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in these figures. The legend “n.p.a.d.” indicates that plastic axial deformations are not
considered during the analyses. This is accomplished by forcing the direction of the
normal vector to the yield surface to always follow the direction of the moment axis in
action space. The results with the legend “n.p.a.d.” are obtained by the multi-linear hinge
model with the multi-linear yield surface. The legends "m.1y.s." and "n.Ly.s." stand for
the multi-linear and nonlinear yield surfaces, respectively. The response plots with these
legends include the influence of plastic axial deformations.

The transverse load-displacement relationships obtained from first order analyses
for various constant axial forces are shown in Figs. 4.39. to 4.42. From these figures, it
can be seen that the developed model considering plastic axial deformations matches well
with the fiber model regardless of the level of axial force, and that as the level of axial
force increases, the developed model neglecting plastic axial deformations shows
increasingly poor performance. As the level of axial force increases, the developed model
neglecting plastic axial deformations exhibits more flexible bending behavior than the
other models because the yielding is not shared properly by the axial and bending
stiffness, but concentrated only on the bending stiffness. When plastic axial deformations
are considered in the developed multi-linear hinge model with multi-linear or nonlinear
yield surfaces, performance improves as the level of axial force increases. The model
with the multi-linear yield surface predictes somewhat higher strength compared to the
model with the nonlinear yield surface. This may be explained by the observation that the
normal vector to the multi-linear yield surface is constant during the loading histories, but
the normal vector to the nonlinear yield surface varies and has smaller slope than that to
the multi-linear yield surface. As the direction of normal vector to the yield surface
gradually approaches the direction of the moment axis, a greater portion of the yielding
affects the flexural stiffness, and consequently reduces the bending stiffness.

In Figs. 4.39d to 4.42d, the transverse load-axial deformation relationships for
various constant axial forces are presented. The developed model neglecting plastic axial
deformations produces only the initial elastic axial deformation due to the constant axial
force regardless of the level of transverse load. However, when plastic axial deformations
are considered in the multi-linear hinge model, the axial deformation oscillates and
increases beyond the initial elastic axial deformation as the transverse load is imposed
cyclically and yielding spreads over a finite region at the member support. The axial
deformations obtained by the model with the multi-linear yield surface stop oscillating
and increasing after several cycles of loading. As the level of axial force increases, the
number of cycles increases after which the axial deformations stop oscillating and
increasing. This can be attributed to the fact that the current action point moves along the
yield surface during strain hardening and finally settles on the portion of multi-linear
yield surface (Eq. 2.32¢) to which the direction of the normal vector is that of the moment
axis. The axial deformations obtained by the model with the nonlinear yield surface is
larger during the initial cycles of loading than those by the fiber model, but becomes
smaller than those by the fiber model as the number of cycles increases. Although there is
some difference between the predicted transverse load-axial deformation relationships by
the two models, the agreement is reasonable when the simplicity of the multi-linear hinge
model is considered.



80

W21X57 v | p=0.2py, s

17

60 :?:J

s0- |._L=96'
%: 20 —
&g
> 0
k=)
E
S 204 y

-40 — 7 2
/ g =2
Ay
- — Al 7 e
60 4 el -{--- fiber model

_____ T multi-linear hinge model (n.p.a.d.)

2 -1 ) 0 1 2
Displacement, A (in.)

Fig. 4.39a: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge
Model Neglecting Plastic Axial Deformation Under P = 0.2P,

80

60 - %
40 —

20 —

Load, V (kips)
=t

-20 -

40 —

-60 —

-~~~ fiber model
T multi-linear hinge model (m.Ly.s.

I | | ]
-2 -1 0 1 2

Displacement, A (in.)

Fig. 4.39b: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge
Model With Multi-linear Yield Surface Under P = 0.2P,



90

80

T

-+ PSS T P . ”
=ola s , «
I A PrLiee s, W
222 V. 4 , ”
" 4= = 4 #
L=96 5% ¥ 7
] . d 4
.
4 .

40 —
[

60 —

| W21X57 v} p=02p,,8 s A
|

BN

20 —

Load, V (kips)
o

-20 - iy
40 - ’//, /,i “
/i ,,," . = == g
-60 — Mﬁf—” l “f -~ fiber model
----- T multi-linear hinge model (n.ly.s.)
-80
I I ! !
) -1 0 1 2

Displacement, A (in.)

Fig. 4.39c: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge
Model With Nonlinear Yield Surface Under P = 0.2P,

7 W2IXS7 V| p=02py, 8 .- fiber model
100 —; A e multi-linear hinge model (m.1.y.s.)
] L=96" | ~— multi-linear hinge model (n.l.y.s.)
TN y
/;; 50 — P: ‘1 1\
= 5 L
) : i
> L
g 1 i
s 0 : s
A : 1B
H 1 H
: il
-50 —
multi-linear hinge ﬁlodel (n. -~
I I I
-0.5 -0.4 -0.3 -0.2 -0.1 0.0

Axial Displacement, & (in.)

Fig. 4.39d: Transverse Load-Axial Deformation Relationships Obtained by the Multi-
Linear Hinge and Fiber Models Under P = 0.2P,.



s =
o il ,‘r ;

W2IX57 v | p=03py, 8

o)
S
i
=

Load, V (kips)
o

-60 — L= --- fiber model
7 multi-linear hinge model (n.p.a.d.)

I ] | |
-2 -1 0 1 2

Displacement, A (in.)

Fig. 4.40a: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge:
Model Neglecting Plastic Axial Deformation Under P = 0.3P,.

80

L=96"

60 —

20 —

Load, V (kips)
o

220 =
40 —

-60 — -- fiber model

—— multi-linear hinge model (m.Ly.s.)
-80 T | | |

-2 -1 0 1 2
Displacement, A (in.)

Fig. 4.40b: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge
Model With Multi-linear Yield Surface Under P = O.3Py.



92

80
W2IX57 y 4 p=03p, , 8

‘\I A
L=96"

l

60 —

R

40 —

20

0

220 —

Load, V (kips)

-40 —

-60 — |-~ fiber model

T multi-linear hinge model (n.ly.s.)
-80 T I I I

-2 -1 0 1 2
Displacement, A (in.)

Fig. 4.40c: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge
Model With Nonlinear Yield Surface Under P = 0.3P, .

----- fiber model
""""" multi-linear hinge model (m.l.y.s.)
— multi-linear hinge model (n.Ly.s.)

5

RS
1

)

'

'

1

'

' H
| H
'

'

'

1

1

1

1

'

1

]

1

1

e Rz

Load, V (kips)

i

i
i
1

LA .

mul-t_i-linear hinge model (n.p.a.d.)
i ] | I
-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Axial Displacement, 8 (in.)

Fig. 4.40d: Transverse Load-Axial Deformation Relationships Obtained by the Multi-
Linear Hinge and Fiber Models Under P = 0.3p,.



Load, V (kips)

--- fiber model
T multi-linear hinge model (n.p.a.d.)

-80 I ] I |
2 1 0 1 2

Displacement, A (in.)

Fig. 4.41a: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge
Model Neglecting Plastic Axial Deformation Under P = 0.4P,.

80
60| 7 W21X57 v | p=04py, 3
40— L=96" |

20 —

Load, V (kips)
o

220 —
-40 —
60— - fiber model

—{— multi-linear hinge model (m.Ly.s.)
-80 | ] T I

-2 -1 0 1 2
Displacement, A (in.)

Fig. 4.41b: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge
Model With Multi-linear Yield Surface Under P = 0.4P,.



94

30

W21X57

—

40~ | L=96"

60 —

2 20
&£

> 0
g

3

S 20—

40 —

60+ £ 5 28 -1--- fiber model

[~ multi-linear hinge model (n.Ly.s.)
-80
] | | |
-2 -1 0 1 2

Displacement, A (in.)

Fig. 4.41c: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge
Model With Nonlinear Yield Surface Under P = 0.4P,.

7 W21X57 v | p=0.4py, 5 ... fiber model
100 "-41\1 A e multi-linear hinge model (m.ly.s.)
L=96" — multi-linear hinge model (n.l.y.s.)
o]
/m\ 50 - 1Y
& i N
= i SN
> i S EE
o : R
50 : e
5 a T
-50 .’ Yoy '
multi-linear hinge model (n.p.a.d.)
| I I | ] |

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
Axial Displacement, 8 (in.)

Fig. 4.41d: Transverse Load-Axial Deformation Relationships Obtained by the Multi-
Linear Hinge and Fiber Models Under P = 0. 4P, .



80

“

40 1-96"

20 —

Load, V (kips)
=)

20
40 -
-60 — --- fiber model

—1— multi-linear hinge model (n.p.a.d.)
-80 | T | I

2 -1 0 1 2
Displacement, A (in.)

Fig. 4.42a: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge
Model Neglecting Plastic Axial Deformation Under P = 0.5P,.

80

60 — "3:] W21X57 v I p=0.5py, &
# R
|

0o L1=96"

20 —

Load, V (kips)
o

220 —
_40 ]
-60 — --- fiber model

—{— multi-linear hinge model (m.Ly.s.)
-80 T ] T |

2 -1 0 1 2
Displacement, A (in.)

Fig. 4.42b: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge
Model With Multi-linear Yield Surface Under P = 0. 5P, .



96

W21X57 v 1

\IA“‘

40 - 1=96" |

2 20—
)

> 0

E

S 204

40 —

-60 -}--- fiber model
1 multi-linear hinge model (n.ly.s.)
-80 | | T |
-2 -1 0 1 2

Displacement, A (in.)

Fig. 4.42c: Comparison of Predicted Results by Fiber Model and Multi-Linear Hinge
Model With Nonlinear Yield Surface Under P = 0.5P,.

100 - LR fiber model
A T~ _ 1A e multi-linear hinge model (m.l.y.s.)
— multi-linear hinge model (n.l.y.s.)
= 50 —
2, !
£ ¥
>
o H
8 0 .
3 |
-50
multi-linear hinge model (n.p.a.d.)
] ] I
-2.0 -1.5 -1.0 -0.5 0.0

Axial Displacement, 8 (in.)

Fig. 4.42d: Transverse Load-Axial Deformation Relationships Obtained by the Multi-
Linear Hinge and Fiber Models Under P = 0.5P, .



97

4.4.4 Second Order Analyses

The transverse load-displacement and transverse load-axial deformation
relationships obtained by second order analyses are shown in Figs. 4.43 to 4.49. In the

results predicted by the fiber model, the member P —§ (Eq. 2.95b) and system P - A

(Eq. 2.95c) effects are included. In the multi-linear hinge model, the system P — A effects
only are included. In Figs. 4.43 to 4.45, the analytical results for Engelhardt Specimen 8
subjected to various axial loads are presented. The predicted results for Popov Specimen
2 with various axial forces are presented in Figs. 4.46 to 4.49. To obtain the prediction
made by the fiber model for Popov Specimen 2, the cyclic stress-strain parameters
employed for the fiber model were first calibrated to the experimental results for the
specimen subjected to no axial force. It was found that the parameters were the same as

those listed in Table 3.1 except that the cyclic steady curve parameter n_ is 0.15 and the

shape factor is 20. The prediction made by the fiber model is compared with the
experimental data in Fig. 4.46

From Figs. 4.43 to 4.49, it can be seend that as far as the transverse load-
displacement relationships are concerned, the multi-linear hinge model shows the same
trends as in the first order analyses. As the level of axial force increases, the developed
model neglecting plastic axial deformations exhibits more flexible behavior than the other
models considering plastic axial deformations. When plastic axial deformations are
considered in the multi-linear hinge model with the multi-linear yield surface, better
performance is achieved as the level of axial force increases. The model with the
nonlinear yield surface shows good agreement with the fiber model for Engelhardt
Specimen 8, and produces somewhat smaller strength than the fiber model for Popov
Specimen 2. In general, when plastic axial deformations are considered in the multi-linear
hinge model, the model shows reasonable performance.

As far as the transverse load-axial deformation relationships are concerned, the
multi-linear hinge model exhibits somewhat erratic behavior. For Popov Specimen 2, the
developed hinge model produces similar results to those obtained by first order analyses.
However, for Engelhardt Specimen 8, the model with the nonlinear yield surface
produces much smaller axial deformations regardless of the level of axial force than the
fiber model, and the model with the multi-linear yield surface shows better performance
as the level of axial force increases. This can be attributed to the following. To account
for the reduction of axial stiffness due to yielding on a finite region caused by bending
moment, the length of the equivalent cantilever beam is determined from the empirical
formulas (Egs. 4.4 and 4.5), which are calibrated to predicted results by the first order

analyses of the fiber model. The member P —§ effects are included in the second order
analyses of the fiber model, but are not included in the multi-linear hinge model.

Thus, when second order effects are considered, somwhat inaccurate axial force-
plastic axial deformation predictions may result from the multi-linear hinge model.
Nonetheless, the predictions are still considerably improved over conventional hinge
models that totally neglect plastic axial deformations. More importantly however, the
transverse load-displacement relationships are predicted quite well by the developed
multi-linear hinge model. Consideration of plastic axial deformations in the model
formulation results in significantly better predictions of flexural yielding behavior. The
ability to better predict the transverse load-displacement response of steel columns should
permit more accurate predictions of steel moment frame response under earthquake
excitations.
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4.5 Summary

In this chapter, the calibration and verification of the multi-linear hinge model
have been presented. First, the beam behavior of the model was investigated. For all
welded connections, the predicted results by the model were compared with experimental
data for five test specimens. The agreement was reasonable. The model was also applied
to eight test specimens with welded flange-bolted web connections. The correlation
between the predicted results and experimental data was acceptable. To account for the
transition from the virgin state to the saturated state, a weighting factor was determined
through calibration to experimental data and to predictions made by the fiber model. The
predictions made by the model employing the weighting factor matched well with the
analytical results obtained by the fiber model. Second, the column behavior of the model
was investigated. The multi-linear hinge model considering plastic axial deformations
exhibited reasonable performance in the first and second order analyses. In general, the
multi-linear hinge model showed significantly better performance than the bilinear hinge

model and could properly model the beam-column behavior of bare steel members in
moment resisting frames.



Chapter 5: PANEL ZONE ELEMENT

5.1 Introduction

In this chapter, an element is developed for modeling the cyclic load-deformation
response of the panel zone region at the beam-column joint of a steel moment frame. The
panel zone is the portion of the column contained within the beam-column joint. When a
moment frame is subjected to lateral loads, high shear forces develop within the panel
zone. The resulting deformations of the panel zone can have an important effect on the
response of the frame in both the elastic and inelastic ranges of frame behavior (Tsai
1988).

Numerous tests have been performed in the past two decades to investigate the
load-deformation behavior of the joint panel using connection subassemblies. Some
significant observations from these tests are:

i)Joint panel zones often develop a maximum strength that is significantly greater
than the strength at first yield. However, large inelastic panel zone deformations
are typically required in order to develop maximum panel zone strength.

ii) Panel zone deformations can add significantly to the overall deformation of a
subassembly, for both elastic and inelastic behavior of the panel zone.

iii) Panel zone stiffness and strength can be increased by the attachment of web
doubler plates to the column within the joint region. The effectiveness of doubler
plates is affected by the method used to connect them to the column.

iv) In the inelastic range, panel zones can exhibit very ductile behavior, both for
monotonic and cyclic loading. Experimentally observed hysteresis loops are
typically very stable, even at large inelastic deformations.

The Uniform Building Code, since its 1988 Edition, permits the formation of
plastic hinges in the panel zones of steel moment frames under earthquake loading. Thus,
rather than forming flexural hinges in the beams or columns, the primary source of
energy dissipation in a steel moment frame can be the formation of plastic shear hinges in
the panel zones. Consequently, an analytical model is needed to predict the cyclic
inelastic response of a panel zone.

To include panel zone deformation in frame analysis, the traditional center-to-
center line representation of the frame must be modified. Figure 5.1 shows a comparison
of experimental results and analytical results for Krawinkler Specimen A-1 (Krawinkler
1971). The analytical results are obtained by using center-to-center line dimensions of the
specimen. From the figure it can be seen that the analysis using the center-to-center line
dimension may produce misleading results.

To model the behavior of panel zones in frame analysis, Lui (1985) developed a
joint model based on the finite element method. The model consists of seven elements for
interior beam-to-column joints: one web element, two flange elements (beam elements),
and four connection elements. Although capable of representing a variety of deformation
modes of panel zones, this model employed a simple isotropic hardening rule and
therefore cannot realistically model cyclic behavior. Another disadvantage of this model
is its high computational cost. Other finite element models using more sophisticated
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hardening rules could be developed for the analysis of column panel zones. However, in
this study it was decided to use nonlinear rotational springs as the basis for modeling the
panel zone in the nonlinear dynamic analysis of MRFs because of its simplicity and
computational efficiency.

q.(‘ Krawinkler Specimen A-1
20 — ﬂ iGi beam : W10x15, L=160"
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=9 Hel Q 2’ -
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Fig. 5.1: Comparison of Test Results and Analytical Results Obtained by Using Center-
to-Center Line Dimension Modeling

5.2 General Characteristics of Panel Zone Element

The panel zone element is essentially a rotational spring element, which transfers
moment between the columns and beams framing into a joint (Kanaan and Powell 1973).
The panel element has no dimension and connects two nodes with the same coordinates.
One of these nodes is attached to the element(s) modeling the columns framing into the
joint, as shown in Fig. 5.2, while the other node is attached to the element(s) modeling
the beams. Therefore, the moment transferred by the panel element is related to relative
rotation between the columns and beams framing into a joint. The vertical and horizontal
translations of the two nodes are constrained to be identical so that the column and beam
ends move together. Therefore, one vertical, one horizontal, and two rotational degrees of
freedom exist at each joint.

The relative rotation between the connected nodes is related to the node rotations
as follows:

de,
dd = {1 -1} {dej} (5.1)

d®

[a] {dr} (5.2)
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where d® is the increment of relative rotation (panel element deformation), and df; and
dB; are the increments of rotation of the connected nodes. The symbol v is frequently
used in the literature to represent panel zone deformation. This symbol reflects the shear
deformation. The value of 7 is the same as the value of @ as defined above.
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b) Idealization of Interior Joint

Fig. 5.2: Idealization of Beam-to-Column Joint

Then the tangent stiffness relationship is
dMP? = K, dd (5.3)
where dMP? is the increment of moment applied on a joint and K is the tangent stiffness

of the joint. In terms of nodal rotations, the stiffness, [KT], is given by
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[Kr] = [a]" K, [a] (54)
The definable properties of a panel element are the rotational stiffnesses and yield
moments. In the following sections, existing panel zone models for monotonic loading
are reviewed, and an improved model is proposed. This is followed by the development
of hysteretic rules for a cyclic loading model.

5.3 Mathematical Models for Monotonic Behavior of Panel Zones

5.3.1 Review of the Existing Models

Three researchers (Fielding 1971; Krawinkler 1971; Wang 1988) have proposed
their mathematical models to predict panel zone behavior under monotonic loading.
They are briefly reviewed below.

The boundary forces on a joint panel shown in Fig.5.3 can be transformed into an
approximate equivalent shear force from equilibrium as follows;

Veg= —2——2% - 0.5 (Vg + V)

pa
-t M s My (5.52)

(1-p) ' (5.5b)

or

dy, —t
p= b~ Tof

where H,

MP? = My, + M,, = panel zone moment
M,; =moment in beam on left side of panel zone
M,, = moment in beam on right side of panel zone
V. = shear in column on top side of panel zone
V, = shear in column on bottom side of panel zone
, = depth of beam cross-section
t,; = thickness of beam flange
H, = column height
M, = moment in column at top of panel zone (Fig. 5.3)
M, = moment in column at bottom of panel zone (Fig. 5.3).

A key simplification in this analysis is that the beam moments are replaced by an
equivalent couple, with the forces acting at mid-depth of the beam flanges. These forces
produce a large shear in the panel zone. The shear in the column segments outside of the

panel zone are then subtracted to obtain the net shear force, V., acting on the panel
zone. In obtaining the shear forces in the column segments outside of the panel zone, it is

assumed that points of inflection in the column occur at a distance H_ /2 above and
below the panel zone.
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The three researchers proposed panel zone moment M™ -panel zone deformation

Y relations for monotonic loading, which are based on the equivalent shear force Ve

Fielding proposed a bilinear relationship, as shown in Fig. 5.4a. Krawinkler and Wang
each proposed different trilinear panel zone moment-panel zone deformation relations, as
shown in Fig. 5.4b. In the following paragraphs, the formulations of these panel zone
moment-panel zone deformation relations are presented in detail.
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a) Panel Boundary Forces

b) Equivalent Panel Shear Forces

Fig. 5.3: Boundary Forces and Equivalent Shear Forces on Panel Zone
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a) Fielding's Bilinear Model ~ b) Krawinkler and Wang's Trilinear Models

Fig. 5.4: Existing Panel Zone Moment-Panel Zone Deformation Models

In the elastic range, these three researchers all assumed that the in-plane stiffness
of the beams framing into the column is sufficiently large to justify the assumption of
rigid boundaries around the panel zone. Therefore, the shearing stress is uniformly
distributed throughout the panel, and the elastic stiffness of the panel zone is determined
by considering the area of the panel zone web. Fielding and Krawinkler considered the

effective shear area of (d, — tef)-t.,,, where the subscripts ‘c’, “f’, and ‘w’ stand for

column, flange, and web, respectively. They suggested the yield moment and elastic
stiffness of panel zones as follows:

T '(dc _tcf)'tcw 'db

mpa = ¥ (5.62)
Y (1~p)

K. = Mga — G- (dc - tcf) " tow - db (5 6b)
) Ty 1-p) .

Neglecting the contribution of column flanges in resisting panel zone shear in the
elastic range and considering an effective shear area of (dc - 2tcf) ‘tew. Wang
suggested the following yield moment and elastic stiffness

%y ] (dc - 2tcf) “low (db - tbf)
(1-p)
K, = Mga - G- (dc - 2tcf) “lew - (db - tbf)
Yy (1-p)
where T, is the Von Mises yield shear stress of the column web, based on shear and axial

Mga = (5.7a)

(5.7b)

force interaction. The Von Mises yield shear stress T, is taken as:

— o, 2
L =gl - (p/p,) (5.7¢)

where P and P are axial force and axial yield force on the column, respectively, and c,
is the yield stress of the column web.
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For the inelastic range, different formulas were presented in the models. Fielding
considered the elastic bending stiffness of the column flange for the post yield stiffness as
shown in Fig.5.5b and proposed a bilinear model, with:

G-bor-t.d
K, = 5.2:G-bgs - tor 58)
dp-(1 - p)

The other researchers, Krawinkler and Wang, each proposed different empirical
formulas for the post-elastic stiffness. Krawinkler’s model is shown in Fig. 5.5¢. It
consists of an elastic-perfectly plastic shear panel surrounded by rigid boundaries with
springs at the four corners. Krawinkler assumed that these springs simulate the resistance
of the elements surrounding the panel zone, in particular the bending resistance of the
column flanges and that the spring stiffness can be approximated by

— E ) bcf ) tzf
. 10 K, (5.9a)
From the work equation and Eq.5.9a the post elastic stiffness K, is obtained
pa .G-b..-t.2
K, = AM _ L04-G b, t, (5.9b)
Ay (1-p)

where AM™ = AV, -(0.95d,)/(1 — p). Wang assumed that when strain hardening
started( vy, =3.5Y,), plastic hinges formed at the four corners of the column flanges

shown in Fig. 5.5d. From this assumption the post elastic stiffness K, is
AMPE
AYsh
where AM = AM ;. Ay, = 2.5 Yy» and M, is the plastic moment of column flange.

Note that the three researchers all considered the contribution only of column flanges in
the post elastic stiffness K.

K, = = 0.7-G by - t 42 (5.10)

Krawinkler and Wang assumed that strain hardening begins at vy, = 4yyand
3.57y, respectively. Both researchers considered strain-hardening effects of the panel

zone and proposed a tri-linear model. The strain-hardening branch stiffness K, was
suggested as follows:

K, = G, - Ay d,
] (1 -p)
where the effective shear A, is (dC —t,)t,, and (d, -2tcf)tcw for Krawinkler and
Wang, respectively.

(5.11)

The existing models have been applied to four specimens tested by Krawinkler
(1971), Fielding (1971), and Slutter (1981), as shown in Figs. 5.6a to 5.6d. Material
properties and the type of connection for these specimens are presented in Table 5.1.
Figures 5.7 to 5.10 show test results compared with the three existing models discussed
above. Additional comparisons are shown in Figs. 5.11 to 5.16. In these figures, finite
element analysis predictions are provided for Slutter's Specimen 1. This specimen was
analyzed a number of times, varying the column flange thickness. These analyses were
reported by Wang (1988). The finite element analyses provide an indication of the
expected response of panel zones in columns with thick flanges. Only limited
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experimental data is available for cases with thick column flanges. In Figs. 5.11 to 5.16,
the finite element predictions are compared with the predictions of the simplified models.

AVeq
—_—
ry
dp
2
dp
Y AVeq _ 2BEbgi}
P — aY dy
AVeq
a) Panel Zone b) Fielding's Model
Rotational Spring Plastic Hinge
AVeq 5 \ AVeq

AVeq
My = Gy by -t% /4
Ayg, =25 ¥,
AV __AMy 4K AV, _ M (1-p
A  0.95d,AY 0.95d, MYy, 2.57,(d, —ty)
c). Krawinkler's Model d). Wang's Model
Fig. 5.5 Post Elastic Stiffness Models
Test Yield Stress (ksi) [ Connection | Doubler Continuity
Specimen Beam Column Type Plate Plate
Web |Flg. [Web [Flg.
Krawinkler A |52 41.5 41 40.5 | fully welded no yes
Krawinkler B [46.5 [38.5 [47 42.5 |fully welded no no
Fielding 31.4 129.35[33.3 [29.55[fully welded no yes
Slutter 1 41.8 |41.8 [42.2 [37.7 |bolted web-| no yes
welded flg.

Table 5.1 Material Properties and Connection Types



119

& _
W8X24 A
¢6k J6k o J6k Jék .
“
W10X15 T
[t " 156" iy
< 126 —>1 > 40"
< H » Y
7 P=0.33Py
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Fig. 5.6c): Fielding's Specimen Fig. 5.6d): Slutter's Specimen 1
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Fielding's bilinear model shows the poorest performance at large rotations
regardless of column flange thickness because this model neglects strain-hardening. The
performance of Krawinkler's model appears acceptable for panel zone joints with column
flange thickness less than about one inch. However, for thicker column flanges, this
model significantly overestimates panel zone strength. It appears that Krawinkler's model
significantly overestimates the contribution of the column flanges. Wang's model
generally underestimates panel zone strength regardless of column flange thickness
apparently because in this model, the effective shear area of the panel zones is calculated

as (dC - 2tcf) “tew instead of the other models’ effective shear area (dC ~ tcf)'tcw.

= Krawinkler Specimen — -
E 800— tcf=0.4 - ——
]
e
= |
mv 600 I
a —

= |

[Ty

5 400

=

g

] )

% 20044y = wang

=y e krawinkler

-—-- fielding
0 | | I I |
0 10 20 30 40 50x10

PANEL ROTATION, y
Fig. 5.7: Comparison of the Existing Models and Test Data for Krawinkler Specimen A2
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Fig. 5.8: Comparison of the Existing Models and Test Data for Krawinkler Specimen B2
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Fig. 5.10: Comparison of the Existing Models and Test Data for Slutter Specimen 1
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5.3.2 Modification of the Existing Models

In this study, simple modifications will be applied to Fielding’s model and to
Wang’s model to provide better correlation with test and FEM results. Modifications to
both models are accomplished as follows. i) The effective shear area is calculated as

de -te, for both models because, as the ratio of column flange thickness to column

depth increases, the influence of column flange thickness on panel yield moments and
elastic stiffness increases. ii) For Fielding’s bilinear model, assuming that strain-

hardening starts at 4- Yy, strain-hardening effects are added to account for the fact that
this model performs well except at large panel rotations.

The modified panel moment-rotation relationships are described as follows. For
both models the elastic stiffness K_ and yield moment M?* are

M cd -t - (d -
Ko=o- = G-d (ltcvi pgdb tur) (5.12a)
y
T .d - c{d. —
MP = Ty - de -ty - (dy—ty) (5.12b)

(1-p)
For the modified Fielding model, the post elastic stiffness K, and the second yield
moment Mg, at which the strain hardening starts, are
_ 52-G-b, -t
1 d,-(1 - p)
15.6-7T, b -t
d, '(1 - P)

For the modified Wang model, the post elastic stiffness K, and the second yield moment
ME are

(5.13a)

ME = MR+ (5.13b)

AMP?

Kl = —sh _ 0'7'G'bcf'tcf2 (5.14a)
AYsn

ME = MP* + AM? = M + G, b, -t (5.14b)

For both models the strain hardening stiffness K, is
Gy - dc - tow - (db _ tbf)

(1-0p)

K, = (5.15)

5.3.3 Comparison with Test and FEM Results

Figures 5.17 to 5.26 show comparison of the modified models with test results
and FEM results for various column flange thicknesses. From these figures it can be seen
that these simple modifications have improved the performance of the two models
(Fielding and Wang) except for Krawinkler Specimen B2. The modified models
underestimate the panel zone strength of Krawinkler Specimen B2 by about 13 %. This
can be attributed to the fact that the modified models cannot properly model unusual

premature strain hardening effects due to a very short yield plateau (e = 4.4¢ ) of the

stress-strain relations of the column web. In this comparison the thickest column flange
was t.e = 1.775". In actual design practice, even thicker column flanges may be used,
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perhaps on the order of 3 to 5 inches. Additional test or FEM predictions for such column
sections are needed to further verify these simple models. No such data was found in the
literature.

Krawinkler specimen A2 e
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Fig. 5.17: Comparison of the Modified Models and Test Data for Krawinkler Specimen
A2
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0 2 4 6 8 10 12x10
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Fig. 5.18: Comparison of the Modified Models and Test Data for Krawinkler Specimen
B2
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5.4 Hysteretic Rules for Cyclic Behavior of Panel Zones

5.4.1 Review of Existing Models

A couple of hysteretic models have been developed to describe the cyclic
behavior of panel zones. The first model is based on bilinear kinematic hardening, and
has been mostly used in the dynamic analysis of MRFs. The second model, which was
developed by Wang (1988), is based on a multi-linear hardening rule. This model shows
better correlation with test data than the bilinear model.

Figure 5.27 shows a comparison of the bilinear model and test data for the panel
zone of Krawinkler specimen Al. The existing bilinear panel model shows poor
performance. The model underestimates the strength by about 80 percent. The overall
subassemblage displacement obtained by the bilinear panel zone model with the beam-
column element developed in Chapter 2 are compared with the experimental response in
Fig. 5.28. The figure shows that the analytical results underestimate the strength of the
test subassemblage as in Fig. 5.27. From this discussion it can be concluded that the
behavior of the panel zone can play an important role in the overall responses of moment
resisting frames and a realistic model for the panel zone is needed.

5.4.2 Description of the Proposed Model

In this study, hysteretic rules for the panel zone are developed based on Dafalias’s
bounding theory. This model also uses Cofie’s rules for the movement of the bound line,
as discussed in Chapter 3. Based on observations from experimental and FEM analyses of
panel zones, it has been found that for large plastic rotations, the shear strain in the panel
zone are distributed nearly uniformly within the panel, and the value of joint rotation is
close to the value of the average shear strain in the panel (Wang 1988). Therefore, it is
assumed that the panel zone moment-rotation relationships can be determined from the
material properties of the panel zone using Cofie’s rules. These rules for the movement of
the bound line, which were developed for stress-strain relationships, will be adopted for
the panel zone moment-rotation relationships.

1500
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-~ M Y

£ 1000 ( A Mb,)

& [

= pa —emm
8 5004 M =Mpr+Mor [ : , :
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I |
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Fig. 5.27: Comparison of Test Results and the Existing Bilinear Panel Model for the
Panel Zone
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The main feature of Cofie’s model is that the cyclic steady state curve is used to
describe the movement of bounding line (see Chapter 3). In this study, the same kind of
cyclic steady state curve is developed to describe the movement of the bounding line for
the cyclic behavior of panel zones, as follows:

pa pa ¢
YoM [ M (5.16)
Y, M™  (0.85-M™

where M}" and vy, are the normalizing panel moment and corresponding elastic rotation,
respectively. By comparison with available cyclic test data, it has been empirically found
that the constant C of the cyclic steady state curve is 4.2 to 4.4.

Experimental and FEM results suggest that column flanges do not significantly
influence panel zone stiffness during cyclic loading, but do have a significant effect on
panel zone strength. From FEM results for joints with the same dimensions except
column flange thickness, it has been found that the effect of column flange thickness on

the strength of the joint during cyclic loading can be normalized by M (Wang 1988).
MP =MP +2M (5.17)
where M, is the plastic moment of column flange. The elastic rotation corresponding to
the normalizing moment M* is
Ta = MP/K, (5.18)

To describe the inelastic behavior of the joint during cyclic loading the shape
factor is employed, which was first used for cyclic stress-strain relationships by Dafalias

(1975). The procedure for obtaining the shape factor h is as follows:
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)

—A <«
sin

i) Choose the point A such that 1_16 < , as shown in Fig. 5.29.

1
2

i) Calculate the shape factor from h = %— + a—iA“ . {ln(i&] - IJ
Yp p 8A
n h
iif) Normalize the shape factor by the plastic stiffness of the bound line h = —
K

P

It has been determined that a shape factor h of 20 for the inelastic curves of panel
zones, as shown in Figs. 5.30a, provides a good correlation with experimental data. It has
been also found that an elastic limit factor o of 1.4 and a plastic stiffness of the bound

line of Kgl =0.008K provide good correlation with experimental data. The position of

the initial bound line is determined by drawing the line with the slope of the bound line at
the point with the corresponding slope on the cyclic steady state curve and making the

resulting line intersect the moment axis. The plastic stiffness K§ at the point A as shown

in Fig. 5.29 is calculated by using the shape factor h and the plastic stiffness of the bound
line Kgl, as follows:

-~
K;‘ = K‘; 1+h—A (5.19)
5in'SA

The corresponding tangent stiffness Kf‘ is determined by using the elastic stiffness K,
and the plastic stiffness KpA
A
KA Ke ’ Kp

5.20
‘ K, + K;* (5:20)

Bound Line

¥, = panel plastic rotation

aM P2 oM $a= elastic limit range after unloading
y .
YP

Fig. 5.29: Shape Factor for Inelastic Behavior
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The bounding line is updated whenever load reversals occur. The procedure for
shifting the bounding line is presented below.

i) Whenever unloading occurs, the mean values and the amplitude for the last half
cycle of loading history, as shown in Fig.5.30b, are calculated.

MP =0.5(M} + M5 (5.212)

Yo = 0-5(75\2\ + Yga) (5.21b)

M, =0.5 IMT -My (5.22a)
P 0.5 P P

Ya =051, — 7, (5.22b)

where the subscripts ‘m’ and ‘a’ stand for a mean value and an amplitude,
respectively.

if) Calculate the difference between the moment amplitude M}* and the moment MP
on the cyclic steady curve corresponding to the rotation amplitude, y™
AMP = M — M (5.23)

iii) If AM™ >0, cyclic hardening is predicted to take place in the next excursion.
Update the bound by moving it outward by an amount equal to 2F, (AMpa / Mﬁ“),
where F, is the hardening factor.

(M /ME),,, = (ME /M), — 2F, (ame /M) (5.24)

iv) If AM™ <0, cyclic softening is predicted to take place in the next excursion.
Update the bound by moving it inward by an amount equal to 2F; (AMPa/ Mﬁ“),
where Fg is the softening factor.

(ME/MP) | =(ME/ME) | —2F (AMP /M) (5.25)

v) Further move the bound by an amount equal to FMF, where F, is the mean
value relaxation factor.

(Mg /M) =M /M) ~Fme (5.26)

5.4.3 Comparison with Experimental Results

The developed panel zone hysteretic rules are compared with test results for the
specimens shown in Figs. 5.6a to 5.6d and in Figs. 5.31a to 5.31d. Material properties and
panel zone details for the specimens in Figs. 5.31a to 5.31d are presented in Table 5.2.
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Test Yield Stress (ksi) Connection | Continuity| Vertical
Specimen| Beam Column | Doubler| Type Plate Plate
Web | Flg. [ Web [Flg. [ Plate

Slutter 2 [41.8 [41.8 [422 [37.7 | 63.5 |bolted web- yes no
welded flg.

Slutter4 [47.4 |41 [423[39.1 | 43.5 [bolted web- yes no
welded flg.

Popov2 |46.4 [46.4 149 [49 49 bolted web- yes no
welded flg.

Popov3 |38 38 149 149 49 bolted web- no no
welded flg.

Popov4 |38 38 149 |49 49 bolted web- yes no
welded flg.

Popové6 |38 [38 [49 149 no bolted web- yes yes
welded flg.

Popov8 [43.5 [43.5160 |60 49 bolted web- yes yes
welded flg.

Table 5.2: Material Properties and Joint Details for Test Specimens

A vertical stiffener plate is attached approximately at mid-width of the panel zone
in Popov’s specimens 6 and 8. This is intended to represent a connection plate for a floor
beam framing in from the perpendicular direction. In the analyses of Popov’s specimens 6
and 8, the vertical stiffeners are not considered under the assumption that the resistance of
these stiffeners to the panel zone shear forces is negligible.

Continuity plates are used to transfer beam flange forces to the column web in the
specimens, except in Krawinkler’s specimen B and Popov’s specimen 3. If no continuity
plates are required, the flange forces are assumed to be directly transferred to the column
web. This detail can be used only if the column flanges are sufficiently thick. From
comparison of test results for specimens with and without continuity plates, it has been
reported by Popov (1985) that as far as the stiffness and strength of the panel zone were
concerned, the test results showed little difference. Even though the monotonic and cyclic
response rules for the panel zone are calibrated to test specimens with continuity plates,
no modification is attempted to account for the behavior of panel zones without
continuity plates under the above observation and the assumption that the validity of the
panel zone tests is not dependent on the use of continuity plates.

For some specimens a doubler plate is used to increase the capacity of the panel
zone. Test results (Becker 1971) showed that for every load level, except maximum load,
the strain in the doubler plate was significantly less than that in the column web. Thus,
the doubler plates were not fully effective. To include the contribution of a doubler plate
in resisting panel zone shear, the panel yield moment, the elastic stiffness, and the strain
hardening stiffness are modified as follows. By considering the limited participation of a

doubler plate in resisting panel shear, the elastic stiffness K. and the strain hardening
stiffness K, are obtained
G-(d, - t, +R; -ty - Wy, )-(d, —ty)

= (5.27)
(1-0p)
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K, = GSt ) (dc ) tcw_'_Rf'tdp.vvdp) ] (db B tbf) (528)
: (1 - p)

where t,, and W, are the thickness of a doubler plate and the width of a doubler plate

between column flanges, respectively, and R; is the reduction factor to account for the
strain incompatibility between a doubler plate and column web. The panel yield moment
M® is
T, -(d. -t +R,-t, W, ). (d —t
Mga — y ( c cw f “dp dp) ( b bf) (529)
(1-p)

When the yield stress of the doubler plate is different from that of the column web, two
panel elements are employed in parallel instead of using Eqns. 5.27 to 5.29.

Figures 5.32 to 5.37 show the comparison of the analytical response obtained by
the hysteretic rules and test results for the panel zones with no doubler plate. In Fig. 5.32,
the test results for Krawinkler’s specimen A1 are plotted against the predictions made by
the developed model. The match is good for the cycles in which large deformations are
imposed. For the first few cycles in which small deformations are imposed, the
predictions are not as good.

Figure 5.33 shows results for Krawinkler specimen A2. The model works better in
this case than for specimen Al. The difference between the prediction and test results is
very small in any cycle. Specimens Al and A2 are identical except that these specimens
are tested with two different loading programs. For specimen A2, a large strain amplitude
is applied for the first half cycle, causing large plastic deformation (far beyond the onset
of strain hardening) in the panel zone. The model seems to work better for a large strain
amplitude for which strain hardening effects are fully developed than for a small strain
amplitude.

The analytical results for Krawinkler specimen B1 are plotted against the
experimental response in Fig. 5.34. The match is good on the negative moment side, but
the model somewhat underestimates the strength on the positive side. The experiment
shows different strengths for positive and negative moment. The reason for this
unsymmetrical experimental response is unclear.

Figures 5.35 to 5.37 provide additional comparisons between analytical and test
results. These figures show a good correlation between test and analyses.

The developed model has been applied to six specimens with no doubler plate. In
spite of the simplicity of the model, reasonable agreement has been established between
model predictions and test results. In the following paragraphs, the model will be applied
to the specimens with a doubler plate and compared with the test results.
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In Figs. 5.38 to 5.41, the analytical results are compared with test results for
specimens with doubler plates. In these specimens, the yield stress of the doubler plates is
approximately the same as that of the column web. In the analyses, the reduction factor of
R;=0.4 was applied to account for strain incompatibility between the column web and
the doubler plate. For the small strain amplitude cycles, the difference between the model

predictions and experimental responses can be explained by the same reason as in the
discussions for the specimens with no doubler plate. From Fig. 5.41, it can be seen that
plate area is included in the model, the stiffness

even though less than half of the doubler
ger than that of test results. The doubler plate apparently

of the analytical model is lar
provides little increase in panel zone stiffness at low loads. In general, the analytical
results obtained by using the reduction factor of R;=0.4 show fair agreement with test
results in spite of the complexity of the problem.
Figures 5.42 and 5.43 show the comparison of the analytical and experimental
results for specimens with a doubler plate, for which the yield stress of the doubler plate
is different from the column web. Since the yield stress of the doubler plates is much
ebs, two panel elements are employed in parallel to

different from that of the column w
obtain the analytical results. For Slutter specimen 2, in which the yield stress (0y=63.5

ksi) of the doubler plate was larger than that (0y=42.2 ksi) of the column web by about 50
%, the reduction factor of R;=0.6 was applied to take into account the limited
participation of the doubler plate in resisting the panel shear. For Popov specimen 8, in
which the yield stress (0y=49 ksi) of the doubler plate was smaller than that (0y=60 ksi)

of the column web by about 18 %, the reduction factor of R;=0.1 was used . From the
above discussion, it can be seen that reliable model predictions are difficult to obtain for
cases where doubler plates have a yield stress significantly different from the column

web.
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5.5 Summary

The objective of the study in this chapter was to develop a model to describe
cyclic panel zone behavior. First, the existing models for monotonic loading were
reviewed and improved to obtain better correlation with experimental results. Second,
hysteretic rules for cyclic loading were developed and the parameters needed for the
developed hysteretic rules were determined through calibration with available
experimental data. From the comparison of the analytical results with test results for the
specimens with a doubler plate, it was found that doubler plates were only partially
effective in resisting the panel zone shear. In spite of the simplicity of the model,
reasonable agreement was established between model predictions and test results for
panel zones with no doubler plates. For panel zones with doubler plates, the predictions
of the simple model are not as reliable.



Chapter 6: COMPOSITE BEAM ELEMENT

6.1 General

To investigate the effect of a composite concrete floor slab on the seismic
behavior of moment resisting frames under earthquake loading, an analytical model for
composite beams is needed. A composite beam shows complex behavior due to slip
between the concrete slab and the steel beam, and the variation of longitudinal stress
across the width of the slab, which is dependent of the joint details and the loading
pattern. To ideally model the behavior of composite beams during earthquake loading,
these factors should be considered. Although a three-dimensional finite element analysis
can most accurately model the behavior of composite beams, some researchers (Lee
1987; Tagawa et al 1989) have developed two-dimensional discrete member models as a
compromise between simplicity and accuracy. In these models, it is assumed that the
influence of slip and the variation of longitudinal membrane stress on the behavior of
composite beams can be implicitly included in the moment-rotation relationships.

In this chapter, previous research on composite beams is first reviewed, and Lee’s
composite beam model (1987) is then outlined. By modifying Lee’s model, a new model
is proposed and verified by comparing with available experimental results.

6.2 Previous Research

This section summarizes previous research on composite beams subjected to
reverse curvature bending, resulting in positive bending moment at one end of the beam
and negative bending at the other end. Earlier and more extensive research addressed the
behavior of simple span composite beams with positive moment at the midspan. In the
early 1970’s, research began to investigate the behavior of composite beams with positive
moment at the beam end.

The strength and stiffness characteristics of composite beams have been studied
both analytically and experimentally by Daniels et al (1970) and duPlessis et al (1972;
1973). The emphasis of the studies was on the interaction between the column flange and
the concrete slab which was designed to act compositely with the steel beam. The study
showed that the ultimate strength of the composite beam depends on the slab area which
is in contact with the column flange. This study also indicated that, as a lower bound, the
concrete compressive strength can be increased to 1.3f, in computing the ultimate
strength at the connection, because of confinement of the slab near the column.

Tagawa et al. (1986) investigated the elastic-plastic behavior of composite beams
under positive moments. He found that the ultimate bearing stress at the column face was

about 1.8 f_, where f, is the compressive strength of concrete by a standard cylinder test.
He proposed that the contribution of the concrete slab to the ultimate moment could be

determined by using the column width by and the ultimate bearing stress 1.8 f,.

Two one-story, two-bay assemblages with composite beams were tested under
monotonic gravity and lateral loadings by Wenk, et al.(1977). Cyclic test results are
reported by Lu, et al. (1980).
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Few studies have been done on the effective width of the composite slab in
structures subjected to lateral load or earthquake induced forces. Ansourian (1975)
applied the finite element method to study the contribution of the composite slabs to
lateral load resistance of frames.

Uang (1985) and Wallace (1989) tested small scale models of composite beams.
Comparing the model test results with the prototype test results (Lee 1987), Wallace
showed that small scale models can be used to predict global elastic and inelastic
behavior of structures very well.

Recently, Lee(1987) and Tagawa et al (1989) performed experimental and
analytical research, and developed hysteresis models relating end moment to member
rotation for cantilever composite beams. Both models were developed from
subassemblages of steel columns and composite beams. Both models take into account
pinching behavior and stiffness degradation, and employ multi-linear moment-rotation
relationships.

6.3 Summary of Lee’s Composite Beam Model

Modeling of the force-deformation relationship of composite beams as a structural
element for a two-dimensional analysis is a difficult task. The longitudinal membrane
stress is not uniform across the width of the concrete slab. The effective width, which
accounts for the non-uniform longitudinal stress pattern, varies along the beam, and
changes as the moments in the beam change during loading history. Since the non-
uniform effective width variation of slab along the beam changes during the loading
history, the use of a method that starts from the stress-strain relation or moment-curvature
relation is not warranted in a two-dimensional analysis of composite beams. Also, the
behavior of shear connectors is not fully understood, especially under cyclic loading,
even though many researchers (Slutter et al. 1965; Ollgaard et al. 1971; Grant et al. 1977)
have studied the behavior of shear studs under monotonic loading.

However, from the observation of experimental and analytical results, Lee (1987)
suggested that it may be possible to use two bilinear skeleton models (Fig. 6.1) for the
moment-rotation relationships of composite beams. One bilinear skeleton model was
modeled for positive moment and another for negative moment, together with a hysteresis
law (Fig. 6.2) based on a trilinear model, and including the effect of pinching of the
loops. To describe the bilinear skeleton models presented in Fig. 6.1, elastic and post-
elastic stiffnesses, and yield moments are required for positive and negative moments.

6.3.1 Effective Width of Concrete Slab

To define the positive elastic stiffness Kg, the effective width of the concrete slab

is required. Assuming fully composite action, Lee (1987) conducted three-dimensional
elastic finite element analyses to investigate the effects of several parameters influencing
the effective width of composite beams. The parameters considered were aspect ratio
(B/L), column flange width (b), and torsional stiffness of the transverse beam (K,). B is
the total slab width between the mid-distances of adjacent columns and L is the beam
length from the column face to the end of the beam (zero moment). The values of the
effective width for various aspect ratios were suggested by Lee and are reproduced by
curve fitting in this study. When the resulting equation is combined with the increase of
the effective width due to the other parameters, noted above, the effective width can be
defined by Eq. 6.1.
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Fig. 6.1: Moment-Rotation Skeleton Model of Composite Beam (Lee 1987)
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Fig. 6.2: Moment-Rotation Hysteresis Model of Composite Beam (Lee 1987)

ber = 0.19-(1- “IL + b, + 4C7H
t.d, E, 6.1)
where G = the shear modulus of elasticity of steel,
J = the torsional constant of transverse beam,
E, = the modulus of elasticity of concrete,

t. = a slab thickness,

d, = the depth of the transverse beam, measured from the midheight of the
concrete slab.
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For practical purpose, b, can be taken as 0.19L+b.sin Lee's model.

Using the partial interaction theory (Newmark 1951; Robinson 1969) and
experimental results, Uang (1985) and Lee (1987) investigated the influence of a slip on
the effective width of composite beams. The following was found. When the partial
interaction theory employs the stiffness of a shear stud calibrated to the average value of
experimental slip data over the beam length, the theory can properly reflect the effect of
slip on the positive elastic stiffness. However, for the partial interaction theory to be
generally applied to obtain the positive elastic stiffness, more experimental data are
required for the flexible behavior of a shear stud along the composite beam. The
experimental positive elastic stiffness obtained at design load is smaller by about 15 %
than that computed under the full interaction assumption. Later, Lee et al. (1989) used
one quarter of the beam length ( column face to the inflection point) as the effective width
to account for the influence of a slip on the positive elastic stiffness of composite beams.

6.3.2 Ultimate Strength of Composite Beam at Connection

The positive yield moment M; of the skeleton model shown in Fig. 6.1 is

assumed to be a fraction of the ultimate moment at the connection, which can be
estimated based on the plastic stress distribution shown in Fig. 6.3. It has been reported
that the ultimate strength of composite beams is dependent on the slab area which is
contact with the column flange and, as a lower bound, the concrete compressive strength
can be increased to 1.3f'C due to the confinement of concrete near the column (duPlessis
et al. 1973). In Lee’s study, the contribution of the concrete slab to the ultimate strength
is determined by using the column width b, and the concrete compressive stress of

1.4f'c. The plastic neutral axis is determined by solving the following equation for
compressive steel area, Ag:

bcf
|<
0 (o]
y
" Yr
PN.A.
(a) Cross Section (b) Stress Distribution

Fig. 6.3: Plastic Stress Distribution of Composite Beam.
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2ASCF_‘/ == ASFy - 1'4beCftC - AI'Fyr (623)
The ultimate moment at the connection is defined by

' t
MEax = 1-4fcbcftc§’n(1 - 5 .

J + 2ASCFnyC + AsFyYS + ArFerr

n

(6.2b)

where y,, = distance from the neutral axis to the top surface of the slab
Ysc = distance from the neutral axis to the compression resultant of steel
ys = distance from the neutral axis to the tension resultant of steel
yr = distance from the neutral axis to the compression resultant of
reinforcing bars
b.s = column flange width
t, = concrete slab thickness from the top surface to the top of metal deck
A, = total steel area
A, = area of reinforcing bars
F, =yield stress of reinforcing bars.

6.3.3 Moment-Rotation Skeleton and Hysteresis Models

To describe the moment-rotation skeleton and hysteresis models shown in Figs.
0.1 and 6.2, the yield moment, elastic stiffness, and strain-hardening stiffness are required
for each of positive and negative moments. From the experimental results, these
parameters are empirically determined. The elastic stiffness of an equivalent cantilever
composite beam with an effective slab width is

+ +

K¢ = M—+ L for positive moment
0 L (6.3a)
K = %— = % for negative moment (6.3b)

where I is the moment of inertia of a composite section, I” is the moment of inertia of a
bare steel section, and L is the length of the equivalent cantilever beam. The positive

yield moment M;,’ is taken equal to 0.9-M, . . The negative yield moment My is the

plastic moment of the bare steel section. The strain-hardening stiffnesses for positive and
negative bending moments are expressed as fractions of the respective elastic stiffnesses
as follows:

K, =0.025- K 642)
Kg, =0.05-K; (6.4b)

The hysteresis curve (Fig. 6.2), which is created to trace the inelastic behavior of
the composite beam, is based on experimental results and finite element analysis results.
The basic features are the bilinear hysteresis curve of the bare steel beam (loop B-D-E-F)
and a modification for the effect of the concrete slab (line C-A). To model the closing of
the crack at the reloading stage to the positive moment region, the crack closing point C
is empirically chosen. When the crack starts to close (point C), the reloading path will
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follow the line C-A. The rotation at the crack closing point, y-0, is assumed to be one-
half of the maximum rotation 8, .

6.3.4 Stiffness of a Plastic Hinge

Lee's composite beam element is a one component series model in which each
element is represented by an elastic beam with plastic hinges at its two ends. The
inflection point is fixed at an arbitrary point (in the program, the user inputs the data), and

the lengths L' and L are determined, where L* and L are the lengths of equivalent

cantilever beams for positive and negative moments, respectively. The lengths L™ and L~
are assumed by Lee to be 0.7L and 0.3L, respectively. It is then assumed that the stiffness

of the elastic beam element is the elastic stiffness of the composite beam ( EI*), and the

two plastic hinges represent inelastic flexural deformation within the lengths L' and L.
The stiffness of a plastic hinge under positive and negative moments is defined as:

1 1 Lt N (6.5
K* = < - 3BT for positive moment .
p-h t

1 = l_ - L - for negative moment (6.5b)
Kon © Kf  3EI

where K{ is the tangent stiffness of the moment-rotation skeleton and hysteresis models
based on the flexural rigidity of the composite beam EI* and LY, and K is the tangent

stiffness based on the flexural rigidity of a bare steel beam EI” and L—. It is noted that
the plastic hinge stiffness formulation accounts for the reduction of elastic stiffness under
negative moment.

6.4 Improvement of Lee's Composite Beam Model

In this study, a new hysteretic moment-rotation model, which is a modification of
Lee’s hysteretic moment-rotation model, is developed. In the composite beam element,
the capability to account for the influence of a moving inflection point on the element
stiffness is added.

6.4.1 Hysteresis Behavior of Composite Beam

Lee’s skeleton model (Fig. 6.1) is employed as the monotonic moment-rotation
relation for a plastic hinge. The basic parameters to describe the monotonic relations are
determined through calibration to available experimental data (Uang 1985; Lee 1987;
Tagawa 1986, 1989). In Lee’s approach, the effective width of L/4 is applied to calculate
the positive elastic stiffness, where L is the beam length from the column face to the
inflection point. In this work, however, the minimum of the following three criteria
(LRFD Specification 1994) determines the effective width of the concrete slab on each
side of the beam center-line for computing positive elastic stiffness:

L/8
b, /2 (6.6)
b

es

b

effS
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where L is the beam span, center to center of supports, b_ is the distance from the beam
center-line to the center-line of the adjacent beam, and b, is the distance from the beam
center-line to the edge of the slab. Using the effective concrete slab width, the moment of
inertia of a composite section I, is calculated. To account for the influence of slip
between the concrete slab and the steel beam on the positive elastic stiffness, the moment

of inertia I" applied to the positive elastic stiffness is assumed to be a fraction of I _.
From the available experimental results, it has been found that I* equal to 0.85-1_ is

reasonable. To obtain the moment of inertia I~ used for the negative elastic stiffness, the
steel beam section and reinforcing steel bars within the effective slab width are

considered. The negative yield moment My is the plastic moment of both the steel beam
section and reinforcing steel bars within the effective width. The contribution of the

concrete slab to the ultimate moment M}, . at the connection is determined by using the

column width b and the concrete compressive bearing stress of 1.3f'C (duPlessis et al.
1973). The plastic neutral axis is determined by solving the following equation for
compressive steel area, Ag;:

2AcFy = AFy —1.3f bst, — A Fy; (6.72)
From Fig. 6.3 and Eq. 6.7a, the ultimate moment at the connection is written as

' t
M;ax =13fcberteyy (1 - i) + ASCFnyC + (As —Age )F}'YS + ArFerr (6.7b)
n

where A, is the area of reinforcing steel bars within the effective slab width. The positive

yield moment M; is assumed to be a fraction of My, . From the available experimental

data, it has been found that the positive yield moment M;f of 0.95M;,.x is reasonable.

The strain-hardening stiffnesses for positive and negative bending moments are the same
as those suggested by Lee (1987).

The proposed hysteretic moment-rotation model of a composite beam is shown in
Fig. 6.4. The model is divided into positive and negative moment regions by an inclined

neutral line, which has the slope K, and passes through the origin of the coordinate

system. The envelope of the positive moment curve and the bound lines in the negative
and positive moment regions are taken from the monotonic model.

The stiffness degradation in the negative moment region is illustrated in Fig. 6.4a.
The factor o defines the ratio of the negative linear elastic range to the negative yield
moment. The factor o is determined empirically by examining the available experimental
results (Uang 1985; Lee 1987; Tagawa 1986, 1989), and is chosen to be:
o=0.5 v (6.8)

Figure 6.4b shows the stiffness degradation, pinching, and strength deterioration
for the positive moment region. The stiffness degradation begins at the inclined neutral
line. The effect of pinching and strength deterioration are represented, respectively, by
the vy and B factors, which are determined empirically by examining available
experimental data:

y=0.2 (69)
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B=0.05 (6.10)
It is noted that whenever the crack starts to close (point F) after the crack opens, the
reloading path will follow the linear crack closing line F-A .

Curve
M * otonic BBV elop® ~_——
M . Mo - A
y Ksh
Positive Bound Line
—_— | Ko
K- K
sh

Neutral Line
B

Z »
K oMy 0
K- '
e K;
D . Negative Bound Line
K, M y Negative
inelastic curve
a) Stiffness Degradation for Negative Moment
T Linear Crack Closing
Positive
inelastic curve

s T
e

A@.. =Plastic rotation accumulated
eP for half cycle A-D

b) Stiffness Degradation and Pinching for Positive Moment

Fig. 6.4: Proposed Hysteretic Moment-Rotation Model of Composite Beam
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The negative and positive inelastic curves (lines C-D and E-F) are described by
the plastic stiffness obtained by using the shape factor h (Dafalias 1975). Figure 6.5
shows the plastic stiffness K;\ at an arbitrary point A on the inelastic curve, which is a

function of the shape factor h. The plastic stiffness Kﬁ is determined from the following
equation:

K* = K [1+ﬁ O J 6.11)
in " YA
where &, is the initial distance between the starting point of the inelastic curve and the

corresponding point on the bound line, and 8, is the distance between an arbitrary point
A on the inelastic curve and the corresponding point on the bound line.

The procedure to determine the shape factor h is presented as follows:

i) Choose an arbitrary point A such that T16 < S—A < %
ii) h = 6—2‘ + 82‘ - |In O | 1| (Dafalias 1975)

8 e, O,
1ii) h = Lp

Ksh

By applying the above procedure to the available experimental data, it has been

determined that the shape factors, ﬁn and ﬁp were chosen as 10 and 6, respectively, for
the negative and positive inelastic curves as shown Figs. 6.4a and 6.4b.

M # Bound Line

6, = plastic rotation

—-
o4 )

P

Fig. 6.5: Plastic Stiffness of Inelastic Moment-Rotation Curve

6.4.2 Element Stiffness Matrix

The proposed composite beam element is a one component series model in which
each element is represented by an elastic beam with plastic hinges at its two ends. The
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element has the capability to account for the influence of a moving inflection point on the
element stiffness. It is assumed that the inflection point does not change during a small
load or time step and the inflection point obtained at the end of the previous load step can
be applied to the next load step. At the end of a load step, the inflection point is
determined from the linear moment distribution induced by earthquake motions alone,
under the assumption that the moment distribution due to the gravity load is not
significant when compared to that due to earthquake excitations.

According to the inflection point obtained at the end of the previous load step, the

lengths L' and L' are determined, where L' and L' are the lengths of equivalent
cantilever beams for positive and negative moments. It is then assumed that the stiffness

of the elastic beam element is the elastic stiffness of the composite beam ( EI*), and the
two plastic hinges at the member ends I and J represent inelastic flexural deformation

within the lengths L' and I'. The stiffness of each of the two plastic hinges is defined as:

I
1 —= il __L — for plastic hinge of end I (6.122)
K} K 3E
1 1 T . (6.12b)
R — for plastic hinge of end J '
K, K 3EI

where K| is the tangent stiffness of the hysteresis moment-rotation model based on the

equivalent cantilever length L', and K/ is the tangent stiffness based on the length L.

In the local coordinate system, the element can be assumed as a simply supported
beam after the rigid body motions are removed. The element deformations in the local
coordinate system can be represented by three relative deformations shown in Fig. 6.6.
The flexibility relation of a simply supported beam is formulated in a matrix form as

ds f, 0 0] (dF
1| _ . I
do’r=| 0 f,, f,;|-{dM (6.13a)
de’ 0 f,, fy dm’
or
dv = F, ds (6.13b)
L
f,=—
where EA
L 1 1
f22 = + + I +
3EI" K, GAL
L 1
f :f =+ —
%7 6EI* GALL
L 1 1

[ =t +
¥ 3EI" K, GAL
A, = effective shear area of composite beam.

The element stiffness matrix is obtained by inverting the flexibility matrix which
results in the form,
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ds = K, -dv (6.14)
in which K, = F,”!

L X

Fig. 6.6: Relative Deformations of Composite Beam Element

6.5 Comparison to Experimental Results

To investigate the behavior of the proposed model, comparison of analytical and
experimental results for available composite beam test specimens is presented in this
section. In the next chapter, the developed composite beam element, combined with the
developed beam-column and panel zone elements will be applied to subassemblages and
frames with a concrete slab.

The cross-sections of composite beams of two small-scale specimens CG3 and
CG4 (Uang 1985) and full-scale specimens EJ-WC (Lee 1987), Tagawa 86 (Tagawa
1986), and Tagawa 89 (Tagawa 1989) are shown in Fig. 6.7. The other dimensions and
material properties are listed in Table 6.1 and Figs. 6.8 to 6.13. The only difference
between the specimens CG3 and CG4 is that the metal deck in specimen CG3 is sand-
blasted before pouring the concrete, whereas in specimen CG4 it was not sand-blasted.

12" 0.56"1 _
= fr 3§ 350 frgee e ke
/ i 1 3,, '__I__‘ lll
00.214@4" 00.0625@1"
WI18X35 M6X4.4

a) Specimen EJ-WC b) Specimens CG3 and CG4
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78.74" 147.6"
- ok -
1.18"; . 1.38") _ .
e el [T F 13394 Fr==—=-F il e
/ il 295"/ il 2.95"
00.236@3.94" 00.236@3.94"
H300X150X4.5X6(mm) W14X30
¢) Specimen Tagawa 86 d) Specimens Tagawa 89
Fig. 6.7: Cross-Sections of Test Specimens (Lee 1987; Uang 1985; Tagawa 1986,
1989).
Test Steel Yield Stress (ksi) Reinforced Concrete
Specimen Beam Column Steel Strength (ksi)
Web | Flange | Web [Flange| Strength (ksi)
Uang CG3 [41.5 [37.0 no no 79 4.26
Uang CG4 [41.5 [37.0 no no 79 4.26
Lee EI-WC|[37.8 [36.65 [39.2 [364 60 5.1
Tagawa 86 |43.8 [40.61 [ no no no 3.96
Tagawa 89 [47.86 [41.10 [54.68|41.48 51.63 3.55

Table 6.1: Material Properties of Test Specimens (Lee 1987, Uang 1985, and Tagawa
1986, 1989).

Figure 6.8 shows the comparison of experimental and analytical results of Lee’s
specimen EJ-WC. The specimen was an exterior joint assemblage, and its beam was
connected to the column web by connecting plates. The comparison shows good
agreement until the bottom flange of steel beam develops severe local buckling. The
comparisons of experimental and analytical results of Uang’s specimens CG3 and CG4
are presented in Figs. 6.9 and 6.10. The comparisons show reasonable agreement until
local buckling occurs at the bottom flange.

The correlation of the experimental and analytical results for the specimen
Tagawa 86 is shown in Figs. 6.11 and 6.12. The analytical and experimental results are
the beam moment-rotation relations at point A of the subassemblage shown in Figs. 6.11
and 6.12. In the analytical results shown in Fig. 6.11, the effect of reinforcing bars was
not considered because the yield stress of reinforcing bars was not available. The
analytical model develops much smaller strengths for the negative and positive moments
than the experiment, and shows more flexible behavior on the negative moment region
than the experiment. In Fig. 6.12, the analytical results in which the effect of reinforcing
bars is considered, are presented. The yield stress of reinforcing bars was assumed to be
that of the steel beam. The correlation of the experimental and analytical results is greatly
improved by accounting for the effect of the reinforcing bars.

The comparison of the experimental and analytical results for the specimen
Tagawa 89 is presented in Fig. 6.13. The agreement between the experimental and
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analytical results is reasonable except that the analytical model overestimates the strength
for small amplitudes of rotation.

From the comparisons, it has been shown that the developed composite beam
element can reasonably model the strength, stiffness, pinching, and stiffness degradation
of a composite beam until local buckling of the beam bottom flange occurs.

60
= | Wizxes(weak axis)
gl |/ I
40— 8 P, A
i? —————
% 90.55"
O
E 20 - N
f Specimen EJI-WC
- 0
<
3
—
220 -
10 AlmemazzazEE — experiment
- composite beam model
T | | |
-3 -2 -1 0 1 2 3

Displacement, A (in.)

Fig. 6.8: Comparison of Experimental and Analytical Results of Specimen EJ-WC
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Fig. 6.9: Comparison of Experimental and Analytical Results of Specimen CG3
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Fig. 6.10: Comparison of Experimental and Analytical Results of Specimen CG4
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Fig. 6.11: Comparison of Experimental and Analytical Results of Specimen Tagawa 86
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Fig. 6.12: Comparison of Experimental and Analytical Results of Specimen Tagawa 86
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Fig. 6.13: Comparison of Experimental and Analytical Results of Specimen Tagawa 89
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6.6 Summary

In this chapter, a composite beam element has been developed by modifying the
model proposed by Lee. In the hysteretic model of the developed element, a smooth
transition from the elastic stage to the inelastic stage and the strength deterioration at the
linear crack closing stage were considered. The capability to account for a moving
inflection point was added in the element. The predicted resuits by the developed element
matched reasonably well with the experimental results before local buckling dominated
the experimental response.



Chapter 7: APPLICATION OF MODELS TO SUBASSEMBLAGES
AND FRAMES

7.1 Introduction

In the previous chapters, the multi-linear hinge element, nonlinear panel zone
element, and composite beam element were developed for bare steel beams and columns,
column panel zones, and composite beams. The performance of each element was
investigated by comparison with experiments on isolated components. In this chapter, to
investigate the interaction between these analytical elements for the various components
of a structure, the elements are combined into steel subassemblages with and without a
concrete slab and into steel frames with and without a concrete slab. Overall and local
analytical responses are compared with experimental data and with the results predicted
by the existing bilinear hinge element and the bilinear panel zone element.

To model bare steel subassemblages and frames, the multi-linear hinge elements
with multi-linear yield surfaces are combined with nonlinear panel zone elements, unless
the columns are oriented in the direction of the weak axis bending. The member end
eccentricities as shown in Fig. 5.2 are considered to model the joints of structures instead
of the center-to-center line representation of structures. To model steel subassemblages
and frames with concrete slabs, the multi-linear hinge elements with multi-linear yield
surfaces and composite beam elements are combined with nonlinear panel zone elements.

The structural P-A effects are included in the analyses. For both the existing bilinear

hinge element and bilinear panel zone element, the ratio of the strain hardening stiffness
to the elastic stiffness of 0.03 is employed.

7.2 Bare Steel Subassemblages and Frames

In this section, bare steel subassemblages and frames are analyzed by the multi-
linear hinge element and nonlinear panel zone element developed in the previous
chapters. Material properties and panel zone details of the available test specimens
(Krawinkler 1971; Popov 1975; Popov 1985; Engelhardt 1994; Wakabayashi 1974;
Carpenter 1973) for bare steel subassemblages and frames are presented in Tables 5.1,
5.2,and 7.1.

The comparison between the experimental data and the analytical results obtained
by the multi-linear hinge and nonlinear panel zone elements for Krawinkler Specimens
A-1 and A-2 is shown in Figs 7.1a through 7.2d. The results predicted by the bilinear
hinge and bilinear panel zone elements are also compared with the experimental data. To
facilitate the discussion, the analysis by the multi-linear hinge and nonlinear panel zone
elements will be referred to as "Analysis 1", and the analysis by the bilinear hinge and
bilinear panel zone elements will be referred to as "Analysis 2". Specimens A-1 and A-2
are identical except that these specimens are tested with two different loadin g programs.

Figures 7.1a and 7.2a show the comparison of overall responses obtained by the
test and Analysis 1. The agreement between the experimental and analytical results is
good. Figures 7.1b and 7.2b show the comparison of overall responses obtained by the
test and Analysis 2. The correlation of the experimental and analytical results is quite
poor. In Figs 7.1c, 7.1d, 7.2¢, and 7.2d, the comparisons of local responses obtained by

displacement control (Ramm 1980) for the horizontal displacement A at the bottom of the
column are presented. The horizontal force-beam rotation relations are presented in Figs.

163



164

7.1c and 7.2c. In Figs. 7.1d. and 7.2d the panel moment-rotation relations are shown. As
far as the strength is concerned, Analysis 1 produces significantly better results than
Analysis 2. However, as far as rotation is concerned, both analyses show some
discrepancies.

Test Yield Stress (ksi) Connection | Doubler
Specimen Beam Column | Doubler | Type Plate
Web | Flg. | Web | Flg. |Plate Thickness

Engelhardt 2B 442 |41.4 |58.6 |56.9 | no fully welded, no

Popov C2 38 |38 3251325 | n/a fully welded| 0.25"
Wakabayashi FCO | 37.7 | 37.7 |37.7 |37.7 | n/a n/a n/a
Wakabayashi FC5 | 37.7 [37.7 |37.7 |37.7 | n/a n/a n/a

Carpenter Frame Al 41.1 |34.7 |35.7 [352 | n/a fully welded| 0.1875"

Carpenter Frame B{ 41.6 [34.7 |42.5 |37.7 | n/a fully welded,  0.1875"

* n/a = not available.

Table 7.1: Material Properties of Test Specimens (Engelhardt 1994, Popov 1975,
Wakabayashi 1974, and Carpenter 1973).

Figures 7.3a and 7.4a show the comparison of overall responses obtained by the
test and Analysis 1 for Specimens B-1 and B-2, respectively. Specimens B-1 and B-2 are
identical but are subjected to different cyclic loadings. The analytical results obtained by
the multi-linear hinge and nonlinear panel zone elements (Analysis 1) match well with
the experimental data. In Figs. 7.3b and 7.4b, the results predicted by Analysis 2 are
plotted against the experimental data. The overall analytical results obtained by the
bilinear hinge and bilinear panel zone elements (Analysis 2) are acceptable. The
comparisons of local responses obtained by displacement control for the horizontal

displacement A shown in Fig. 7.3a are presented in Figs 7.3c, 7.3d, 7.4c, and 7.4d. The
horizontal force-beam rotation relations are presented in Figs. 7.3c and 7.4c. In Figs.
7.3d. and 7.4d the panel moment-rotation relations are shown. The positive and negative
maximum beam rotations predicted by Analysis 2 are much smaller than those predicted
by the test, and the corresponding panel rotations predicted by Analysis 2 are much larger
than the experimental data. However, the beam rotations and panel rotations obtained by
Analysis 1 are much closer to the experimental data than those predicted by Analysis 2.

Based on the experimental data, the panel zones of Specimens A-1 and A-2 are
the weakest element when compared with the other elements (the yielding of the beams is
very limited and the columns remain elastic). The difference between local deformations
predicted by Analysis 1 and Analysis 2 for Specimens A-1 and A-2 is therefore not
significant. However, the experimental data indicates that significant yielding occurs in
both the beams and the panel zones for Specimens B-1 and B-2 (the yielding of the
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beams is more severe than that of the panel zones). Consequently, in the analysis it is
necessary for the yielding to be properly distributed between the elements. For the
yielding to be properly distributed between the elements during the analyses, the
analytical elements for the structural components should be able to accurately model the
mechanical behavior of the structural components. Since the multi-linear hinge and
nonlinear panel zone elements have the capability to more accurately model the
mechanical behavior of the structural components, as shown in chapters 4 and 5, the local
deformations predicted by Analysis 1 are much better than those obtained by Analysis 2.

When the structure shown in Fig. 7.1a is analyzed by displacement control for the
horizontal displacement A, the corresponding horizontal force H is obtained such that it is

equilibrated with the member forces of the structure caused by a given displacement A. ‘
Therefore, the local responses obtained by displacement control for the horizontal

displacement A are actually obtained by force control for the member forces in
equilibrium with the horizontal force H. When the force-deformation relations obtained
by force control are compared with the experimental data, the discrepancy between the
displacements obtained by the experiment and the analysis for the same force may be
large due to a small stiffness in the inelastic range. This is the reason that even though the
multi-linear hinge and nonlinear panel zone elements can reasonably model the
mechanical behavior of the structural components as shown in chapters 4 and 5, there are
some discrepancies between the experimental data and the local responses predicted by
Analysis 1. If the more refined analytical models for the structural components employ
the specific parameters suitable to a given test specimen which are required to describe
the material properties, the discrepancy between the local responses predicted by the test
and the analysis for the given test specimen will decrease. However, when the more
refined analytical elements employ the general parameters as employed to describe the
material properties in this work, it is not guaranteed that they can always produce more
exact local responses than the multi-linear hinge and nonlinear panel zone elements.
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nonlinear panel zone model
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-6 -4 -2 0 2 4 6
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Fig. 7.1a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Krawinkler
Specimen A-1 (Krawinkler 1971).
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Fig. 7.1b: Comparison of Experimental and Analytical Results Obtained by Bilinear
Hinge Model and Bilinear Panel Zone Model for Krawinkler Specimen A -
1(Krawinkler 1971).
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Fig. 7.1c: Comparison of Experimental and Analytical Horizontal Force-Beam
Rotation Relations of Krawinkler Specimen A-1 (Krawinkler 1971).
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Fig. 7.2b: Comparison of Experimental and Analytical Results Obtained by Bilinear
Hinge Model and Bilinear Panel Zone Model for Krawinkler Specimen A-2
(Krawinkler 1971).
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Fig. 7.2¢c: Comparison of Experimental and Analytical Horizontal Force-Beam
Rotation Relations of Krawinkler Specimen A-2 (Krawinkler 1971).
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Fig. 7.2d: Comparison of Experimental and Analytical Panel Moment-Rotation
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Fig. 7.3a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Krawinkler
Specimen B-1 (Krawinkler 1971).
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Fig. 7.4b: Comparison of Experimental and Analytical Results Obtained by Bilinear
Hinge Model and Bilinear Panel Zone Model for Krawinkler Specimen B-2
(Krawinkler 1971).

Krawinkler Specimen B-2

s SeSi ;"_:7%'— experiment
404 T multi-linear hinge model
""""" bilinear hinge model

| | I I

-40x10°° 20 0 20 40
BEAM ROTATION, 8 (in.)

HORIZONTAL FORCE, H (kips)

Fig. 7.4c: Comparison of Experimental and Analytical Horizontal Force-Beam
Rotation Relations of Krawinkler Specimen B-2 (Krawinkler 1971).



173

4000 -
- py M P =M b1+M b Krawinkler Specim_en B-2
2 ‘\Mbl M ) '
a br
o,
=
2
O i
Q2000 // A
% & =] =+ experiment
A i LD nonlinear panel zone model
-4000 I — bllhnear panel zlone model
3
-30x10 220 -10 0 10 20 30

PANEL ROTATION, v (rad.)
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Figures 7.5a through 7.9b show comparisons of the analytical and experimental
results for the Popov specimens (Popov 1985). To account for strain incompatibility
between the column web and the doubler plate, a doubler plate area of 40 %, as used for
the study of panel zone behavior in the chapter 5, is used for the analyses of Popov
Specimens 2, 3 and 4. For the analysis of Specimen 8, a doubler plate area of 10 % is
used. Since the yield stress of the doubler plate is much different from that of the column .
web, two panel elements are employed in parallel to obtain the analytical results of
Specimen 8. From both the tests and the analyses, it has been found that for these
specimens the yielding is largely confined to the panel zones and is very limited in the
beams.

As far as the overall response predicted by Analysis 1 for the Popov Specimens is
concerned (see figures with the subscript “a”), the agreement between the experimental
and analytical results is reasonable. The strength for the overall response obtained by
Analysis 2 (see Figs. 7.5b and 7.6b) is underestimated by about 50 %. The strength for
the local response obtained by Analysis 2 (see Figs. 7.5¢ and 7.6c¢) is also underestimated
significantly. Since the yielding in these specimens is confined to the panel zones, the
difference between local deformations predicted by Analysis 1 and Analysis 2 is not
significant. The panel rotations predicted by Analysis 1 are also compared with the
experimental data in Figs. 7.7b, 7.8b and 7.9b. The correlation of the local deformations
predicted by the tests and the analyses is acceptable.

In Figs. 7.10a to 7.10c, the analytical and experimental results of Engelhardt
Specimen 2B (Engelhardt 1994) are presented. This subassemblage involves a 36" deep
beam member and a very heavy column member. These members are significantly larger
than used in other cyclic loading experiments. From the test and the analysis, it has been
found that the yielding is mainly concentrated in the beam. The overall responses
obtained by Analysis 1 are compared with the experimental data in Fig.7.10a. The
analytical results match well with the experimental data. However, the strength for the
overall response predicted by Analysis 2 is underestimated by about 20 % (see Fig.
7.10b). In Fig. 7.10c, the beam moment-relative beam rotation relations are presented.
Since the yielding is confined to the beam, the difference between the beam rotations
predicted by Analysis 1 and Analysis 2 is not significant.
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Fig. 7.5a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Popov Specimen 3

(Popov 1985).
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Fig. 7.5b: Comparison of Experimental and Analytical Results Obtained by Bilinear
Hinge Model and Bilinear Panel Zone Model for Popov Specimen 3 (Popov
1985).
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Fig. 7.6a: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Popov Specimen 6
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Fig. 7.6b: Comparison of Experimental and Analytical Results Obtained by Bilinear
Hinge Model and Bilinear Panel Zone Model for Popov Specimen 6 (Popov
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Fig. 7.8a: Comparison of Experimental and Analytical Results Obtained by Multi-
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Fig. 7.10a: Comparison of Experimental and Analytical Results Obtained by Multi-
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Specimen 2B (Engelhardt 1994).

Figures 7.11a to 7.11f show comparisons of experimental and analytical results
for Popov Specimen C-2 (Popov 1975). This specimen is subjected to a large axial force

of 0.6P ,in which P is the section yield force of the column. Since the yield stress of

the doubler plate was not reported, it was adjusted for the analysis of the specimen such
that the analytical panel response matches well with the experimental data. In Fig. 7.11a,
the analytical panel response obtained by the nonlinear panel zone element is compared
with the experimental data. For the analysis, the value of 42 ksi is used as the yield stress
of the doubler plate and two panel elements are employed in parallel due to the
difference between the yield stresses of the column web and the doubler plate.

For Popov Specimen C-2, two doubler plates are attached to both sides of the
column panel zone. The entire area of two doubler plates is used for the analysis. From
the comparison of the experimental and analytical elastic stiffnesses (Fig. 7.11a), it can be
seen that the doubler plates participate well in resisting the panel shear, as compared to
the case discussed in chapter 5, where a doubler plate is attached to only one side of the
panel zone.

The overall response predicted by the multi-linear hinge element and the
nonlinear panel zone element (Analysis 1) is plotted against the experimental data in Fig.
7.11b. The analytical results match well with the experimental data. However, the
strength for the overall response predicted by the bilinear hinge element and the bilinear
panel zone element (Analysis 2) is underestimated by about 30 % (see Fig. 7.11c). The
beam moment-rotation relations and the column moment-rotation relations predicted by
Analysis 1 and Analysis 2 are presented in Figs. 7.11d and 7.11e, respectively. In Fig.
7.111, the analytical panel responses are compared with the experimental data. The
maximum local deformations predicted by Analysis 2 are much smaller than those
obtained by Analysis 1. The maximum positive and negative panel rotations predicted by
Analysis 1 are more reasonable than those by Analysis 2 when compared to the
experimental data. From the comparison of the column responses predicted by Analysis 1
and Analysis 2, it can be seen that the bilinear hinge element overestimates the reduction
of the moment capacity due to the axial force.



182

4000
1/4" doubler plate on both sides Popov Specimen C-2
pa
g (Mbl y( M =Myp+My
g, 2000 —
=
B
% 0
@]
=
g -2000
A fmommmm :':'_'_'_:'_'_'_'.'_:'_'_‘_'_'-'-'-"_-_’ ——————— )
— experiment
- nonlinear panel zone model
-4000 I T T
-30x107 -20 -10 0 10 20

PANEL ROTATION, 7 (rad.)

Fig. 7.11a: Comparison of Experimental Results and Analytical Panel Moment-
Rotation Relations Obtained by Nonlinear Panel Zone Model for Popov
Specimen C-2 (Popov 1975).

Popov Specimen C-2

z 4
=
Q
—

-20 —

S — experiment
---- multi-linear hinge model
-40 — nonlinear panel zone model
I |
-4 -2 0 2 4

DISPLACEMENT, A (in.)

Fig. 7.11b: Comparison of Experimental and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Popov Specimen
C-2 (Popov 1975).



183

7
40 - G@LLB Popov Specimen C-2

LOAD, H (kips)
o

220 -
— experiment
----- bilinear hinge model and
-40 — bilinear panel zone model
I |
-4 -2 0 2 4

DISPLACEMENT, A (in.)

Fig. 7.11c: Comparison of Experimental and Analytical Results Obtained by Bilinear
Hinge Model and Bilinear Panel Zone Model for Popov Specimen C-2
(Popov 1975).

1500
Popov Specimen C-2

1000 —

500 —

-500 —

-1000 —

BEAM MOMENT, M (kips-in.)

-1500 ezl multi-linear hinge model

— bilinear hinge model
-2000 | | I |
-15x107 -10 5 0 5 10
BEAM ROTATION, 6 (rad.)

Fig.7.11d: Comparison of Analytical Beam Moment-Rotation Relations of Popov
Specimen C-2 (Popov 1975).



184

1500
Popov Specimen C-2 e
PR /
s /
= 1000 —
R N [T et R SRS, e P ,,
2 .M '
2 500 — Q e} e/
1/ A
2 i 5 ¢
- ’ R4 ",'1;1 "I
Fod 0 R it g
¢ 7 I ’
& ; /4
A e f3
E R4 4 I,ﬁ: ’,
S -500 - S AN,
K /. g g
% -1000 — S ,W
R4 Pl .
4 II ’/"’ - ks
-l K IS
o 4 // e PR
O -1500 Pt multi-linear hinge model
— bilinear hinge model
-2000 I I I
]
-40x10 -20 0 20

COLUMN ROTATION, 8 (rad.)

Fig. 7.11e: Comparison of Analytical Column Moment-Rotation Relations of Popov
Specimen C-2 (Popov 1975).

4000 -
1/4" doubler plate on both sides Popov Specimen C-2
pa
- M =Mp+Mp,
M
- ‘\ bl :Y( Mbr)
& 2000 - .
£
a
=
é 0
o
= ;
g 20004 i i
a :_'1 ---------------------- — experiment
-1 nonlinear panel zone model
4000 | — * bilinear panell zone model
-30x107 -20 -10 0 10 20

PANEL ROTATION, Y (rad.)

Fig. 7.11f: Comparison of Analytical Panel Moment-Rotation Relations of Popov
Specimen C-2 (Popov 1975).



185

In Figs. 7.12a through 7.13d, analytical results predicted by the multi-linear hinge
element for Wakabayashi Specimens FC5 and FCO (Wakabayashi 1974) are compared
with the experimental data and the predictions by the bilinear hinge element. Although
the connection types of these specimens are not reported, the parameters required to
define the moment-rotation relations for fully welded connections are used because the
ratio of the plastic modulus of the flanges to the plastic modulus of the entire beam
section (Z;/Z=0.77) is greater than 0.75. Since the details of the column panel zones are

not reported, it is assumed that the panel zones remain elastic during the analysis as
assumed in Wakabayashi's analyses of the test frames.

Figure 7.12a shows the comparison of the overall response obtained by the test
and Analysis 1 for Specimen FC5 subjected to the relatively large axial forces of

0.516P . The overall response predicted by Analysis 1 matches well with the

experimental data except for the second to the last cycle. The stiffness of the
experimental response in the negative displacement region of the second to the last cycle
is about 10 % larger than the stiffnesses of the other cycles. The reason for this larger
stiffness is unclear. While the strength at the maximum displacement predicted by
Analysis 2 is underestimated by about 34 % (see Fig. 7.12b), the corresponding strength
obtained by Analysis 1 is underestimated by about 8 %. In Figs. 7.12c and 7.12d, the
analytical local responses are presented. From these figures, it can be seen that the
yielding is largely confined to the columns. The bilinear hinge element overestimates the
reduction of the moment capacity due to the axial force. The difference between the
moments at the column base predicted by the multi-linear hinge element and the bilinear
hinge element is about 34 percent.

Figure 7.13a shows the comparison of the overall response obtained by the test
and Analysis 1 for Specimen FCO subjected to no axial force. The overall response
predicted by Analysis 1 matches well with the experimental data. While the strength at
the maximum displacement predicted by Analysis 2 is underestimated by about 18 % (see
Fig. 7.13b), the corresponding strength obtained by Analysis 1 is underestimated by about
7T %. In Fig. 7.13c, the analytical beam moment-rotation relations are shown. The beam
response predicted by the bilinear hinge element remains elastic, but that obtained by the
multi-linear hinge element shows inelastic behavior at the last cycle. From Fig. 7.13d, it
can be seen that the difference between the moments at the column base predicted by the
multi-linear hinge element and the bilinear hinge element is about 24 percent.

From comparison of the overall response obtained by the bilinear hinge element
for the test frames with and without axial forces, it can be seen that the bilinear hinge
element shows less accurate performance for the test frame subjected to the relatively
large axial forces. However, the multi-linear hinge element exhibits consistent
performance regardless of whether or not the structure is subjected to large axial forces.
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Figures 7.14a to 7.15¢ show comparisons of the experimental and analytical
results for Carpenter Specimens Frame A and Frame B (Carpenter 1973). For these
specimens, two doubler plates are attached to both sides of the column panel zone. The
entire area of the two doubler plates is used for the analyses. Two panel elements are
employed in parallel to account for the doubler plates. Since the yield stress of the
doubler plates was not reported and the experimental panel response was not available,
the effect of the yield stress of the doubler plates on the overall responses of the
specimens was first investigated. In Figs. 7.14a, 7.14b, 7.15a, and 7.15b, the overall
analytical response obtained by "Analysis A" and "Analysis B" are compared with the
experimental data. Both Analysis A and Analysis B employ the multi-linear hinge
elements and the nonlinear panel zone elements. While the doubler plates remain elastic
in Analysis A, the yield stress of the doubler plates is the same as that of the column
webs in Analysis B. From these figures, it can be seen that the yield stress of the doubler
plates has little influence on the overall response of the test frames. Yielding of the
doubler plates of the column panel zones appears to have little influence on the overall
lateral stiffness of the frames.

Investigating the overall response obtained by assuming the yield stress of the
column webs equal to that of the doubler plates, the performance of the multi-linear hinge
elements and the nonlinear panel zone elements (Analysis B) is compared with that of the
bilinear hinge elements and the bilinear panel zone elements (Analysis C). In Figs. 7.14c
and 7.15c, the overall response predicted by Analysis C is compared with the
experimental data. From the comparisons of Figs. 7.14b and 7.14c, and of Figs. 7.15b and
7.15c, it can be seen that the combination of the multi-linear hinge elements and the
nonlinear panel zone elements produces more consistent response predictions than that of
the bilinear hinge elements and the bilinear panel zone elements.
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Fig. 7.14a: Comparison of Experimental Data and Analytical Results Obtained by Multi-
linear Hinge Model and Nonlinear Panel Zone Model for Carpenter
Specimen Frame A (Carpenter 1973).
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Bilinear Hinge Model and Bilinear Panel Zone Model for Carpenter Specimen
Frame B (Carpenter 1973).

7.3 Subassemblages and Frames with Concrete Slab

In this section, steel subassemblages and frames with concrete slabs are analyzed
by the composite beam element developed in the previous chapter, combined with the
multi-linear hinge element and the nonlinear panel zone element. Material properties of
the available test specimens (Lee 1987; Wenk 1977) are presented in Table 7.2. The
cross-section of composite beams of Lee Specimens EJ-FC and IJ-FC is the same as that
of Lee Specimen EJ-WC shown in Fig. 6.7a.

Test Steel Yield Stress (ksi) Reinforcing | Concrete
Specimen Beam Column Steel Strength (ksi)
Web [ Flange | Web | Flange | Strength (ksi)
Lee EJ-FC |37.8 |36.65 |354 [34.3 60 5.1
Lee II-FC 137.8 136.65 |37.96[35.1 60 5.1
Wenk CA-11434 (37 n/a_| nfa 48.8 2.97

Table 7.2: Material Properties of Test Specimens with Concrete Slab (Lee 1987 and

Wenk 1977).
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Figures 7.16a and 7.17a show comparisons of panel zone responses of Lee
Specimens EJ-FC and 1J-FC obtained by the test and Analysis A. In these figures,
Analysis A represents the analysis using the nonlinear panel zone element for the panel
zone of bare steel beam-to-column joints. For composite beam-to-column joints, the
presence of the composite slab increases the stiffness and strength of the panel zone
because it effectively increases the depth of the panel zone. However, the nonlinear panel
zone element for bare steel beam-to-column joints does not account for the enlargement
of the panel zone due to the presence of composite slabs. From Figs. 7.16a and 7.17a, it
can be seen that Analysis A can not properly model the experimentally observed behavior
due to the effect of composite slab after crack closure. The nonlinear panel zone element
underestimates the panel zone strength by about 20 % for the exterior composite beam-to-
column joint (Specimen EJ-FC), and by about 10 % for the interior composite beam-to-
column joint (Specimen IJ-FC). In Figs. 7.16b and 7.17b, the overall response predicted
by Analysis A is compared with the experimental data. The analysis using the nonlinear
panel zone element for bare steel beam-to-column joints (Analysis A) underestimates the
overall strength by about 26 % for Specimen EJ-FC, and by about 15 % for Specimen IJ-
FC. When these discrepancies between the experimental and analytical strengths are
compared to those between the experimental and analytical panel zone strengths, it can be
seen that the error in the analysis largely comes from the underestimation of panel zone
strength by the nonlinear panel zone element for bare steel beam-to-column joints.

Since there is little experimental data to model the panel zone behavior of
composite beam-to-column joints, this study does not attempt to develop a panel zone
element for composite beam-to-column joints. However, the parameters to define the
hysteretic rules for the panel zone of bare steel beam-to-column joints, which are
presented in chapter 5, will be adjusted such that analytical panel zone strengths match
well with the experimental panel zone strengths for the limited number of test specimens
with composite beams

The adjusted parameters are listed in Table 7.3. For the exterior composite beam-
to-column joint (Specimen EJ-FC), two different shape factors ﬁmg. and ﬁpos_ are used to
describe the inelastic behavior for the negative and positive panel zone moments,
respectively, because of the unsymmetrical behavior of the exterior joint. The cyclic
factors F, Fg, and F are not considered because they are based on the symmetrical
panel zone behavior of bare steel beam-to-column joints. For the panel zone of the

interior joint, the variable d, used to define the monotonic panel zone behavior (Egs.
5.12t0 5.15) is the depth from the mid-height of composite slab to the steel bottom flange
regardless of the sign of panel zone moment. However, for the panel zone of the exterior
joint, the depth of steel cross-section is used as the value of d, to describe the panel zone
behavior for the negative panel zone moment.
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Fig. 7.16a: Comparison of Panel Zone Response Obtained by the Test and the Nonlinear

Panel Zone Model Using the Material Parameters of Bare Steel Beam-to-

Column Joint for Lee Specimen EJ-FC (Lee 1987).
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i bl ~
Spec:1men o K h
P neg. pos.

>
ou!

Lee EJ-FC | 1.6 0.005K 15 30 0 0 0

Lee II-FC [ 1.6 0.005K 30 30 0 0 10

Table 7.3: Parameters to Define Hysteretic Rules for the Panel Zone of Composite
Beam-to-Column Joints.

Figures 7.18a and 7.18b show comparisons of the experimental data and the
analytical panel zone response obtained by the nonlinear panel zone element using the
parameters shown in Table 7.3. In these figures, "Analysis B" represents the analysis
using the parameters shown in Table 7.3 for the nonlinear panel zone element. In Figs.
7.19a and 7.20a, the overall response predicted by Analysis B is compared with the
experimental data. The agreement between the experimental and analytical results is
reasonable. In Figs. 7.19b and 7.19c, the local response obtained by Analysis B for
Specimen EJ-FC is compared with the experimental data. While the maximum negative
beam rotation predicted by Analysis B is larger by about 50 % than that predicted by the
test, the maximum negative panel zone rotation predicted by Analysis B is much smaller
than that obtained by the test. If the hysteretic rules for the panel zone of composite
beam-to-column joints can properly model the effect of the composite slab after cracks
close, the correlation between the local responses predicted by the test and the analysis
will be improved. In Figs. 7.20b and 7.20c, the local response obtained by Analysis B for
Specimen IJ-FC is compared with the experimental data. The analytical local response
shows that yielding is confined to the panel zone, as in the test.

Wenk et al. (1977) tested a one-story, two-bay steel frame with composite slabs
under combined gravity and lateral loading (Specimen CA-1). Since Specimen CA-1 was
designed for the yielding to be confined to the composite beams, and the panel zones of
the specimen were diagonally braced to remain elastic throughout the test, it is assumed
that the columns and panel zones remain elastic during the analysis. '
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In Fig. 7.21, the overall response predicted by an analysis modeling the composite
beams using the multi-linear hinge elements for bare steel beams is compared with the
experimental data. From this figure, it can be seen that by ignoring the effect of the
composite slab, the overall stiffness and strength of the test frame are underestimated by
about 40 % and 30 %, respectively.

Figures 7.22a and 7.22b compare the overall response predicted by the test and
the analyses using the composite beam element. In the analysis of Fig. 7.22a, the ultimate

moments M obtained by Eq. 6.7b, which is based on the compression yield of

reinforcing bars, are used to determine the positve yield moments M: at the exterior and

+

interior connections. In the analysis of Fig. 7.22b, the ultimate moment M., obtained by

Eq. 6.7b is employed to calculate the positive yield moment M; at the exterior

connection, whereas to determine the positive yield moment M; at the interior

connection, the ultimate moment obtained by a method based on the tension yield of
reinforcing bars is applied.

To determine the ultimate moment at the interior connection, Wenk (1977)
suggested a method based on tension yield of reinforcing bars as follows. Figure 7.23a
shows the maximum slab forces in the positive moment region of the interior joint.

Between the column flange and the slab a maximum force of 1.3f 'cbcftc acts as in Eq.
6.7b, where b .=column flange width and t_=thickness of the slab. Unlike Eq. 6.7b, a
tension force acts in the longitudinal slab reinforcement. The reinforcement is assumed to
have yielded in tension. The maximum tension force is therefore equal to A F ., where
A =area of reinforcing bars within the effective width defined by Eq. 6.6 and F =yield

strength of reinforcing bars. The stress distribution of the composite section in the
positive moment region of the interior joint is shown in Fig. 7.23b. The resultant

maximum slab force is equal to 1.3f;bcftc ~ A F . The plastic neutral axis is
determined by solving the following equation for compressive steel area, A
2AF, =AF -13fb t +AF (7.1a)

sy

From Fig. 7.23b and Eq. 7.1a, the ultimate moment at the interior connection is written as

' t
M;ax :l3fcb t yn 1_ < +A F ysc +(AS _Asc)Fyys —.'A F Yr (71b)

cf "¢ scTy rToyr
2y,

As far as the monotonic behavior is concerned, the analysis using Eq. 6.7b to
determine the ultimate moment at the interior connection overestimates the strength by
about 15 % (Fig. 7.22a), whereas the analysis using Eq. 7.1b overestimates the strength
by about 6 % (Fig. 7.22b). The unloading elastic stiffnesses after the first half cycle of
loading predicted by both analyses do not match well with that predicted by the test.
However, for the rest of loading cycles the unloading elastic stiffnesses predicted by both
analyses match well with that predicted by the test. While the analysis using Eq.6.7b
shows reasonable performance except for the monotonic loading, the analysis using Eq.
7.1b exhibits reasonable performance as a whole. It seems to be more reasonable that for
the analysis of a steel frame with composite slabs, the ultimate moments obtained by Eq.
6.7b and Eq. 7.1b, respectively, are applied to determine the positive yield moments at
the exterior and interior connections.
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Fig. 7.23b: Maximum Stress at Positive Moment Region of Interior Joint (Wenk
1977).

In the following paragraphs, the effect of a moving inflection point on the one
component series model is discussed. The one component series model proposed by
Giberson (1967) for the stiffness formulation of a beam element consists of an elastic
element with two plastic hinges at the ends. All inelastic rotations within a member
length are lumped into these two plastic hinges. In order to estimate the characteristics of
these two plastic hinges, moment distribution along a member must be predetermined and
the inelastic stiffness of sections along the beam must be known. It is often assumed for
members with uniform stiffness that the inflection point is in the middle of the member
and the member end moments are of the same magnitude but have opposite signs (fixed
inflection point during loading history). The inelastic characteristics of the two plastic
hinges are determined such that the plastic hinges represent all the inelastic rotation
within the member. This assumption is not always justified. In reality, the yield condition
at one end of a member depends on rotation at the other end. However, it has been found
that the multi-linear hinge model (Section 7.2) and other one component series models
(Giberson 1967; Goel 1968; Emori 1981; Banon 1981), which are based on the anti-
symmetric moment distribution assumption, are fairly accurate for prismatic girders of
frames subjected to strong earthquake motions or large lateral forces.

In the previous chapter, two bilinear skeleton models and hysteretic rules for
composite beams were developed for an equivalent cantilever composite beam with a
fixed length. However, when a one component series model using the developed
hysteretic rules is applied to model composite beams, difficulties arise because the anti-
symmetric moment distribution assumption is not valid. This assumption is not valid due
to the unsymmetric cross-section of composite beams and the fact that the stiffness of a
composite beam varies as a function of the moving inflection point during loading
history.

In this work, to account for the change of the length of an equivalent cantilever
beam due to varying inflection point locations during the loading history, the equivalent
cantilever beam lengths for positive and negative moments obtained from the linear
moment distribution at the end of the previous load step are applied to determine the
stiffness of two plastic hinges for the next load step (Eq. 6.12). The overall response
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predicted by this approach (Analysis A) for Wenk Specimen CA-1 is compared with the
experimental results in Fig. 7.24a. The agreement between the experimental and
analytical responses is reasonable.

Also, the overall response predicted by the analysis using a fixed inflection point
during entire load steps (Analysis B) is compared with the experimental data and the
response predicted by Analysis A in Fig. 7.24a. In Analysis B, the lengths of equivalent
cantilever beams for positive and negative moments are taken equal to 0.7L and 0.3L
(Lee 1987), respectively, where L is the length of the composite beam. The overall
response predicted by Analysis B matches reasonably well with the experimental data. In
Figs. 7.24b and 7.24c, the local composite beam response predicted by Analysis A is
compared with that by Analysis B. From these figures, it can be seen that although there
is some difference between the analytical local responses, the difference between the
analytical overall responses is almost negligible. The effect of moving a inflection point
during the loading history on the local and overall responses of the test frame is not
significant.

In general, it appears that if the one component series model employs hysteretic
rules to properly model structural characteristics of its structural component under strong
earthquake motions, the analytical response is not significantly affected by the assumed
inflection point, even if the structural component has unsymmetric cross-section, or the
movement of inflection point between subsequent load or time steps is relatively large.
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7.4 Summary

In this chapter, the multi-linear hinge element and the nonlinear panel zone
element developed for bare steel beams and columns, and column panel zones,
respectively, were combined into eleven bare steel subassemblages and four bare steel
frames to investigate their local and overall response. The analytically predicted overall
responses matched reasonably well with the experimental data. The analyses by the
multi-linear hinge elements and the nonlinear panel zone elements produced better local
and overall response predictions than the analyses by the bilinear hinge elements and the
bilinear panel zone elements. The composite beam elements, combined with the multi-
linear hinge elements and the nonlinear panel zone elements, were applied to analyze two
steel subassemblages with composite slabs and one steel frame with composite slabs. The
analytical predictions of overall response matched reasonably well with the experimental
data.



Chapter 8: CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

In this study, a multi-linear hinge element, nonlinear panel zone element, and
composite beam element were developed to model bare steel beams and columns, column
panel zones, and composite beams. These elements are intended for use in the analysis of
steel moment resisting frames under earthquake loading.

The multi-linear hinge element can be considered as a one component series hinge
type model. It employs multilinear force deformation relationships, and accounts for the
effects of beam end connection types. Cases of fully welded as well as welded flange-
bolted web type connections are modeled. The element also models plastic axial
deformations and changes in axial stiffness due to hinge formation under combined
bending and axial force. Hardening rules handle monotonic, cyclic or random loading.
The beam behavior of the model was investigated. For all welded connections, the
predicted results by the model were compared with experimental data for five test
specimens. The agreement was good. The model was also applied to eight test specimens
with welded flange-bolted web connections. The correlation between the predicted results
and experimental data was acceptable. The predictions made by the model employing the
weighting factor matched well with the analytical results obtained by the fiber model. The
column behavior of the model was also investigated. The multi-linear hinge model
considering plastic axial deformations exhibited reasonable performance in the first and
second order analyses. In general, the multi-linear hinge model showed significantly
better performance than the commonly used bilinear hinge model and could reasonably
model the beam-column behavior of bare steel members in moment resisting frames.

The nonlinear panel zone element, which is essentially a rotational spring
element, was developed to describe cyclic panel zone behavior of bare steel beam-to-
column joints. From the comparison of the analytical results with test results for the
specimens with a doubler plate, it was found that doubler plates were only partially
effective in resisting the panel zone shear. In spite of the simplicity of the model,
reasonable agreement was established between model predictions and test results for
panel zones with no doubler plates. For panel zones with doubler plates, the predictions
of the simple model are not as reliable.

A composite beam element, which is a one component series hinge type model,
was developed by improving the model proposed by Lee. In the hysteretic model of the
developed element, a smooth transition from the elastic stage to the inelastic stage and the
strength deterioration at the linear crack closing stage were considered. The capability to
account for a moving inflection point was added to the element. The member behavior
predicted by the developed element matched reasonably well with the experimental
results before local buckling dominated the experimental response.

The multi-linear hinge element and the nonlinear panel zone element were
combined into eleven bare steel subassemblages and four bare steel frames to investigate
their local and overall response. The analytically predicted overall responses matched
reasonably well with the experimental data. Since the multi-linear hinge and nonlinear
panel zone elements have the capability to more accurately model the mechanical
behavior of the structural components, the analyses by the multi-linear hinge elements
and the nonlinear panel zone elements produced better local response predictions than the
analyses by the bilinear hinge elements and the bilinear panel zone elements. The
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composite beam elements, combined with the multi-linear hinge elements and the
nonlinear panel zone elements, were applied to analyze two steel subassemblages with
composite slabs and one steel frame with composite slabs. The analytical predictions of
overall response matched reasonably well with the experimental data. In general, it
appeared that if the one component series model employed hysteretic rules to properly
model structural characteristics of its structural component under strong earthquake
motions, the analytical response was not significantly affected by the assumed inflection
point, even if the structural component had an unsymmetric cross-section, or the
movement of inflection point between subsequent load or time steps was relatively large.

8.2 Recommendations for Future Research

For the multi-linear hinge model to be employed to describe the behavior of a
member in the direction of weak axis bending, weak axis bending moment-rotation
relations and weak axis bending moment-axial force interaction relations need calibration
to experimental data and predictions made by other more sophisticated analytical models.

The thickest column flange used in the study of the column panel zone was
teg = 1.775". In actual design practice, even thicker column flanges may be used,
perhaps on the order of 3 to 5 inches. Additional test or FEM predictions for such column
sections are needed to further verify the monotonic panel zone moment-rotation relations
and hysteretic rules suggested in Chapter 5.

From the study of the column panel zones with doubler plates, it has been found
that reliable model predictions are difficult to obtain for cases where doubler plates have
a yield stress significantly different than the column web, and that the effectiveness of
doubler plates is affected by the method used to connect them to the column (one side
attachment, both sides attachment, welding details, etc.). Additional test or FEM
predictions for the column panel zones with doubler plates are needed to further study the
effectiveness of doubler plates.

There was little experimental data to model the panel zone behavior of composite
beam-to-column joints. This study therefore did not attempt to develop a panel zone
element for composite beam-to-column joints. Rather, the parameters to define the
hysteretic rules for the panel zone of bare steel beam-to-column joints were adjusted such
that analytical panel zone strengths matched well with the experimental panel zone
strengths for the limited number of test specimens with composite beams. More tests for
the panel zone of composite beam-to-column joints are needed to further investigate and
to model this situation.

Additional improvements are needed for models of composite beams. This is
among the most difficult of modeling problems for steel moment frames. It is also an
important problem, since most steel moment frames are constructed with composite
beams. The complexities of this problem include difficulties in establishing effective
width, and in accurately modeling the slip between the concrete slab and steel beam
under cyclic load. Additional experimental data and three dimensional finite element
analyses are required to support the development of improved composite beam models.

Finally, it is noted that the models developed in this study have been calibrated
using currently available experimental data. As additional experimental data becomes
available, the model parameters should be continually reevaluated to assure that the
models provide a realistic representation of structural response.
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