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Twenty-seven double-tee (DT) tubular joints were tested
under branch axial compression (P), in-plane bending (IPB), and
cut-of-plane bending (OPB), and various combinations of these
branch loads. These test results along with test results
published by Hoadley [14] were used to study the effect of the B
ratio (0.D. of branch to 0.D. of chord) on the interaction of
branch loads in DT tubular joints. It was found that B did have
an effect on the joints' interaction behavior and the following
equation was developed as a reasonable lower bound to the data:

P/Py + (M/My)gps + (M/My)Epg = 1.0
Y = 2.35 - 1.35(8)0-63

7 = 3.44(B) + 0.01(g)~5.60



where Py = ultimate axial strength of joint
My = ultimate bending strength of joint

Comparison of this equation, an interaction equation proposed by
Hoadley, and the arcsine interaction equation which is
recommended for design in the 15th edition of API RP 2A, using a
data base of 65 T and DT interaction tests, showed that the
proposed equation was the most accurate of the three equatlons.
Hoadley's equation provided a lower bound to the data when Py and
My were based on the experimental results. When Py and My Were
based on the values predicted using the ultimate strength
equations given in the 15th edition éf the API RP 24, the
proposed equation provided the most accurate strength
predictions, however the accuracy of all three equations was very
similar. Further comparison showed that there was very little
difference between the results of the three interaction equations
in terms of the amount of material required for a particular
joint and load, therefore Hoadley's equation is recommended for
design based on its simplicity. During the course of the
comparison, it was found that a greater increase in the
reliability of interaction design can be gained by increasing the
accuracy of the ultimate strength equations than by increasing

the accuracy of the interaction equations.
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Investigation of the experimental scatter present in
replicate branch axial and OPB tests on 8=1.0 joints indicated
that the distance between the weld toes at the saddle points, or
gap, has a significant effect on the behavior of g=1.0 joints.
Comparison of the gap size and the compressive capacity of the
joint showed that the compressive capacity of the joint can be
predicted when the gap is treated as a column. This
conclusion was supported by a finite element analysis. Based on
this analysis and because measurements showed a significant
variation in the gap sizes on nominally identical joints, it is
recommended that the variation in the gap be accounted for in the
factor of safety applied to a mean design equation.

Due to the paucity of experimental data a simplified
finite element model was developed to analyze the ultimate
strength behavior of tubular joints to provide additional insight
into joint behavior. Comparison of the results of the finite
element analysis and the experimental data showed that the model
is both accurate and economical. The finite element model was
first used to study the gap effect on the strength of joints with
a B ratio close to unity as discussed earlier. Next, the model
was used to predict the IPB strength of DT tubular joints and the

results matched the experimental ultimate strengths well. 1In
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addition, the data showed that the IPB strength of DT tubular
joints is predicted accurately by Billington's equation for IPB
strength adjusted for DT joints by Yura. The finite element
model was used to develop AI interaction data for a g =0.67 DT
joint. the analytical interaction data matched the experimental
data reasonably well, indicating that the finite element method
can be used in further interaction studies. The developed finite
element model proved to be both economical and widely applicable,
and shows promise as a tool for the analysis of the ultimate

strength behavior of tubular joints.
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CHAPTER 1

INTRODUCTION

1.1 History

As a structural element, the tubular cross section
possesses many attractive properties including a high bending
strength to weight ratio. The circular cross section increases
the member's stability under compression and makes it very strong
under torsional bending loads. The curved shape minimizes wind or
wave forces transferred to the structure which makes the section
ideal for structures exposed to the elements. In addition,
circular sections can be combined to form aesthetically pleasing
structures which is becoming more important in modern structural
design.

The use of tubular steel members in major structural
applications began in Great Britain in the 1800's [10]. At that
point in time, tubular sections were mainly used in bridges. In
these early structures, the tubular section was created by
riveting together sections of curved steel plate. Late in that
same century, rudimentary methods of welding were used to create
circular hollow sections. The development of the continuous
welding process by Fretz-Moon in 1930 greatly increased the
importance of the tubular sections by simplifying fabrication

[35]. 1In the 1940's the offshore oil industry took advantage of



the properties of tubular members and the first offshore drilling
platforms were erected in the Gulf of Mexico [10]. To this date
thousands of tubular structures have been built for offshore oil
drilling [24]

One problem with the use of tubular members in structures
occurs at the connections. The circular shapes create a
complicated geometry at the intersections of members which
increases fabrication costs. However, in the 1960's, automated
fabrication techniques were applied to tubular connections and
today tubular structures can be fabricated with relative ease.
However, as with many other structural systems, the industry has
developed construction and fabrication techniques faster than the
knowledge of behavior has been developed and transmitted to the
designer.

When the first offshore structures were erected in the
1940's the designers had little more than an educated guess to
use as a basis for design. In the 1960's pilot research on simple
joints under simple loadings began and this research continued
into the 1970's and a rather substantial database was developed.
From this database, empirical formulae were developed to predict
the ultimate strength of tubular connections, but for only the
simplest of conditions. So far this decade, experimental
investigation on more complicated’geometries and loadings has

begun and much of the old data has been critically analyzed and



organized. Today, ultimate strength design is still almost
totally empirical, and the forms of recommended strength
equations vary greatly from code to code. In addition, the
analysis techniques available for predicting ultimate strength
for anything but the simplest cases are either inadequate or too

expensive for general use.

1.2 General Information

Tubular Jjoints consist of one member which runs
uninterrupted through the joint, known as the chord, and one or
more members which are welded to the chord, known as branches or
braces. Two typical joints are shown in Fig. 1.1. Two important
locations on a joint are the crown and saddle positions which are
shown in Fig. 1.1. There are four basic categories of tubular
joints:

1. Simple welded joints

2. Complex welded joints

3. Cast steel joints

y, Composite joints
A simple welded joint must consist of two or more tubular members
in a single plane. A simple joint cannot have overlaps in the
branch members or contain gussets, diaphragms, stiffeners or
grout. Examples of simple welded joints are shown in Fig. 1.1. A

complex welded joint may be multiplanar, and may have overlapping
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Fig.1.1 Typical Tubular Joint Geometries



brace members, stiffeners, gussets, or diaphragms. Examples of
complex welded joints are shown in Fig. 1.2. Cast steel joints
are tubular joints formed by a casting process. Composite joints
are tubular joints in which the chord member is either fully
filled with grout, serves as a sleeve for a pile or contains a
grouted annulus. This type of Jjoint is shown in Fig. 1.3.

This discussion will deal only with simple welded tubular
joints. Within the category of simple tubular joints, there are
several different joint configurations (T, DT, Y, DY, K, DK, YT,
X, DYT YK, and DKDT) which are shown in Fig. 1.4,

1.2.1 Basic Dimensions and Parameters

The basic dimensions used to describe a simple tubular
joint are shown in Fig. 1.5. These dimensions include:

D - Chord outside diameter

d - Branch outside diameter

T - Chord wall thickness

t - Branch wall thickness

8 - Included angle between branch and chord

g - Gap between brace toes for K and KT joints

L - Chord length

Several nondimensional parameters based on the above dimensions

have been developed for use in design equations and for

comparison of experimental data. These parameters include the
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10

following:

1. Chord length parameter (a)- ratio of chord length to
the chord radius (2L/D). This parameter glves an
indication of the effect end conditions may have on
the strength of a joint, and of any beam bending
which may be present in the chord.

2. Diameter ratio (8) - ratic of branch diameter to
chord diameter (d/D). This parameter varies from 0 to
1.0 and gives an indication of the compactness of the
joint.

3. Chord thickness ratio (Y) - ratio of chord radius to
chord thickness (D/2T). This parameter gives an
indication of the radial stiffness of the chord.

4. Wall thickness ratio (1) - ratio of branch wall
thickness to chord wall thickness (t/T). This
paramefer is used to determine the possibility of the
branch fracturing before the chord wall falls.

5. Gap parameter (£) - ratio of the gap to the chord
diameter (g/D). This parameter is used in joints
involving the K geometry to determine the proximity
of the various branch members.

1.2.2 Basic Loadings. Tubular joints are subjected to

loads on both the branch and chord members. The basic loadings

are axial compression and tension, in-plane bending (IPB) and



1

out-of-plane bending (OPB). These loadings are illustrated in
Fig. 1.6. In most cases the failure of the joint is controlled by
branch loadings; however, chord loadings do effect the strength
of the joint. In practice, the joint is usually subjected to

combinations of these basic loadings.

1.3 Modes of Failure

The mode of failure of a tubular joint is determined by
the type of loading, the geometry of the joint, and the material
properties of the joint. In offshore structures which are
subjected to eyclic wave loadings fatigue failure may be the
controlling mode of failure. This report, however, concentrates
on the static ultimate strength of tubular joints which
represents the maximum one time load which can be resisted by the
Jjoint.

The modes of failure exhibited by joints subjected to
branch axial loads are shown in Fig. 1.7. Local chord wall
collapse is the most common mode of failure for joints subjected
to branch axial compression. Punching shear type failures are
more common in tension loaded joints with small B8 ratios. Local
buckling of the chord wall away from the branch-chord
intersection occurs with thin walled chords when chord bending or
axial stresses result from branch loadings (T joints with high o

values). Shear failure of the chord wall at the gap occurs with
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Axial Compression or Tension
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Fig. 1.6 Basic Joint Loadings
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large B ratios. Lamellar tearing is mainly a problem for joints
with thick walled chords (low Y values).

The modes of failure exhibited by branch moment loaded
joints are shown in Fig. 1.8. Yielding of the chord wall on the
compression side of the joint generally controls for joints
constructed of ductile metals. Fracture along the branch-chord
intersection on the tension side of the joint may control for
joints made of high strength steel or with small B ratios.
However, because tubular joints subjected to branch bending show
a great deal of ductility the fracture of the chord wall usually
does not occur until the rotations of the joint are very large.
In addition to these, lamellar tearing on the tension side of the

joint is also a possibility.

1.4 Prediction of Static Ultimate Strength

The static ultimate strength of a tubular joint 1is
determined by the ability of the chord wall to resist the loads
applied by the bfanch members. These branch forces are resisted
by a combination of plate and membrane action in the chord wall
as shown in Figl1.9. Plate action occurs mainly in the crown
region of the joint where the branch loads are resisted by
transverse shear and bending in the chord wall much like a flat
plate subjected to perpendicular loads. Membrane action dominates

in the saddle region of the joints with large diameter ratios
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(o) membrane action (b) plate action

Fig. 1.9 Schematic of Plate and Membrane Action in Chord Wajl

Fig. 1.10 Example Elastic Stress Distribution for T Joint Under Axial
Compression
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where the branch loads are resisted by axial forces in the chord
wall, thus the chord wall in this region acts much like a column.
The fact that the chord wall is stiffer in membrane action than
in plate action results in a nonuniform distribution of stresses
around the branch-chord intersection when branch loads are
applied. For example an elastic stress distribution for a DT
joint under axial compression is shown in Fig. 1.10. From this
example it can be seen that there is a large concentration of
stress (load) around the saddle region. These stress
concentrations are typical of all types of tubular joints and can
cause fatigue failure of a joint. The problem of fatigue is not
addressed here but more information can be found in Refs. 32 and
34,

1.4.1 Factors Affecting Static Ultimate Strength. The

static strength of a tubular joint, is a function of the material
strength of the chord, the geometry of the connected members, and
the type of loading applied. The material strength is represented
by the tensile strength of the chord or branch wall, and its
effect is fairly straightforward. The geometry of the joint is
represented by several nondimensional parameters which were
introduced earlier.

One of the most important parameters in determining the
ultimate strength of a tubular joint is the diameter ratio, B.

For small B ratios, the branch member is much smaller than the



17

chord so the branch loads are resisted mainly by plate action in
the chord wall. As the g ratio increases, the branch approaches
the same size as the chord, more of the branch loads are resisted
by membrane action and the strength of the joint increases. The
increase in strength is not generally significant until B is
larger than 0.6. Another influence of the B ratio is that as the
B ratio increases, there is relatively more weld length, due to
the saddle shape of the joint, to transfer the branch loads.

The ultimate strength of a tubular joint is also affected
by the chord thickness ratio, Y. The chord thickness ratiois é
measure of the radial flexibility of the joint. As Y decreases,
the chord becomes thicker in relation to its diameter so the
radial stiffness of the chord increases, and thus the strength of
the joint increases. However, many ultimate strength equations do
not include the thickness ratio. This may be explained by the
fact that the ultimate strength for several types of loadings are
controlled mainly by the chord behavior near the intersection of
the branch and chord. In this area, the chord wall is stiffened
or reinforced by the presence of the branch; therefore, a change
in the radial stiffness will not have a large effect on the
ultimate strength of the joint. Recent evidence [39] indicates

that Y has a significant effect on IPB.
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The angle included between the branch and chord, o,
influences the strength of a tubular Jjoint in several ways.
First, due to the strength of the chord in membrane action, only
the branch force components (perpendicular to the chord) need to
be considered in axial loadings. For IPB moment loaded joints,
the inclination of the branch does not significantly affect the
strength of the Jjeint. For OPB moment loaded joints, the moment
can be separated into a pure OPB component and a component of
torsion about the center of the branch~-chord intersection [34].
The inclination of the branch also increases the length of the
branch-chord intersection which can have a significant effect on
the tensile capacity of a joint [15].

The gap parameter, ¢, is an important variable in the
strength of joints with more than one branch on one side of the
chord. For large gap values each branch-chord intersection can be
treated as a Sseparate joint. As the gap becomes smaller, the
flexural stiffness of the chord wall between the branches
increases. This increase in flexural stiffness results in an
increase in the strength of the joint.

The static ultimate strength of a tubular joint is also
influenced by the type of loading applied. The types of loadings
include axial tension and compression, IPB moment, and OPB moment
to either or both the branch and chord, and combinations of

branch loads and or chord loads. As mentioned earlier, the
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failure of most joints is controlled by the branch loadings. The
type of loading is a determining factor in how much plate or
membrane action is used to resist the branch loads. For example,
axial loads are resisted mainly at the saddle area of a joint
where membrane action dominates. The same joint will exhibit a
much higher ultimate strength in tension than in compression as
shown in Fig. 1.11 because the mode of failure is fracture in the
heat affected zone along the weld profile and not plastic bending
or buckling of the chord wall. In IPB on the other hand, because
of the stress distribution in the branch, the highest branch
loads are applied near the crown where plate action dominates. In
addition, the type of loading determines the mode of failure of
the joint. Also, a Jjoint loaded in IPB will have a higher
ultimate load and exhibit higher stiffness than when loaded in
OPB, as shown in Fig. 1.12.

The presence of other loads, such as compressive stresses
in the chord, or branch loadings in other directions will tend to
effect the ultimate strength of a tubular joint. Compressive
stresses in the chord cause a decrease in the strength of a joint
by weakening the plate action of the chord wall [37]. The
presence of more than one branch loading (load interaction) also

tends to reduce the strength of the joint.
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1.4.2 Design Methods. At the present time, there 1is

little uniformity among the equations recommended for the
ultimate strength design of tubular Jjoints. In a recent
comprehensive study of tubular joint design, the Underwater
Engineering Group [34] compiled and compared the various design
code available and concluded that, "although some codes are
'closely related' to others, thére are almost as many different
design formulations as there are codes." The publication
continues by suggesting a review of many of the existing codes so
some consensus may be reached among the design regulating bodies.
The one thing that the codes do have in common is that all of the
design equations are based on curves fit to experimental data.
There are many empirical equations suggested for the
design of simple tubular joints subjected to simple loadings [27,
26, 39, 17, 12, 6, 34 ]. Table 1.1 shows the various equations
which have been recommended for the design of DT joints under
compression. Even though the equations have many different forms
the mean formulas all yield about the same results. As an example
of basic design formulation, a recent set of proposed design
equations is shown in Table 1.2 [39]. The general format of the

equations includes a basic nondimensional strength term,

Fy T%/ sing

=
1

chord thickness
Chord yield strength

Fy



Table 1.1 Example Uitimate Strength Formulae

I. Washio  (1969) P, = F,T2[6.19/(1-0.8338)]

2. Kurobane (1976) P, = F,72[6.57/(1-0.818)]
(1981} P, = F9T2[7.46/( 1 —0.8IZB)](D/T)‘UN(FQ/FU)-U"H
or Py = F,T2[7.36/(1-0.8118)]
(1984) P, = FgT2[7.36/( 1-0.813B)D/T) 0035

3. API (1978) P, = F, T2(12.57BXD/2TP3 for 3<0.271
Py = FyT2[2.64/(1-5B/6)KD/2T)03 for 8>0.271

4. DnV (1977) Py = FyT2[7.41/(1.2-B)]

3. Dutch & (1977) P, = FgT2[6.4/( 1.2-8)}
French Spec.

6. Pan (1976) P, = F,T2(16.318064) for 0.2¢<5<0.8
Py = F,T2(30.08842) for 0.8<B<1.0

7.Yura, APl (1980) P, = F,T2[3.4 + 13810
Ds449  (1984)

8. Billington (1980) P, = F,T2[3.0 + 15.2810,

22



Table 1.2 Example Design Recommendations Ref. 39

Basic Strength: P, = Q,[F,T2/sin610¢

where: Qp = 1.0 - 0.045yAZ for |PB
Qf = 1.0 - 0.030yA2 for Axial
Qf= 1.0 - 0.021yA2 for OPB
A=FS.(f2 + f205/F,

and Qy is given below; for Mean Strength

M, = Q,ldF, T2/sin610

Joint | Compression Tension IPB OPB
Type
T 3.1+20.88 0.4843.1+20.98
Cross | (22+17.3B)Qg 45y032 6y05B 3.56
(1.0-0.818) (1.0-0.818)
K 1.3[3.1 +20.981Q,
and for Lower Bound Strength
Joint | Compression Tension IPB OoPB
Type
T 2+21B 24218
Cross | (3.4+13B)Qg (3.4+13B)05 | 5y058 3.2
(1.0-0.8183)
K 1.05[2+2113]Og

where: Qg = 0.3/{3(1-0.8338)] for 3>0.6
Qg = 1.0 for 3<0.6

Qg = 1.8-0.1g/T for y$20
Qg = 1.8-4g/D for y<20

Qg2 1.0

For Load Interaction: P/Py+ (M/My)peg + (M/M,2pg ¢ 1.0
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with factors Qy to account for the type of load, and type of
joint; and Qf to account for any chord stress. The effects of the
diameter ratio, B, and the thickness ratio, Y, are included in
the Q, term since the effect of these parameters varies with the
joint loading and geometry. In addition the effect of the
interaction of combined branch loads on the joint strength is
accounted for by an interaction equation.

In general the recommended equations agree with the
earlier discussion of the factors which influence the ultimate
strength. But, as the database continues to grow, and the design
philosophies change, the constants involved in the equations will
continue to change. For example the American Petroleum
Institute's (API) design guide has been revised 15 times to date
since its first edition in 1971. This is one of the drawbacks to
design using empirical equations. Further, only the simplest
cases are tested in a laboratory, and the number of parameters
which can be investigated are limited by cost and time. Finally,
the use of empirical design tends to limit the understanding of
joint behavior because an important variable in design may be
missed or misunderstood because the variable has not been
investigated experimentally. Therefore, it would be more
advantageous to develop some generally applicable inexpensive
analytical methods which could be used to investigate joint

behavior.



25

1.4.3 Analytical Methods. The development of a generally

applicable purely analytical model of tubular joint ultimate
strength behavior is complicated by the complex geometry of the
joints, the stress concentrations, and the presence of both plate
and membrane actions. In addition, the large reserve capacity of
tubular joints after first yield make the results of any elastic
model unreasonably conservative. Therefore, even though the
elastic models developed by Bijlaard [5] and Dundrova [3] are
useful for some basic understanding of joint behavior, they are
not applicable to the prediction of ultimate strength behavior.
But two rather simple models, the punching shear and ring, have
been used with some success to predict the ultimate strength of
tubular joints. In addition, the finite element method has shown
much promise in the analytical solution of ultimate strength
problems in tubular joints.

1.4.3.1 The Punching Shear Model. The punching shear
model is based on the assumption that the ultimate capacity of
the joint is reached when the chord wall around the branch-chord
intersection fails in shear as shown in Fig. 1.13. The shear
stress in the chord wall is calculated based on the nominal axial
stress in the branch. So that the basic shear stress in the chord
wall is given by,
V, = 1 fy (1.1)

p

To this basic equation a sind term is added to account for the



26

BRANCH

A_r
-
¥

CHORD
WALL

Fig. 1.13 Schematic of Punching Shear Failure



27

inclination of the branch. For bending loads in the branch a full
plastic shear stress distribution is assumed.

The material shear yield is 0.58 of the tensile yield;
however, this level of shear cannot be attained in thin shells.
Therefore, a correction factor was developed DYy Marshall [22]
which calculates the ultimate shear stress as a function of Y.

The punching shear method does not account for the
membrane actions which are present in the chord wall. Because of
this omission, the model is not applicable to joints with large B
ratios where membrane action is significant. Thus, the basic
formulation must be calibrated to experimental data. Since it
does not consider membrane action or bending in the chord, the
punching shear model does not seem to be a very accurate model of
tubular joint behavior.

1.4.3.2 The Ring Model. The ring model was developed to
predict the strength of DT tubular joints [15]. In this model
the joint is reduced to a tube with the same dimensions and
mechanical properties as the actual chord and with an effective
length B, as shown in Fig. 1.14. For branch axial loads, the
branch loads are applied as two line loads equél to half of the
branch load acting over the length of the tube or ring as shown
in Fig. 1.14. At this point the axial (membrane) and shear stress
effects on the the bending strength of the ring are neglected so

that available equations for moments in a ring can be used to
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calculate the ultimate line loads. The ultimate strength is then
equal to twice the ultimate line load times the effective length
of the ring. However, the only way to determine the effective
length B, is by fitting the results of the analysis to
experimental data. Thus, this analytical model is dependent on
empirical data.

The ring model does not present a simple method for
predicting the bending strength of tubular joints. One method for
using this model to predict IPB behavior is illustrated in Fig.
1.15. The joint is divided into a series of independent rings
with different loads. Then the capacity of the rings is
integrated over some effective length to give an approximation of
the strength of the joint. For OPB, the ring model can be used as
shown in Fig. 1.16 where the moment is modeled as both a shear
across the face of the intersection and a pair of line loads. But
as with the other models an effective length must be determined
experimentally.

1.4.3.3 Hoadley's Ring Model. Hoadley attempted to use
the ring model to predict the ultimate strength behavior of DT
tubular joints by dividing the chord into three Separate sections
which work to resist the branch forces as shown in Fig. 1.17
[15]. Hoadley used his model to develop a mean strength equation
for DT joints in compression which is shown in Fig. 1.18 along

with a mean strength equation given by Kurobane [18] which is
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recommended for use by the International Institute of Welding
(IIW). Comparison of the two curves shows that Hoadley's ring
model produces fairly good predictions over a wide range of 8
ratios. However, since the ring model does not account for
membrane action it becomes less applicable as B approaches 1.0.

Hoadley next attempted to apply his ring model to predict
the OPB strength of a tube. In this model, it is assumed that the
adjoining chord section will have no effect on the OPB strength
as shown in Fig. 1.19. The model assumed the same transition zone
length as the axial compression model. The prediction based on
this model was 34% less than the experimental result. Upon
further investigation with a simple finite element model, which
will be discussed later, it was found that the transition zone
should be made larger for OPB applications. With the adjustment
in the transition zone length, Hoadley's model yielded reasonable
predictions of the ultimate strength of the joint as shown in
Fig. 1.20.

Finally Hoadley used his ring model to predict IPB
ultimate strength. For IPB, Hoadley took the axial load model and
applied tension to one half of the joint and compression to the
other. The resulting IPB strength prediction was less than half
of the experimental value. The inaccuracy of the model comes from

the fact that it does not model the longitudinal strength of the
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a line normal to the original tangent plane of the element
remains straight in the deformed state and (2) a 1ine normal to
the original tangent plane remains normal in the deformed state.
Thus, Kirchoff's assumptions effectively neglect the transverse
shear through the shell thickness. Mindlin's plate theory [20]
includes the effect of transverse shear through the shell
thickness as a rotation of the normal to tangent plane of the
original element. Two elements which use Mindlin's plate theory
are the Ahmad element and the complex semiloof element [34]. Both
of these element types should yield reasonable results since the
shear in thin shells, typical of chords in offshore structures,
should not be very significant in ultimate strength applications.
However, the use of shell elements does pose difficulties in
modeling the weld.around the joint. But it has been found that
the use of three-dimensional solid elements may be used to solve
this problem [34].

Stamenkovic and Holsgrove used the finite element method
to predict ultimate strength of T joints subjected to axial
compression and IPB [16]. The finite element model used the LUSAS
finite element system [19]. This system is based on a non-linear
semiloof shell element with geometric and material non-linearity.
In addition, the material non-linearity was traced using a multi-

layered shell formulation. The weld was modeled using a standard



Fig. 1.21 Finfte Element Mesh used by Holsgrove and Stamenkovic [16]
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While developing the ring model discussed earlier, Hoadley
utilized a simple finite element model and the ABAQUS finite
element system [13] to predict the ultimate strength of a DT
joint subjected to OPB and one subjected to IPB. Hoadley
simplified the model greatly by eliminating the branch member and
applying assumed branch forces directly to the chord surface. The
chord was modeled using simple 4 noded reduced integration,
doubly curved shell elements which follow Kirchoff's assumptions.
OPB moment was modeled by two compressive and two tensile loads
at the centerline of the joint as shown in Fig. 1.28. The
prediction of OPB strength produced by this model was
surprisingly good, even though the stiffness of the joint was
incorrectly modeled as shown in Fig. 1.29. IPB was simulated by
three equivalent compressive and tensile forces on either side of
the joint as shown in Fig. 1.30. Unlike the OPB case, the finite
element model's IPB strength prediction was almost 40% less than
the experimental value; but, the stiffness of the joint in the
elastic range was modeled reasonably well as shown in Fig. 1.31.
The explanation for the inability of the model to predict IPB was
that the assumed distribution of branch loads was inaccurate.

1.5 Prediction of Static Ultimate Strength : Interaction
Effects

As discussed earlier, empirical design is restricted to

the database upon which it is based. At the present time the
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Fig. 1.28 OPB Finite Element Mesh used by Hoadley
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Fig. 1.30 IPB Finite Element Mesh used by Hoadley
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weakness in the database used for the ultimate gtrength design of
tubular joints is that almost all of the tests involved simple
joint geometries subjected to simple loadings; i.e., branch
axial, IPB, or OPB. However, actual design involves combinations
of axial and bending loads in the branches of a Jjoint. At present
there is very little experimental data to support any design
method for the interaction of branch loadings.

The experimental history of tubular Jjoints subjected to
combinations of branch loadings is a short one. The first
published tests dealing with the topic were reported by
Stamenkovic in 1981 [29]. He tested approximately 105 small scale
T joints with combinations of axial and IPB in the branches. The
preliminary results of Stamenkovic's tests showed a linear
interaction between the two branch loads. However, critical
evaluation of Stamenkovic's data showed that the test setup and
the definition of failure made this data invalid. A reanalysis of
Stamenkovic's data by Marshall indicated that the data fell along
an interaction curve based on the theoretical plastic strength of
tubular member in bending [23]. This is known as the arcsine

equation [35] and is given by :

P/Py+(2/m)Aresinel (M/M)dpg+(M/M)8pg]1 /2=1.0 (1.1)

where, P, and M, are the ultimate strengths of the joint

subjected to axial and bending loads respectively.
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The arcsine equation has been adopted by the American
Petroleum Institute (API) in the 15th edition of API RP 2A for
the interaction of branch axial and bending loads. Hoadley
investigated the interaction of branch axial compression with IPB
(AI), branch axial compression with OPB (A0), IPB with OPB (I0),
and branch axial compression with IPB with OPB (AIO) in DT
tubular joints with B=0.67 [14]. From these results Hoadley

developed the interaction equation shown below:

P/P+(M/My)2 Tpg+(M/My) +Epp=1.0 (1.2)

His data showed that the arcsine equation (1.1) was slightly
unconservative in most cases if experimental Pu and M values
were used. However, the conservatism of the API predictions for
Py and My makes Eg.1.1 safe for design until more accurate
ultimate strength formulae are adopted. Hoadley's data seems to
give some experimental support to the present design method
except for Axial-OPB interactions which fall below the Arcsine
curve. Only joints with B=0.67 were included in the database, no
experiments on joints with other B's were available.

Because of the weakness of the database in respect to
combinations of branch loadings a research project which served
as a continuation of Hoadley's work was sponsored by a consortium
of 13 companies involved in the offshore oil field. The results

of this research will be presented herein.
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1.6 Scope of Work

This report presents the results of 27 ultimate strength
tests on DT tubular joints. Sixteen joints had 8 ratios of 1.0
and ten had B ratios of 0.35. One additional ultimate strength
test was done on a DT joint with a B=0.67 to provide a replicate
for a reference test completed in Hoadley's research. The purpose
of these tests was to determine the influence of the B ratio on
the interaction of branch loadings in DT joints.

A description of the specimen geometry, test setup, and
testing procedures used in this research are given in Chapter 2.
The ultimate strength results for each test are given in Chapter
3. Chapter 4 contains a discussion of the tubular joint behaviors
observed in this testing program along with a comparison of DT
and T joint interactions. In Chapter 5, the test results along
with the results of Hoadley's tests will be used to develop an
interaction equation. This equation and other current interaction
equations will be evaluated against available test results and an
interaction equation will be recommended for design.

Due to the inadequacies of the empirical design method,
and the unpromising results or restrictive costs of attempts at
ultimate strength prediction using the present analytical
methods, a simplified method of analyzing ultimate strength
behavior in tubular joints using the finite element method is

developed in Chapter 6. This model is evaluated and used to
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predict ultimate strength behavior for tubular Jjoints subjected
to combinations of branch loadings. A summary of the results and

conclusions of this research are given in Chapter 7.



CHAPTER 2
TEST SPECIMENS, SETUP, AND PROCEDURE
2.1 Specimens

All of the specimens used in this research have the DT
Jjoint geometry. The DT geometry was chosen because it allows for
relatively simple loading arrangements even for testing with
combined loadings. The 8 ratios of 0.35 and 1.0 were chosen to
complement Hoadley's work on specimens with B = 0.67 and to bound
the values of 8 typically encountered in offshore structures.
Other aspects of the joint geometry, which are presented in more
detail in Ref. [7], were chosen to meet design criteria specified
at the beginning of the project. Details of the specimens are
shown in Fig. 2.1. In this phase of the research chord flanges
were only present on specimen subjected to IPB. One flange was
present to apply IPB loads.

The specimens were fabricated by MecDermott Incorporated,
Morgan City, Louisiana. The chords are nominally API-5LX Grade
42, welded line pipe with a nominal 16 in. o.d. and a 0.312 in.
wall thickness. The branches of the 8=1.0 specimens are of the
same material as the chords. The branches for the g=0.35
specimens are nominally ASTM A53 Grade B steel seamless pipe with
nominal 5-9/16 in. o.d. and 0.258 in. wall thickness. Several
tests were done to determine the material and dimensional

properties of all the specimens used in this study. The average
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dimensional properties are presented in Table 2.1. The o.d. of
the 16" x 0.312" pipe varied from 16.02 in. to 16.08 in. and the
thickness varied from 0.306 in. to 0.325 in. for 26 samples.
There was only one sample of the 10~-3/4" x 0.258" pipe so there
is no variation in dimensions. The o.d. of the 5-9/16" x 0.258"
pipe varied from 5.60 in. to 5.63 in. and the thickness varied
from 0.256 in. to 0.267 in. for nine samples. The small
variations in the dimensions of the members should not influence
variations in behavior between specimen.

The material properties of all of the specimens were
determined by coupon tests using ASTM A370-71 Specifications for
the testing of steel products [2]. A 2 in. gage length was used
in all cases. Details of the testing procedure can be found in
Ref. [36]. The static yield point of the tensile coupons was
determined using the 0.2% offset method. A typical stress-strain
plot for a tension coupon is shown in Fig. 2.2. A summary of the

tensile coupon test results is given in Table 2.2

2.2 Test Setup

The test setup is capable of applying branch axial
compression, IPB, and OPB independently or in a given proportion
without restricting the deflections of the joint. The setup was
used and perfected during Hoadley's work. Schematic drawings of

the setup are presented in Figs. 2.3 and 2.4. A photo of the test



TABLE 2.1 MEASURED SPECIMEN DIMENSIONS AND SECTION PROPERTIES
Measured Dimensions Sectional Properties
Nominal Dimensions 0O.D. I.D. Thickness Area I S Z Py
(in.) (in.)  (in.) (in.2) (in.") (in.3) (in.3) (ips)
16" x 0.3120 16.04 15.1 0.314 15.56 481 60.0 77.9 761
10-3/4" x 0.250" 10.80 10.28 0.260 8.61 120 22.1 28.9 n3
5-9/16" x 0.258" 5.61 5.09 0.262 4,37 16 5.6 T5 173
CHORD—-B
(TYP)
60r Dynamic vyield point
50

{(ksi)
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TABLE 2.2 SUMMARY OF TENSION COUPON TEST RESULTS

Location of Static Dynamic Ultimate Elongation
Coupon Yield Yield Strength %
(ksi) (ksi) (ksi) (2 in. gages)
16" x 0.312"

A-1 48.9 50.6 64.2 48

A-2 458.7 50.3 64,7 46

B-1 49.0 50.8 64.8 by

B-2 u8.7 50.2 64.3 46

B-3 49 .4 51.7 6U.1 37
Average 48.9 50.7 6L.14 Ly
Mill Report 47.0 75.5 36
API 5LX {(min.) 42.0 60.0 24

10-3/4" x 0.250"*

A-1 49.8 51.5 69.8 24
B-1 48.0 49.8 67.5 35
Average 48.9 50.7 68.7 30
API 5LX (min.) 42,0 60.0 20

5-9/16" x 0.258"

A-1 39.2 43.6 70.9 43
A-2 37.9 40.6 73.5 45
B-1 41.8 4y.3 72.1 -
Average 39.6 42.8 72.2 Ly
Mill Report 42.0 67.3 35
ASTM A53-GrB (min.) 35.0 60.0 23

¥Mill report not available
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setup is shown in Fig. 2.5. Because the test setup has been
described in detail in Ref. 36; only a brief description will be
provided herein. Other background information on the test setup
can be found in Refs. 7, and 14.

2.2.1 Axial Loading Apparatus: The branch axial loading

system consists of two 192 kip hydraulic rams located on the top
and bottom of the specimen as shown in Fig. 2.3. The rams at both
the top and bottom of the specimen are used to apply axial
compression as well as to maintain the chord centerline elevation
during bending loadings. The axial load is transferred from the
ram to the branch thru a set of hemispherical bearings which
allow the branch ends to rotate freely. For specimens subjected
to axial compression loads close to ultimate, a ball and socket
bracing attachment was placed on one end of the chord to prevent
chord twisting due to small eccentricities in specimen
fabrication. This attachment, which is discussed in more detail
in Ref. 36, basically replaces the restraint which would be
supplied by the rest of the chord member in an actual structure.
The only change in the axial loading system from Ref. 36,
was for the B=0.35 specimens. This change involved the mounting
of the male spherical heads of the bearings at the ends of the
branch members. For the B=1.0 specimens, a large flange was
fabricated on the branch ends and the male spherical heads were

attached to a plate which was bolted to these flanges. The
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Photo of Test Setup

Fig. 2.5
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branches of the B=0.35 specimens did not have flanges because of
their small size; therefore, the male spherical head was attached
to a plate which in turn was welded to a sleeve which fit over
the open end of the branch. Two pictures of the attachment are
shown in Fig. 2.6. The axial forces, which for the g=0.35
specimens were fairly small, were transferred thru friction
forces developed along the sleeve and thru some end bearing on
the open end of the branch. Measurements taken during the axial
reference test (A40), in which the highest axial load of the test
series was applied, showed no slipping between the sleeve and the
branch.

2.2.2 Bending Load Apparatus: Bending in the branch

members was developed by pulling the chord either in the plane of
the chord and branch (IPB) or normal to the plane of the chord
and branch (OPB) which developed shear forces at the top and
bottom of the specimen. The piston of the axial rams travelled
thru a set of roller bearings which allowed vertical but not
horizontal movement. The roller bearings were attached to shear
collars which resist the horizontal shear forces produced during
bending. The combination of hemispherical and roller bearings at
the end of the branches allowed for free rotation and compression
of the joint. Thus, each branch acted like a cantilever beam
with a restrained end at the joint and the load applied at the

shear collar.
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In addition to the apparatus described in Ref. 36, gravity
load simulators or Roberts mechanisms were used to allow the
specimen to move in both the in-plane and out~of-plane directions
independently during loading. These mechanisms maintain the line
of action of the load as the specimen deforms. That is, the OPB
jack is always perpendicular to the longitudinal centerline of
the chord and the IPB jack is always parallel to the longitudinal
centerline of the chord. This simplifies the calculation of the
forces and moments applied to the joints by eliminating the
component forces which would result if the line of action is not
constant as shown in Fig. 2.7. This simplification of the force
calculations allows for more specific definitions of failure by
uncoupling the effects of each loading source. It also allows for
easier recognition of failure during actual testing which is very
important for complicated loadings. A schematic drawing of a
Robert's mechanism is given in Fig. 2.8. More details of the use
of the Robert's mechanism in this test setup is given in Ref. 15.
Details of the design of a Robert's mechanism and its use in
structural testing are given in Ref. 38.

2.3 Loading System

A schematic of the typical loading diagram is shown in Fig
2.9. Hydraulic pressure is provided by a single electric pump and
a multipressure load maintainer is used to control the pressure

to each of the up to four hydraulic rams used during testing. The
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pump, load maintainer, and rams were all connected using flexible
pressure hoses. The heart of this system 1s the load maintainer
which enables the operator to control each ram independently of
the others, or to increase the pressure to any set of rams in a
constant proportion, or to maintain a given differential in
pressure between any set of rams while changing the overall
pressure. More detailed discussion of the loading system 1s given
in Ref. 15.

2.4 Instrumentation

The objective of each test was to establish a load-
deflection curve from which the ultimate joint capacity could be
determined. Each of the loads applied to the specimen was
monitored by a pressure gage accurate to 25 psi and a pressure
transducer accurate to 0.25%. The loads taken from the transducer
readings are considered accurate to +0.5 kips. The output from
the pressure transducers was monitored with a data acquisition
system which translated the voltage readings into engineering
units. For the axial loading tests, the reported loads are based
on the load in the lower ram.

The deformation of the specimen was measured with
mechanical dial gages accurate to 0.001 in. with stokes of 2 or 5
in. and with linear voltage displacement transducers (LVDT's)
with strokes of 2 or 6 in.. The locations of the dial gages and

LVDT's are indicated in Fig. 2.10. In addition to these gages,
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transit readings were used as an independent verification of
deflections. The axial deformations of the branches were
monitored by gages at locations 1 and 2. In order to compare the
results of several tests which failed by axial loading during
interaction testing, it was found that the average of the top and
bottom branch deflections gave a better indication of the joint
behavior than the bottom deflection corrected for rigid body
motion. Thus, the average of the readings at locations 1 and 2 is
used to define the axial deformation presented in this report.
Gages 3 and U4 were used to monitor the rigid body motions of the
specimen during testing. The out-of-plane deflection of the
branches was monitored with gages at locations 5 and 6. The
average of these two readings defines the out-of~plane deflection
at the centerline of the chord. Gages at location 7 measured the
in-plane movement of the chord directly. The area of the joint
was whitewashed prior to testing so that yielding could be
visually identified during testing as the whitewash flaked away
from the steel with the brittle mill scale. The references to the
location and extent of yielding included in the test descriptions

are based on observations of the pattern of whitewash flaking.

2.5 General Test Procedure

Except for the reference tests, all tests involved the

interaction of two types of loading, axial with IPB, axial with
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OPB, and IPB with OPB. The same general procedure was followed in
the testing of all but two specimens. First, any axial load
required to seat the specimen in the upper and lower
hemispherical bearings was applied. In the interaction tests one
type of loading (axial, IPB, or OPB) was applied first and held
constant at a fraction of the ultimate load obtained in the
reference test(s), then the other type of loading was increased
from zero to failure. This procedure was used because; 1.) it
enabled failure to be more easily established and, 2.) the
resulting test data is more suitable for comparisons with
theoretical results.

A proportional loading procedure was used for Tests AT50
and I026 in order to get data points on the interaction diagrams
that represent large values of both loading variables. In the
proportional loading proceéure the load maintainer was set so
that the two loading types increased in proportion to their
respective ultimate strengths. As with the general test
procedure, the bearings were first seated with a small axial
load. Then, the loads in both directions were applied in the set
proportion and increased until failure occurred. A detailed
description of the criterion for failure is given in the next
chapter.

Once first yielding was noted by the flaking of whitewash,

static yield points were taken at each loading interval. The oil
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flow to the pressure side of the loading ram(s) was shut off
preventing any further loading in that direction, and the load
was allowed to reduce to its static point after approximately 5
minutes. The same procedure was used during the testing of the
tensile coupons to determine static yield points. The static load
level is the load reported in the tabulated test data in Appendix
B and is also used in the construction of the load-deflection

curves presented in the next chapter.



CHAPTER 3

TEST RESULTS

Seventeen tests were conducted on specimens with DT joints
using combinations of axial compression, IPB, or OPB in the
branches. Eleven of the Jjoints had a B ratio of 1.0, the
remaining six joints had a 8 ratio of 0.35. The combinations of
loadings included; branch axial compression with IPB (AI), branch
axial compression with OPB (A0Q), and IPB with OPB (I0). A total
of nine tests were used as reference cases. Five tests involved
joints with B=1.0 and four involved joints with B=0.35. Three of
the B8=1.0 reference tests, A21, 023, and I24; and one 8=0.35
reference test, AU0, were reported earlier [37], but are included
here for completeness. A complete outline of the testing program
is shown in Tables 3.1 and 3.2.

The results of each test are presented in a tabular form
in Appendix B along with the formulae used to calculate moments
and rotations. The development of these equations was completed
and reported with the results of Phase 2 [15]. It should be noted
that the equations used to calculate moments include the
secondary effects which become important in the moment

calculation with large displacements.
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TABLE 3.1 OUTLINE OF TESTING PROGRAM FOR B = 1.00 JOINTS

Test No. % of Ultimate % of Ultimate % of Ultimate
Axial at Failure OPB at Failure IPB at Failure

Referemce

Tests

A21 100 - -

A22 100 ‘ - ---

023 - 100 ———

028 - 100 -

124 - - 100
Interaction

Tests

AO31 25 Failure -

A032 50 Failure ——

033 Failure o5 —

AT34 25 -—- Failure

AI35 50 - Failure

AI36 Failure - 50

AT50 Failure - Failure

1037 - Failure 25

1038 - Failure 50

1039 - 50 Fallure

1026 -—- Failure Failure



TABLE 3.2 OUTLINE OF TESTING PROGRAM FOR B8 = 0.35 AND 0.67
JOINTS
Test No. % of Ultimate % of Ultimate 7 of Ultimate
: Axial at Failure OPB at Failure IPB at Failure
g =0.35
Reference
Tests
A4O 100 ——— e
Al 100 —— ——
oL2 ——— 100 ————
I43 ——— ———— 100
Interaction
Tests
AOuYy 30 Failure -
AO45 70 Failure ——
ATh6 30 —— Failure
ATHT 70 —— Failure
048 —— Failure ‘ 30
1049 ——— Failure 70
B = 0.67 Tests
AS1 100 —— ———
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3.1 Definition.g; Failure

Three independent criteria were used to determine failure.
The first is a strength criterion by which failure is defined
when the specimen can no longer maintain a maximum loading level.
The second is a deformation criterion by which failure is defined
when the specimen deforms past a certain predetermined limit. The
third criterion is based on stability and defines failure when
the specimen buckles out of the plane of loading. For example,
failure by the third criterion would occur if the specimen began
to deform in the out-of-plane direction due to axial loading
while testing for in-plane strength.

The first and third failure criteria are fairly
straightforward. The second criterion based on a deformation
limit is much more subjective. The use of a deformation limit is
particularly important in determining the ultimate strength of
joints because the member moments and deflections in a framed
structure are very sensitive to the flexibility and rotation
capacity of the joint. A specific value for a useful deformation
limit is difficult to define. In short, the deformation limit is
reached when deflections are large enough to require the
replacement of the member or when the geomefry used in the
Structural analysis is significantly altered.

One concept of a useful deformation 1limit is described in

Ref. L. This useful deformation limit is based on a deflection of
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four times that at yield. For branch bending, fhe deflection
used 1s arbitrarily defined as the deflection at the centerline
of a simply supported beam under a uniform load. This definition
is intended to model the useful deflection of a branch member in
an offshore structure subjected to wave loadings. From this
assumption, the useful deformation limit in terms of rotation at
the supports is defined by the following equation, assuming small
rotations:

Ouseful = Yey= (8/3)(Fy/E)(L/d) (3.1)
This 1imit, assuming a typical L/d of 30, was proposed for use in
offshore tubular joint testing by Yura and Zettlemoyer [40]. Fy
is taken as the chord yield stress. The resulting useful rotation
limit is 7.73° for the joints used in this study.

To determine its applicability, the limit given by Eq. 3.1
was used in the analysis of a member in an offshore structure. An
example analysis was done on an 18 in. o.d. horizontal member
with a 45 ft. span attached to a 50 in. o.d. main vertical
member, as shown in Fig. 3.1. If the 18 in. branch is subjected
to a uniform wave load, in-plane bending loads will occur in the
joint. An elastic-perfectly plastic moment-rotation curve as
shown in Fig. 3.2 was assumed for the branch based on an Fy
equal to that of the chord. The joint, circled in Fig. 3.1, is a

DT type joint with B8=0.36. The moment rotation information for
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the joint was taken from the results of an IPB reference test on
a B=0.35 joint (I43). A simplified model of the joint loading
curve is shown in Fig. 3.3 along with the actual moment-rotation
curve for the joint. The member was analyzed with springs
representing the joints. The purpose of this analysis was to
determine how much the branch would have to deflect for the joint
to reach its ultimate strength. The resulting uniform load vs.
centerline deflection in the beam curve is plotted in Fig. 3.4.
There are three points of interest in Fig. 3.4, when the beam
reaches it plastic capacity and forms a hinge at the center (a),
when the joint stiffness is reduced as indicated at point (o) in
Fig. 3.3 (b)and in Fig. 3.4, and when the joint forms a plastic
hinge (¢). The curve shows that a centerline deflection of
approximately 34 in., or an L/A{of 15.8, is required to reach the
ultimate capacity of the joint. The acceptability of this
deformation l1imit in a failure type analysis is a matter for the
designer to decide; however, for the purposes of this report the
deformation limit given by Eq. 3.1 is used.

When used in testing joints with B=0.67 and 0.35, the
deformation 1imit given by Eq. 3.1 seemed reasonable by visual
inspection of the joints. But when loading the 8=1.0 specimens in
out-of-plane bending, there was considerable distress and gross
distortion of the chord on the compression side of the joint at

rotations of between 4° to 5°, as shown in Fig. 3.5, which is
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considerably lower than the deformation limit of 7.73° given by
Eq. 3.1. Since such 1local distortions are similar to local
buckling in plate structures, it was felt that an additional
useful limit should be imposed that considers the distortion of
the chord material in the joint area.

The 1imit given by Eq. 3.1 is in terms of a rotation, but
the distortion of the chord material is a result of the branch
end displacements at the saddle region of the chord. As the
branch diameter becomes larger, the deformation at the tips of
the branches increases for a constant branch rotation. For
example, the 7.73° rotation limit would require in a 0.76" rigid
body movement of the branch in the saddle region in OPB for a
B=0.35 joint while the same rotation creates a 2.18" movement in
the B=1.0 joint. In addition, due to the geometry of the B=1.0
joint, there is much less material between the branches at the
saddle points to absorb the deformations imposed by the branch
movement than in the B=0.35 joint. For the B=1.0 joints, the
distance between the branches at the saddle averaged 3.6", for a
7.73° rotation limit, each branch tip would move 2.18" or a total
of U4.36". In order to reach the deformation limit given by Eq.
3.7, the branch tips on the compression side would have to
overlap by almost 1" before failure. This definition 1is
unreasonable. Therefore, an ultimate deformation l1imit for OPB

was defined as the rotation at which the tips of the branches
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would touch in OPB as shown in Fig. 3.6. With an average distance
between the saddle points, or gap, of 3.6 in. and a diameter of

16 in., this rotation is 6.42°.

3.2 Reference Tests

3.2.1 Axial Loading—-B=1.0

3.2.1.1 Test A21. The load-deflection curve for Test A21
is plotted in Fig. 3.7a. The lower axial load is plotted versus
the average deflection of the branches as discussed in the
instrumentation section of Chapter 2. First yielding occurred at
Load Stage 9 at a load of 150.5 kips. The initial yielding
occurred at the weld toe on the saddle position of the joint
shown as point "a". An ultimate load of 172.7 kips was achieved
at an average branch deflection of 0.339 in. During testing,
yielding progressed from the saddle points to about 45° from the
saddle of the joint. No yielding was apparent near the crown.
Failure occurred when the chord wall between the weld toes at the
saddles buckled. This type of failure is shown in Fig. 3.8. After
the ultimate load was reached, yielding progressed into the chord
region around the saddle points.

3.2.1.2 Test A22. The load-deflection curve for Test A22
is plotted in Fig. 3.7b. First yielding occurred at Load Stage 7
with a load of 133.8 kips in the lower ram. The initial yielding

occurred at the weld toe on the saddle position of the joint
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shown as point "al" on the bottom of one side of the joint and
the top of the other side "a2". This unsymmetrical yielding
indicates that the branches of the specimen were not perfectly
aligned on the chord. An ultimate load of 151.5 kips was achieved
at an aver‘age branch deflection of 0.179 in. at Load Stage 8.
During testing, yielding progressed from the saddle points to
about 45° from the saddle of the joint. No yielding was apparent
near the crown. Failure occurred when the branches began to
rotate out of the plane of the chord and punchvinto the chord.
This type of failure is shown schematically in Fig. 3.9. From
measur’emen.ts taken at the ends of the chord, it was shown that
the twisting of the chord was localized in the joint region.

The ultimate load for Test A22 of 151.5 kips compares with
172.7 kips for Test A21. The difference between the two test
results is 13.3% . For the purpose of the interaction equations
discussed in the next chapter, the reference value will be the
average of the two, 162.1 kips.

3.2.2 Axial Loading B=0.67

3.2.2.1 Test A51. This test is‘similar* to Test A1 which
was reported in Phase 2 [14]. Because specimens 851 and A1 were
fabricated at different times, the exact material properties and
specimen dimensions are not identical. The load-deflection curve
for Test A51 is given in Fig. 3.10. First yielding occurred at

Load Stage 4 with a load of 43.6 kips at the saddle points of the
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joint. The ultimate load of 71.0 kips was reached at an average
deflection of 0.594 in. at Load Stage 9. At ultimate, the
yielding at one saddle was much more significant than at the
other indicating a twisting type failure. This is probably a
result of an initial out-of-plane displacement of about 0.35 in.
due to fabrication. After ultimate, the top branch began to
deflect much more than the bottom and yielding spread around the
entire weld connecting the branch to the chord.

Due to the difference in material properties of the two
specimens, the results of Tests A1 and A51 could not be simply
averaged to determine a reference value. The ultimate loads were
first nondimensionalized using the form P/TZ2Fy. The
nondimensionalized values were then averaged. The average
nondimensionalized value was then transformed into a reference
axial load using the material properties and specimen dimensions
of the B=0.67 interaction tests which are given in Ref. 15. The
resulting reference axial load is 73.9 kips.

3.2.3 Axial Loading B=0.35

3.2.3.1 Test A4O. The load-deflection curve for Test ALD
is plotted in Fig. 3.11a. First yield occurred at the saddle
point of the joint during Load Stage 3 at an axial load of 27.1
kips in the lower ram. The ultimate load of 42.0 kips was reached
at an average deflection of 0.616 in. at Load Stage 7. Yielding

began on the top of the joint and spread from the saddle points
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around the weld connecting the branch to chord. Yielding did not
begin on the bottom of the joint until Load Stage 6. Failure
occurred as the top branch began to punch into the chord wall.
After failure, the branches began to rotate out-of-plane and the
chord twisted by slipping in the chord anti-twist attachment. In
addition, the chord rotated slightly about the joint centerline.
The failed specimen is shown in Fig. 3.12.

3.2.3.2 Test A41. The load-deflection curve for Test AU1
is plotted in Fig. 3.11b. First yield was detected at the saddle
points at the top of the joint at a load of 25.9 kips. The
ultimate load of 46.2 kips was attained at an average deflection
of 0.585 in. at Load Stage t4. After the ultimate load was
reached, yielding progressed around the branch-to-chord weld as
shown in Fig. 3.13. Most of the deflection is due to gross
bending of the chord wall very close to the branch.

The ultimate loads of Tests A40 and A41, 42.0 and U6.2
kips respectively, have a difference of 9.5%. The average of the
ultimate strengths, U44.1 kips, will be used as a reference in the
interaction equations.

3.2.4 0PB-g=1.0

3.2.4.1 Test 023. The moment-rotation curve for Test 023
is shown in Fig. 3.14a. First yielding occurred at the saddle of
the lower branch connection at a moment of 819 kip-in. At Load

Stages 8 and 9 yielding progressed around the bottom branch to
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about 45° from the saddle point on the connection. Buckling of
the chord wall between the weld toes cn the compression side
began at Load Stage 10. Between Load Stages 13 and 14, an
apparent instability failure of the joint occurred at a moment of
1104 kip~in. This behavior is discussed in detail‘in Ref. 36. At
that point, the specimen was unloaded and then reloaded. Upon
reloading, the specimen continued to resist increasing moments
until the chord wall buckling became so excessive that the
branches were nearly bearing against each other, as shown in Fig.
3.15. The test was stopped at Load Stage 31 with a moment of 1302
kip-in. and a rotation of 4.94° because the distortions of the
chord between the saddle points became excessive. From this test
result, it is hard to define failure. Upon analysis, it was found
that the instability at Load Stage 13 was a result of a specific
combination of geometric properties of the joint. This point with
a moment of 1104 kip—in could be defined as failure, However it
was felt that because the specimen carried larger moments upon
reloading the ultimate strength of the joint is better
represented by Load Stage 31 with a moment of 1302 kip-in.

3.4.2.2 Test 028. The moment-rotation curve for Test 028
is presented in Fig. 3.14b. First yielding occurred during Load
Stage 8 at the saddle point of the lower branch weld on the
compression side of the joint and a moment of 1327 kip-in. The

ultimate moment of 1476 kip-in. was attained at a rotation of
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0.70° during Load Stage 9. After the ultimate load, yielding
progressed on the compression side of the joint and the chord
wall between the saddle points buckled. In addition, the yielding
began on the tension side of the joint at Load Stage 11 soon
after the ultimate moment was reached. A picture of the failed
specimen is shown in Fig. 3.16.

Comparison of the two tests, 023 and 028, shows a very
significant difference in behavior. The reason for this is
discussed in Chapter 4. The difference between the two ultimate
moments, 1302 kip~in. for Test 023 and 1476 kip-in. for Test 028,
is 12.5%. The average of the two ultimate moments, which will be
used in interaction equations, is 1389 kip-in.

3.2.5 0PB-$=0.35

3.2.5.1 Test 042. The moment-rotation curve for Test 042
is shown in Fig. 3.17. The first yielding occurred during Load
Stage 3 at a moment of 68 kip~in. The ultimate load of 118 kip~—
in. was reached at 6.27° rotation at Load Stage 9. At Load Stage
6 yielding was observed on the tension side of the joint at the
saddle point and the yielding on the compression side began to
approach the crown of the joint. Failure of the joint occurred
when the branches punched into the chord on the compression side
of the joint and significant yielding occurred on the tension

side of the joint. After the maximum moment was reached, the .pa
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yield band continued completely around the compression side of
the branch-chord connection, as shown in Fig. 3.18.

3.2.6 IPB-B=1.0

3.2.6.1 Test I24. The moment-rotation curve for Test I24
is shown in Fig. 3.19. First yielding was observed in the chord
at location "a" near the saddle on the tension side of the joint
at Load Stage 11 and a moment of 1725 kip—-in. As the applied
moment increased, chord ovalling on the tension side of the joint
began followed by yielding along the welds at both the
compression and tension crown points. As deformation continued,
yielding began at points "b", and "c¢". These areas of yielding
are shown as the dark patches in Fig. 3.20. The ultimate moment
of 2265 kip—~in. occurs at Load Stage 17 and a rotation of 5.67°.
Failure occurred by two mechanisms. First, the chord on the
tension side of the joint ovalled along a vertical axis with
yielding along the center of the chord. Second, the chord on the
compression side of the joint ovalled along a horizontal axis
with a buckle in the chord wall near the crown area.

3.2.7 IPB-B=0.35

3.2.7.1 Test I43. The moment-rotation curve for Test Ii3
is plotted in Fig. 3.21. First yielding was observed in Load
Stage 4 at a moment of 121 kip~in at the crown on the compression
side of the joint. Failure of the joint, which is defined by the

deformation limit, occurred at a moment of 257 kip~in. and a
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rotation of 7.73°. After initial yielding, the joint continued to
resist increasing moments to almost 10° rotation at which time
the test was stopped at Load Stage 14, Yielding spread quickly
around the compression side of the joint from saddle point on one
side to saddle point on the other side of the joint. Yielding at
the crown on the tension side of the side began at Load Stage 8
with a moment of 232 kip-in. A picture of the joint at failure is
shown in Fig. 3.22.

After unloading, the test was continued by reversing the
loading direction and applying an opposite moment to the joint.
The moment-rotation curve for this additional loading is plotted
in Fig. 3.23. The solid diamonds repeat the original M~-6 diagram
given in Fig. 3.21. The Jjoint was loaded in the opposite
direction from point (a) on the curve until the branches were
almost vertical again at point (m) with a moment of 270 kip—-in.,
as shown by the open circles. From that point, the specimen was
unloaded to point (b) on the curve and the chord on the now
tension side of the joint was cut off about 21 in. from the
centerline of the joint. After the excess chord was removed, IPB
moment was again applied to the joint as shown by the solid
square data points. At point "¢" a surface crack was found in the
chord on the tension side of the joint about 45° from the saddle
point along the weld toe. From thié point, the joint continued

the take moment until the chord of the specimen began to rotate
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and bind the testing equipment. The maximum moment for the
cracked specimen was 218 kip-in.

3.3 Axial Load with Out—of-Plane Bending

3.3.1 8=1.0

3.3.1.17 Test A031. 1In this test, approximately 25% of
the ultimate axial load was applied and then the joint was loaded
in OPB until failure. The OPB moment-rotation curve is plotted in
Fig. 3.24. First yielding was noted at Load Stage 6, with a
moment of 614 k-in, along the bottom saddle point on the
compression side of the joint. Failure is defined by the
deformation 1imit of 6.42° between Load Stages 16 and 17 at a
moment of 1085 kip—in. After the initial yielding, yielding
continued around the saddle points on the compression side until
failure. The yield band was contained within a 45° arc along the
weld on either side of the saddle. Failure occurred by buckling
of the chord wall between the saddle points on the compression
side of the joint; yielding on the tension side of the joint was
not observed until after failure.

3.3.1.2 Test A032. In Test AO032, approximately 50% of
the ultimate axial load was applied then the joint was loaded in
OPB. The moment-rotation curve is shown in Fig. 3.25. First
yielding on the joint occurred at the compression side saddie
points at a moment of 620 kip-in. during Load Stage 8. Failure of

the specimen occurred at Load Stage 10 with an ultimate moment of
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796 kip-in. at a rotation of only 0.53°. From this point, the
secondary moments began to drive the specimen. By reducing the
branch loading, the joint was allowed to deform until a branch
rotation of 3.12° and a moment of 796 kip-in was attained at Load
Stage 13. Failure occurred by buckling of the chord wall between
the saddle points no yielding was apparent on the tension side of
the joint.

3.3.1.3 Test AO033. To get an interaction point near the
axial loading axis, in Test AQ33 25% of the reference out~of-
plane moment was applied and then the joint was failed in axial
loading. The lower axial locad in the branch vs. the average
branch deflection curve is plotted in Fig. 3.26. The average
branch deflection is used instead of the lower branch deflection
corrected for rigid body motion as in the other phases of this
study because it was not possible to accurately measure rigid
body rotations while the joint deformed in the out-of-plane
direction. First yielding of the joint was noted at the saddle
points on the OPB compression side of the joint at an axial load
of 87.9 kips during Load Stage 6. The specimen failed suddenly at
an axial load of 118.4 kips. Failure occurred when the chord wall
between the saddle points on the OPB compression side of the

Jjoint buckled.
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3.3.2 8=0.35

3.3.2.1 Test AOUU4., In Test AOUL approximately 30% of the
axial reference load was applied then the joint was loaded to
failure in OPB. The OPB moment-rotation curve is shown in Fig.
3.27. First yielding was noted on the joint at the saddle points
on the compression side at a moment of 39 kip~in. Failure of the
specimen was defined by the deformationlimit at a rotation of
7.73° and a moment of 124 kip-in. between Load Stages 18 and 19.
Failure occurred when the compression side of the branch began to
punch into the chord and yielding became apparent on the tension
side of the joint.

3.3.2.2 Test AOU5. 1In this test, approximately 70% of
the reference axial load was applied before the specimen was
loaded to failure in OPB. The OPB moment-rotation curve is
plotted in Fig. 3.28. First yield became apparent during Load
Stage 2 before reaching the target axial load. Failure occurred
at Load Stage 13 with an ultimate moment of 73 kip~in. Due to the
initial out-of-straightness of the specimen of 0.35 in., the
moment produced by the initial deflection at the centerline of
the chord multiplied by the axial load caused the joint to
deflect in the out-of-plane direction. Because this type of
loading is very unstable, the flow of o0il from the OPB ram was
shut off at each load stage to stop the deformation of the joint.

The pressure on this line produced a force which caused a moment
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in opposition to the secondary bending effects. This resisting
moment was calculated and is shown as a negative branch moment in
the table of results in Appendix B. Failure was caused by
twisting of the chord about its centerline similar to the failure

shown in Test A22.

3.4 Axjial Load with In~Plane Bending

3.4.1 g=1.0

3.4.1.1 Test AI34. 1In Test AI3Y4, approximately 25% of
the axial reference load was applied before the joint was loaded
to failure in IPB. The IPB moment-rotation curve is shown in Fig.
3.29. First yielding of the joint became apparent at a moment of
1196 kip—in. during Load Stage 5. The yielding began in an arc
from the saddle point to 75° toward the crown along the weld on
the compression side of the joint. Failure of the specimen
occurred at a moment of 2123 kip-in. and 4.16° rotation. After
first yield, yielding on the compression side of the joint
progressed to the crown. Yielding along the centerline of the
chord on the tension side of the joint began at Load Stage 8
indicating an ovalling of the chord. Failure was caused by gross
yielding in the chord wall.

3.4.1.2 Test AI35. In this test, 50% of the axial
reference load was applied and then the specimen was loaded to

failure in IPB. The moment-rotation curve for Test AI35 is shown
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in Fig. 3.30. First yielding of the joint occurred at a moment of
1085 kip~in. during Load Stage 11. The initial yielding of the
joint occurred in a band from the saddle point to 35° toward the
crown on the compression side of the joint. During Load Stage 16
a malfunction was found in the LVDT used to determine the in-
plane deflection; however, the load readings were found to be
accurate. Thus the only error in the determination of the total
moment could be in the calculation of the secondary moments. The
possible moment varied between 2060 and 2194 kip-in. By assuming
several different deflections and comparing the resulting
moments with the shape of the rest of the moment rotation curve,
it was estimated that failure occurred at a rotation of 3.5° and
an ultimate moment of 2140 kip-in. Failure occurred by gross
yielding of the chord wall in the vicinity of the joint.

3.4.1.3 Test AI36. The loading path used for this test
was first to apply approximately 50% of the reference IPB moment
then to fail the specimen under axial loading. The axial load vs.
the average branch deflection is plotted in Fig. 3.31. First
yielding on the joint was noted at an axial load in the lower ram
of 80.0 kips. The yielding occurred from the saddle points to 45
toward the compression side of the joint along the weld toe.
Failure occurred at a lower axial ram load of 169.0 kips during
Load Stage 11. After initial yielding, yielding progressed from

the saddle points on only one side of the joint. This
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unsymmetrical yielding caused the specimen to buckle in the out-
of-plane direction soon after reaching the ultimate load. Failure
was a result of buckling of the chord wall between the saddle
points on one side of the joint.

3.4.1.4 Test AI50. Because the results of the previous
thfee axial load with IPB tests displayed very little interaction
as shown in Fig. 3.32 a proportional load path was chosen which
would follow a 45° line on the interaction diagram also shown in
Fig. 3.32. This was done to gain as much information about the
middle portion of the interaction equation as possible. In this
test, the axial load and IPB moment were applied simultaneously
at the predetermined ratio. The lower axial ram vs. average
branch deflection is plotted in Fig. 3.33a, while the IPB moment-
rotation curve is plotted in Fig. 3.33b. The actual load path for
Test AI5S0 is shown in Fig. 3.34. Initial yielding began in a band
from the saddle point to 45° toward the crown on the compression
side of the joint at Load Stage 3 with an axial load of 8U4.9 kips
and an IPB moment of 1099 kip—-in. At Load Stage 4, the yield band
continued from the saddle point on one side of the joint to the
other on the compression side of the joint. Failure of the joint
occurred at an axial load of 129.0 kips and an IPB moment of 1600
kip~in. The failure mode was mainly controlled by an axial type
failure with a sudden buckling of the chord wall between the two

saddle points.
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3.4.2 B=0.35

3.4.2.1 Test AIN6. In Test AIL6 approximately 30% of the
reference axial load was applied before the joint was loaded to
failure in IPB. The IPB moment-rotation curve is plotted in Fig.
3.35. Yielding was first noted at a moment of 155 kip~in. during
Load Stage 3. The initial yield band stretched from saddle point
to crown to the other saddle point on the compression side of the
joint. The maximum moment, 233 kip-in., was attained at a
rotation of 5.96° in Load Stage 8. The specimen maintained this
moment to a rotation of 8.69° illustrating the ductility of this
joint geometry. Failure was a result of gross yielding of the
chord wall in the vicinity of the crowns. Yielding extended
almost 4.5 in. away from the joint along the crown on the
compression side of the joint as shown in Fig. 3.36.

3.4.2.2 Test AIN7. 1In this test, approximately 70% of
reference axial load was applied and then the joint was loaded in
IPB until failure occurred. The IPB moment-rotation curve is
plotted in Fig. 3.37. First yielding was noted at the saddle
points of the joint at an axial lcad of 24.3 kips, before the
target axial load was reached. Due to an initial in-plane out-of-
straightness in the specimen, the application of the axial load
resulted in a negative secondary moment in the joint before the
branch bending moment was applied. This moment, 7 kip-in, is

about 3.5% of the maximum moment of the joint. Failure of the
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Joint was defined by the stability criterion when the chord
buckled approximately 6 in. in the out-of~plane direction at a

moment of 200 kip-in.

3.5 In-Plane Bending with Out-of-Plane Bending

3.5.1 g=1.0

3.5.1.1. Test I037. In this test approximately 25% of
the IPB reference moment was applied before the joint was loaded
in OPB. The OPB moment-rotation curve is plotted in Fig. 3.38.
First yielding occurred in a band from the compression saddle
point 45° toward the IPB compression crown during Load Stage 7 at
an OPB moment of 313 kip-in.. Failure was defined by gross
distortion of ﬁhe joint at an out-of-plane rotation of 5.96° and
an OPB moment of 1419 kip~in. At the point of failure, the chord
wall between the saddle points on the OPB compression side of the
joint had buckled and yielding around the weld had spread into
the branch because the toes of the branches were bent as shown in
Fig. 3.39.

3.5.1.2 Test 1I038. 1In Test I038 approximately 50% of
the IPB reference moment was applied and then the joint was
loaded to failure in OPB. The OPB moment-rotation curve is shown
in Fig. 3.40. First yielding was noted during Load Stage 7 at an
OPB moment of 314 kip-in. The yielding occurred in two bands, one

in the compression quadrant (compression from both IPB and OPB)
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from the saddle point to 45° toward the IPB compression crown,
the other occurred in the tension quadrant (tension from both IPB
and OPB) from the saddle point to 45° toward the IPB tension
crown. The quadrants are shown in Fig. 3.41. Failure was defined
by gross distortion of the joint at an OPB moment of 1267 kip-in.
and an OPB rotation of 5.26°. The increase in stiffness of the
joint apparent after Load Stage 12 was accompanied by a
significant increase in the amount of yielding in the tension
quadrant of the joint. The yielding pattern on the joint was a
combination of the yielding patterns seen on OPB and IPB
specimen. On the OPB compression side of the joint the chord wall
buckled between the two saddle points while on the IPB tension
side of the joint, yielding was noted along the chord centerline
indicating an ovalling of the chord. Pictures of the joint at
failure are presented in Fig. 3.42.

3.5.1.3 Test 1039. 1In this test approximately 50% of
the reference OPB moment was applied before the joint was loaded
to failure in IPB. The IPB moment-rotation curve for Test 1039 is
plotted in Fig. 3.43. First yielding was noted during Load Stage
6 at an IPB moment of 599 kip~in. The initial yielding occurred
in the compression quadrant of the joint from the saddle to 45°.
The joint failed at an IPB moment of 2173 kip-in. and an IPB
rotation of 4.64° during Load Stage 11. After initial yielding,

the yielding pattern was very similar to the yielding shown in
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the IPB reference test with a yield band from saddle to saddle
point on the IPB compression side of the joint and a section of
yielding in the chord wall along the chord centerline on the IPB
tension side of the joint. The only difference in the pattern was
that the yielding on the OPB compression side of the joint was
less significant than on the OPB tension side of the joint.
Failure was caused by gross yielding of the chord wall in the
vicinity of the joint.

3.5.1.4 Test 1026. Because the results of previous IPB
with OPB interaction tests placed points only on the fringes of
the interaction diagram, a proportional load path was chosen
which would follow a 45° line as in Test AI50. In that test, the
axial load and IPB moment were applied simultaneously at the
predetermined ratio. The moment-rotation curves for IPB and OPB
are plotted in Figs. 3.44a and b respectively. The actual loading
path for Test I026 is plotted in Fig. 3.45. First yielding was
noted during Load Stage 6, with IPB and OPB moments of 1073 kip-
in. and 556 kip~in. respectively, in a band from the saddle to
4s° in the compression guadrant of the joint. Following initial
yielding, the yielding pattern progressed much like the one seen
in Test 1039. After Load Stage 10, the moment-rotation curve of
the joint in both directions reached a plateau and the joint
could not carry more moment, but continued to deflect with no

significant loss in capacity. Failure of the joint was defined by



2000 -
B-io
0 7
1500 - $ .
' iPB MOM. = 1590 Kip-in.
-
=
! Bip
o )
N
= /A\ Ay
Q
=
m Mip.
= ¥ :
Mip:
A
T T —1
2 3 4
IPB ROT.(DEG.).
a.) IPB
800 -
Brio
IPB MOM. = B4l Kip-in.
-
- 6001
T -« FIELD )
v YLD
= A,
O
=
m
. 300 - MIP
© R =
1 £
Mp =71
AL
04 ! T T — -
0 1 2 3 4
OPB ROT.(DEG.)
b.) OPB
Fig. 3.44 IPB and OPB Moment-Rotation Curves for Test 1026

120



B-io

M/MU(OPB)

Fig. 3.45

150

B=035

125 -

-

Q

Q
1

OPB MOM.(K—IN.)
o ~
(=) [3,]

25

T T T

4 .6 8 1
M/MU(iPB)

Actual Loading Path for Test 1026

OPB MOM.=142 Kip-in.

OPB ROT. = 7.73°

I
|
!
l
|
l
I
l
I
|
|
!
l
|
|

4 6 8
OPB ROT.(DEG.)

OPB Moment—~Rotation Curve for Test I0OU8

10

121



122

gross deformations in the vicinity of the joint. From observation
of the load path shown in Fig. 3.45 it seems irrelevant which
point after Load Stage 10 is chosen as failure because the
moments are very similar. The farthest point from the origin is
taken from Load Stage 17, therefore this Load Stage was chosen to
define the ultimate moments of 1590 and 841 kip~in. for IPB and
OPB respectively.

3.5.2 B8=0.35

3.5.2.1 Test IO48. 1In Test IO4B, approximately 30% of
the reference IPB moment was applied before the joint was loaded
to failure in OPB. The OPB moment-rotation curve is plotted in
Fig. 3.46. First yielding of the joint occurred around the saddle
points of the OPB compression side of the joint during Load Stage
6 at an OPB moment of 39 kip~in. Failure of the specimen as
defined by the deformation limit of 7.73° at an OPB moment of 142
kip~in. The specimen continued to carry moment until the test was
stopped at an OPB rotation of 8.13°. After initial yielding, the
yield pattern progressed from the saddle point on the OPB side of
the joint first toward the IPB compression crown and then toward
the tension crown. Just before reaching the deformation limit,
the OPB compression toe of the branch began to punch into the
chord wall and small cracks formed at the saddle point on the

tension side.
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3.5.2.2 Test I049. 1In Test IO0OL9, approximately 70% of
the reference IPB moment was applied and then the joint was
loaded in OPB until the specimen failed. The OPB moment-rotation
curve is shown in Fig. 3.47. First yielding on the joint was
noted during Load Stage 5, with an OPB moment of 21 kip~-in., in a
band around the weld toe in the compression quadrant of the
Jjoint. After initial yielding, the pattern of yielding progressed
from the compression quadrant around toward the OPB tension
saddle point on the IPB compression side of the joint and small
surface cracks formed in the tension quadrant of the joint. At
6.18° OPB rotation the yield band was almost completely around
the branch-chord intersection. Failure of the specimen was

defined by the deformation limit at an OPB moment of 125 kip-in.
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CHAPTER 4

DISCUSSION OF TUBULAR JOINT BEHAVIOR

The previous chapter was dedicated to presenting the
results of the testing program; in this chapter several areas
concerning the general behavior of the joints will be discussed.
First, the failure mode of B=1.0 joints in compression and OPB,
which is different than Joints with smaller B ratios, will be
discussed. Second, the effects of the B ratio on the interaction
of branch loadings based on the results of the interaction tests
(from both Phase 2 and 3) will be addressed. In addition, the
test results will be compared to ultimate strength predictions
based on the arcsine interaction equation in the 15th edition of
the API specification [1]. Third, the DT data is compared to the
results of a recent test program on T joints [30, 317 to
investigate the effect of the geometry on the interaction of
branch loadings.

A DT tubular joint's strength is determined by the ability
of the chord wall to resist the applied branch loads. Around the
periphery of the joint the chord resists the branch load in two
ways as shown in Fig. 4.1; by plate action and by membrane
action. Plate action occurs when the chord wall resists branch
loads similar to a flat plate; as a combination of shear and

bending in the chord wall. This action dominates as the

125
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st ~

(a) membrane action (b) plate action

Fig. 4.1 Diagram of Plate and Membrane Action in Chord Wall
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intersection of branch and chord walls approaches a right angle,
as in the crown region or when 8 is small. Membrane action
occurs when the branch loads are resisted by "axial", or
membrane, forces in the chord wall. This action dominates in
regions where the branch wall becomes tangent to the chord wall,
as in the saddle region of a g=1.0 joint. In the elastic range,
the chord wall is much stiffer in membrane action than in plate
action, so the stiffness of the chord wall varies around the
joint. This variation in stiffness is the cause of the stress
concentrations which occur in tubular joints. In addition, the
two actions have different failure modes. The failure of the
chord wall in membrane action is an instability or buckling
failure while the failure of the chord wall in plate action is a
ductile or bending type failure.

At a B close to unity, most of the branch load is resisted
in membrane action in the saddle region. Therefore, the failure
of this type of joint under compression is an instability or
buckling failure. As B decreases, the stiffness of the chord wall
at the saddle approaches that of the crown and the branch loads
are more evenly distributed around the joint. Since the branch
loads are resisted primarily by plate action in the chord wall,
the failure of this type of joint is a ductile or bending

failure.
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4.9 Influence of Gap on B=1.0 Joints in Compression

Comparison of the load-deflection curves of the reference
tests for axial compression and OPB of the g=1.0 joint geometry
shown inAFigsJLZ and 4.3 indicates significant differences in
ultimate loads as well as behavior because the failure is
controlled by instability of the chord wall between the saddle
weld toes, or membrane action. The joints being compared are
nominally identical, therefore there is some difference between
the joints which would not be accounted for in design which has a
significant effect on the strength and behavior of the joint.
This difference was found to be in the distance between the weld
toes at the saddle points which are loaded in compression. This
parameter, which is shown in Fig. 4.4, will be referred to as the
gap, G, and was measured on each B=1.0 specimen before testing.
The gap dimension varied from 2.75 to 4.25 in. for the g~1.00
specimens with an average of 3.6 in. The gap dimensions for each
specimen is given in Appendix C with other specimen dimensions.

Several procedures are involved in the fabrication of a
tubular joint and some imperfections must be expected. Since the
alignment of all of the joints was measured before each test (see
Appendix C), and all were within a 1/3" in 5!, alignment of the
branches does not seem to be the reason for the variation in the
gap. The variation in the gap sizes can be explained by an

unsymmetric setting of the branch on the chord, as shown in Fig
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Fig. 4.4 Definition of Gap Parameter
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4.4 due to a slightly off~center cut or a branch which is not
perfectly round. Because the length of the saddle portion of the
branch is very sensitive to the cut in a 8=1.0 joint, a small
eccentricity in the cut canresult in a large variation in the
gap dimensions.

The influence of the gap arises from the fact that the
compression forces from the branch are resisted by a very small
area of the joint. Tests in tension on B=1.0 joints recently
completed at the University of Texas [28] support this conclusion
because there was no significant loss of strength when the chord
cutside of the weld region was removed. In Ref. 28 the weld
region is defined as the region of the chord between the welds of
the joint. In addition, measurements from strain gages placed
along the chord during Test A22 indicate that the chord outside
of the weld region is not involved in resisting the branch loads
until after the ultimate load is attained and large deformations
are applied. Therefore, the branch loads are resisted mainly by
the material between the weld toes. It follows that when
compression is applied thru the branch, the chord wall between
the weld toes behaves’as a column with a length equal to the gap
size. Thus, an analysis which treats the chord wall between the
gaps as a column should yield an approximate prediction of the

strength of the joint.
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By Euler's equation, the strength of a column is a
function of the slenderness ratio, (L/r). Thus, the strength of
the joint should be a function of the ratio of the gap, G, to the
radius of gyration, r. It is assumed that the chord wall at the
weld toes is past yield so the effective length factor will be
taken as 1.0. The respective values of the maximum compression
gaps, slenderness ratios, and experimental load for tests A22,
A21, 023, and 028 are given in Table 4.1. The experimental load
for the axial tests is calculated by dividing the ultimate load
by 2, since two gaps resist the load. The experimental load for
the bending tests is calculated by taking the ultimate moment and
dividing by a moment arm equal to the chord diameter.

Fig. 4.5 is a plot of the experimental loads vs. G/r, as
given in Table 4.1, along with a portion of the SSRC inelastic
buckling curve calibrated to Test 028. The experimental load was
calculated from the critical stress inelastic buckling curve by
assuming an effective area of 2.00 sq. in. which made the curve
match the results of Test 028. An E of 29,000 ksi was assumed,
and Fy was taken as 48.9 ksi from Table 2.2. Fig. 4.5 shows that
the the results of Tests A21 and 023 fall along the calibrated
inelastic buckling curve indicating that the correlation between
joint failure and the buckling of the gap as a column is
reasonably valid. The experimental load from Test A22 falls

somewhat outside of the other data, but is well within the
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TABLE 4.1 GAP INFORMATION FOR TESTS A21, A22, 023 AND 028

G G/r EXP. LOAD
TEST (in.) (kips)
S 028 2.5 a6 sa.es
A21 3.63 49.05 86.4
A22 3.88 52.43 75.8
023 4.25 57.43 81.3

SSRC Inelastic Curve

Exp. Load
(Kips)

30 T
20 1
10T

0 10 20 30 40 50 60 70 80 90 100
G/r

Fig. 4.5 Plot of Experimental Load vs. G/r
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scatter typical of inelastic column buckling data for similar L/r
values [33]. 1In Chapter 6, this behavior will be investigated
analytically to determine the validity of the theory in the
absence of experimental scatter.

Another gap parameter, the difference in the gaps,
influences the mode of failure of the joint in axial compression.
If the difference between the gaps is large, then one side of the
joint will buckle and the chord will twist as in Test A22. This
type of failure is ductile as the remaining side of the joint
continues to resist load. However, if the gap difference is
small, both sides of the joint will fail simultaneously with
little reserve capacity; in other words, the joint will exhibit
buckling type failure.

Because the gap parameter has a significant effect on the
capacity of a B=1.0 joint in axial compression and OPB, the
variation in this parameter should be accounted for in the factor
of safety used in the design of the B=1.0 joint if mean equations

are used.

.2 Two-Dimensional Interactions

The nondimensionalized values used to develop the
following interaction figures were calculated by dividing the
experimental ultimate strength for each loading type in the

interaction tests (Axial, IPB, or OPB) by the experimentally
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TABLE 4.2 ULTIMATE STRENGTH AND INTERACTION VALUES: TEXAS TESTS

S
S

TEST AXTAL MM. MM, P/PU MWMJ
(OPB) (IPB) (OPB)
(kips) (kips) (K~IN) (K~IN)

~~
3
~

p=0.35 ANO 2.0 0 0 0.95 0.00 0.00
AP 46.2 0 0 1.05 0.00 0.00
Qu2-p 3.1 118 0 0.07 1.00 0.00
I43-P 4.8 0 57 0.1 0.00 1.00
AQUY-D 12.4 124 0 0.28 1.05 0.00
AQU5-D 31.2 73 0] 0.1 0.62 0.00
AT46-P 13.2 0 233 0.30 0.00 0.91
ATHT-B 30.2 0 200 0.69 0.00 0.78
IOU8-D b1 142 87 0.09 1.20 0.34
049D 3.3 15 179 0.08 1.06 0.70
Reference Ly 1 118 257

8=0.67 A1-P 78.8 0 0 1.05 0.00 0.00
A51-P 71.0 0 0 0.95 0.00 0.00
®B-P 3.5 400 0 0.05 1.00 0.00
Ir-p 8.8 0 1056 0.12 0.00 1.00
AQU-P 19.7 319 0 0.26 0.80 0.00
AO13~-P 52.6 177 0 0.70 0.4y 0.00
AT20-P 5.2 0 835 0.34 0.00 0.84
AT17-B 52.7 0 687 0.70 0.00 0.65
IO15-P 5.5 377 347 0.07 0.94 0.33
I0t4~P 5.0 268 678 0.07 0.67 0.64
ATO16-D 19.8 335 328 0.26 0.84 0.31
ATO18~P 49.6 153 410 0.66 0.38 0.39
ATO19-D 49.3 140 352 0.66 0.35 0.33
Reference 73.9 400 1056

B=1.00 A1-P 172.7 0 0 1.07 0.00 0.00
A22~pP 151.5 0 0 0.93 0.00 0.00
3D 13.5 1302 0 0.08 0.94 0.00
o28~P 12.3 1476 0 0.08 1.06 0.00
I24-p 18.6 0 2265 0.1 0.00 1.00
AQ31-D Ly n 1085 0 0.27 0.78 0.00
AQ32—P 88.1 796 0 0.54 0.57 0.00
AC33~-P 118.4 379 0 0.73 0.27 0.00
AT34~-P 13.8 0 2123 0.27 0.00 0.94
AI3B-P 86.6 0 2140 0.53 0.00 0.94
AT36-P 169.0 0 1208 1.04 0.00 0.53
AT50-P 129.0 0 1600 0.80 0.00 0.71
037D 15.2 1119 582 0.09 1.02 0.26
I038-D 17.2 1267 1160 0.1 0.91 0.51
I039-p 16.2 584 2173 0.10 0.42 0.96
I1026P 14.6 81 1590 0.09 0.61 0.70
Reference 162.1 1389 2265

NOIE: P = Peak load failure

D = Defomation limit failure
B = Buckling failure
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determined average reference value. For example, the axial
reference value of 44.1 kips for B=0.35 is the average of Tests
ALO and A41. The experimental ultimate strengths, experimental
reference values, as well as the nondimensionalized interaction
values are given in Table 4.2,

h4.2.1 Axial Compression with OPB: The interaction

between axial compression and OPB for all three B ratios used in
this project are shown in Fig. 4.6 along with the recommended API
interaction curve for comparison. The axial and bending terms are
normalized by experimental values given in Table 4,2. In the OPB
reference tests, a small axial load was required to hold the
specimens in the test frame, therefore the data points from Tests
023, 028, 08,and 042 do not fall directly on the bending axis.
All points represent peak load failures except as noted. A "D"
next to a data point denotes failure by the deformation limit.
Comparison of the data to the arcsine equaticn indicates that
several points fall below the arcsine equation. But, it should be
noted that no replicate tests were run for the interaction data
and the reference tests for axial load show a scatter band of
approximately 15%. Most of the points seem to fall within this
band so the arcsine equation may represent a reasonable mean
equation but it is not a lower bound.

From the distribution of data points in Fig. 4.6 it seems

that the B ratio influences the AO interaction. Test A033,
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B=1.0, serves as a lower bdund to the data with a linear
interaction while the other two B=1.0 joints showed less
interaction much like the B=0.67 joints. The g=0.35 joints
produce an upper bound to the interaction with a more circular
interaction.

The variation in interaction with g is not surprising
considering the variation in the behavior of a tubular joint with
B. For the B=1.0 joints, both axial and OPB loads are resisted
almost exclusively in the saddle region so a linear interaction
seems reasonable. This observation is supported by the fact that
yielding in these specimens was confined to the saddle region. As
B decreases from 1.0, the stiffness of the saddle region
decreases with respect to the rest of the joint so the axial and
OPB loads can be more evenly distributed around the joint. The
OPB loads are mainly resisted at the saddle region because of the
linear variation of stresses in the branch; however, the axial
loads can be resisted by other portions of the joint. Thus, there
is less direct interaction of the two loadings as B decreases.

4.2.2 Axial Compression with IPB: The interaction between

axial compression and IPB for B8=1.0, 0.67, and 0.35 is shown in
Fig. 4.7 along with the recommended API interaction curve for
comparison. The axial and IPB terms are normalized by the
experimental values shown in Table 4.2, In the IPB reference

tests, a small axial load was required to hold the specimens in
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the test frame; therefore, the data points from Tests I24, 17,
and I43 do not fall directly on the bending axis. All data in
Fig. 4.7 represent failure defined by peak load except as noted.
A "D" next to a point denotes failure defined by the deformation
limit, "B"™ next to a point denotes failure by buckling.
Comparison of the test data to the arcsine equation shows that
the arcsine equation is conservative in most cases, but it does
not fit the data very well. The arcsine equation is accurate for
low values of P/Py but is rather conservative for values of P/Py
larger than 0.5.

As in the AO interaction, B seems to influence the
interaction. The results of the tests on joints with B=0.67
produce a lower bound to the data while the joints with 8=0.35
and 1.0 fall along an upper bound. This distribution of data can
be explained by the manner in which the load is transferred to
the chord wall in each joint. The branch axial load for a g=1.0
specimen is resisted primarily in the saddle region; however, the
linear stress distribution in the branch due to IPB requires the
IPB loads to be resisted in the crown regions. Because the loads
are resisted by two different portions of the joint, it follows
that 1ittle interaction should be expected. As B decreases, the
stiffness of the joint becomes more uniform and more of the joint

is used to resist the branch loads; therefore, it is expected
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that the interaction should increase as the B ratio decreases.
But, the data shown in Fig. 4.7 shows less interaction in the
B=0.35 joint than in the B=0.67 joint. This can be explained by
redistribution of loads around the joint after first yielding in
the B=0.35 joint since plate bending action is the primary mode
of resistance for both IPB and axial load. In the B=0.35 joint
all of the joint was utilized in resisting the branch loads while
in the B=0.67 joint only the regions around the crown and saddle
were utilized. This theory is supported by the yielding which was
observed on the joints. On the 8=0.67 joints, yielding before
failure occurred at the saddle or crown region but not all around
the joint. On the g=0.35 joints, yielding before failure occurred
all across the IPB compression side of the joint as well as at
the saddle positions, so almost all of the joint was utilized in
resisting the branch loads.

4.2.3 IPB with OPB: The results of interaction tests

between IPB and OPB are plotted in Fig. 4.8 along with the
recommended API interaction curve for comparison. In all of the
bending tests a small axial load was applied to hold the specimen
in place, but for clarity these loads are ignored in Fig. 4.8.
As before, all points on Fig. 4.8 represent failure defined by
peak load, except for points marked with a "D: in which large
deformations defined failure. A comparison of the test data to

the arcsine curve shows that the curve fits the data fairly well
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but 2 test results fall slightly on the unconservative side of
the curve.

The data in Fig. 4.8 indicate that the I0 interaction is
different than the AI, or AO interaction. First, unlike the
previous two interactions the effect of B on the interaction is
not very distinct. For example, the result of Test 1026 (g=1.0)
falls along a lower band witﬁ the B=0.67 data, but the point from
Test I039 (B=1.0) falls along an upper bound with the R=0.35
data. This may be the result of the difference in failure
mechanisms. Tests 1026, I1037,and I038 all failed by buckling of
the chord wall typical of OPB failure‘which is also prone to
large amounts of scatter, but Test 1039 failed by IPB which is a
more ductile type of failure.

Second, the two I0 interaction test results for joints
with B=0.35 indicate that there is an increase in OPB strength
with the addition of IPB moment. The question which must be
answered is whether or not this increase can be depended on in
design. A similar increase was shown by Stamenkovie's AI
interaction tests on T joints for small B's and low values of
(M/My) IPB [23]. This data is reproduced in Fig. 4.9 as presented
in the commentary to the API-RP 2A Specification. Even though
Stamenkovie's work did not include IO interactions, the fact that
both axial and OPB lcads are resisted primarily at the saddle

point of the joint provides some basis for comparison. However,



143

recent testing on T joints at Delft University in the Netherlands
[30 & 31], which will be discussed later, includes one test on a
B=0.36 T joint at an (M/My){pg of 0.39 which shows a reduction in
OPB strength.

It might be argued that the experimental results indicate
a false increase in OPB strength because of a low reference value
in OPB or IPB which would tend to skew the interaction results.
To check this theory it is reasonable to refer to the scatter
present in past work on similar joints in IPB and OPB. A review
of published data shows that the only tests on g = 0.35 DT
Joints in bending were completed as a part of this study;
however, several sets of replicate bending tests on T joints are
reported in Ref. 34. Since the branches are far removed in the
B=0.35 DT Jjoint, the behaviors of T and DT joints should not be
too dissimilar; thus, the results should give some insight into
the expected scatter. Two sets of identical T joints with B=0.38
and 0.33, and Y=20.0 and 32.2 respectively loaded in IPB show a
difference of only 2.4% and 2.7%. In addition, both the Texas and
Delft reference values for IPB fall very close to the mean of the
available B=0.35-0.36 data as shown in Fig. 4.10 [39]. From these
results it is not likely that the IPB reference data skews the

interaction.
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One set of T joints with B=0.34 and Y=22.8 loaded in OPB
shows a difference of 9.6%. But, when compared to other OPB test
results with similar B's, shown in Fig. 4.11 [39], the Delft
reference test is approximately 40% higher than two test results
with similar B and Y (8=0.34 and Yv=22.8) while the Texas DT
result falls almost on the mean of these two test results. This
indicates that the Delft reference test is on the high side of
the experimental results, thus reducing the relative strength of
the I0 interaction results in the OPB direction and supporting
the idea that there is an increase in OPB strength with small IPB
moments. But due to the small amount of experimental data, no
definitive conclusions can be made.

In Chapter 6, an analytical study of this interaction
showed a decrease in OPB strength with IPB load as shown in
Delft's experiment. Therefore, further study is required and

this increase should be used in design.

4.3 Comparison of DT and T Interactions

Two other research programs involving the interaction of
branch loadings have been published. Stamenkovic and Sparrow
conducted 105 tests on T joints under branch axial and IPB loads
[29]. A chord diameter of 4.5 in. was used for all specimens
which is very close to the minimum size of 4.33 in. recommended

by the UEG [34], and less than the limit of 5.5 in. recommended
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by Yura [40]. In addition, Hoadley [15] and Marshall [23] have
shown that the definition of failure used for the combined load
tests does not represent the ultimate capacity of the joint. For
these two reasons the Stamenkovic data will not be used for
comparison.

A more recent series of tests was completed at the
Institute TNO for Building Materials and Building Structures in
Deift in The Netherlands [30 & 31]. This research included a
total of 77 tests on T joints with three different B ratios
(0.36, 0.68, and 1.0) and three different Y ratios (8, 15, and
24). The loading conditions included axial brace compression,
IPB, and OPB and four different loading combinations; AO, AL,
I0, and AIO. All loadings, except two which were used for
comparison, were applied in a proportional fashion similar to the
loading of specimens AIS0, and I026. Due to plasticity in the
chord or brace wall adjacent to the joint, only the following
three series of tests yielded reliable interaction data [31];

1. B=0.68, Y=15
2. B=0.68, y=24
3. B=0.36, Y=24

The failure loads from these three test series were
defined for use in this report from load-deformation curves and
information concerning material properties and specimen

dimensions provided by TNO. The deformation limits discussed in
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Chapter 3 were also used in the determination of failure loads.
The three dimensional tests, AIO interaction, are not included
because the location of a singular failure point was impossible
from the load-deformation curves because not all loads decreased
simultaneously.

The experimental ultimate strengths, experimental
reference values, as well as the nondimensionalized interaction
values are given in Table 4.3. The two dimensional interaction
data from the Delft and Texas tests are plotted for comparison in
Figs. 4.12-4.17. A set of curves, which are developed in Appendix
A tofit thru the Texas data, is also included in Figs.4.12-4.17
to aid in comparison of the data. Series 1 data from the Delft
tests are not included in the R=0.67 figures because the Y of 15
does not compare with the Y of approximately 25 for the other two
test series. These figures show that the B=0.67 interactions for
the T and DT joints are very similar except for the io
interaction where the T tests are an upper bound. The
interactions of the T and DT joints for a B ratio of 0.35 are
different with the T joints in general representing a lower
bound.

Some insight into the difference between the DT and T
interactions for B=0.35 may be gained by comparing the

nondimensionalized reference values. The nondimensionalized
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TABLE 4.3 ULTIMATE STRENGTH AND INTERACTION VALUES: DELFT TESTS

TEST AXTAL MM. MM. P/PU M/MJ M/MJ
(OPB) (IPB) (OPB) (IPB)
(kips) (kips—in.) (kips-in.)

8=0.35 12 9.4 0 0 1.00 0.00 0.00
Y=2U 13 0 0 19.5 0.00 0.00 1.00
14 0 12.0 0 0.00 1.00 0.00
34 8.3 0 8.1 0.88 0.00 0.42
35 3.9 0 15.9 0.4 0.00 0.8
36 7.4 5.8 0 0.79 0.48 0.00
37 2.9 9.2 0 0.31 0.77 0.00
38 0 1.0 7.6 0.00  0.91 0.39

Ref erence 9.4 12.0 19.5
8=0.68 15 18.0 0 0 1.00 0.00 0.00
=24 16 0 0 6.6 0.00 0.00 1.00
17 0 32.8 0 0.00 1.00 0.00
39 7.3 0 51.3 0.41 0.00 0.79
4o 14.8 0 27.4 0.83 0.00 0.42
iy 5.4 27.4 0 0.30 0.84 0.00
L2 12.3 15.6 0 0.68 0.48 0.00
L3 0 33.6 5.2 0.00 1.03 0.39
Ly 0 18.4 54.0  0.00 0.56 0.84

Reference  18.0 3.8 64.6
B=0.68 9 38.2 0 0 1.00 0.00 0.00
Y=15 10 0 0 131.0 0.00 0.00 1.00
11 0 70.8 0 0.00 1.00 0.00
28 28.6 0 2.2 0.75 0.00 0.40
29 15.7 0 109.8 0.4 0.00 0.84
30 28.3 29.2 0 0.74 0.1 0.00
31 13.9 54.9 0 0.36 0.78 0.00
3P 0 33.6 124.8 0.00 0.48 0.95
33 0 67.3 63.7 0.00 0.9  0.49

Reference 3B.2 70.8 131.0

148
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reference test results for IPB and OPB are plotted along with
other data in Figs. 4.10 and 4.11. From these figures it can be
seen that the T and DT data fall within the same band and thus
may be treated together as is done in the present API
specifications. The data plotted in Fig. 4.10 shows that the
Texas and Delft IPB reference values fall very close together and
are near the mean of the data for the B=0.35 case, but for the
B=0.67 case the Delft reference point falls below the Texas
reference point which is on the high side of the data. This could
explain the difference between the T and DT data for the 8=0.67
I0 interaction. Fig. U4.11 shows that the 8=0.67 OPB reference
points fall close together while the Texas B=0.35 OPB reference
Vpoint falls below the Delft point which is on the high side of
the data. This could explain the difference between the T and DT
B=0.35 interaction data.

It may also be argued that the difference between the T
and DT joint data is a result of the different load paths used in
the testing because the T joints were loaded proportionally while
the DT joints were not. In the published report containing the T
joint data [30], Stol et al. stated that the proportional
loadings appeared to give a lower bound to the ultimate loads
when compared to nonproportional loading and that the
nonproportional loadings significantly overestimate ultimate

loads. This phenomenon may explain the differences for the Bg=0.35
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interactions, but the argument does not hold for the B=0.67
interactions. In addition, the results of the DT tests do not
indicate any significant difference between the proportional and

nonproportional data.



CHAPTER 5

INTERACTION EQUATIONS

Comparison of the test results and the recommendation in
the 15th edition of API RP 2A show that the recommended
interaction formula is unconservative in many cases, and very
conservative in others. Therefore, a new lower bound interaction
equation will be developed based on the experimental results of
the present phase and of the phase 2 research. The equation will
be evaluated using both the Texas DT interaction data and the
Delft T interaction data and compared with the current API
recommendation [1] and with an equation proposed by Hoadley [14]
which was»recommended for use by the recent UEG Design Guide
[34]. To determine the interaction equations' usefulness in
design, the interaction data will be nondimensionalized by
reference values predicted from API strength equations as well as
the experimental reference values.

The interaction equations will be evaluated using the
parameter C, which was developed by Hoadley. C is the ratio of
the distance from the origin to the interaction curve to the
distance from the origin to the data point in question, and is
calculated as follows:

C=L1/L2

where, Ll1= distance from origin to the data point and L2=distance
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from the origin to the interaction curve. An example of the
distancés L1 and L2 are shown in Fig. 5.1. From this definition,
a ultimate strength prediction is conservative if C is larger
than 1.0. The C parameter is especially useful because it can be
used in both two and three dimensions and is not a function of
the exponents X, Y, or Z of Eq (5.1). 1In addition, it can be
used to determine the amount of conservatism in an equation when
the experimental parameters are outside the range of the
equation, as with the arcsine equation when the moment parameter

is larger than 1.

5.1 Proposed Interaction Equation

From a preliminary analysis of the experimental data in
the two dimensional form, which is shown in Appendix A, it was
found that a general equation of the following form provided a
satisfactory fit to the data;

P/PX + (M/MyygpgY + (M/MyppZ = 1.0 (5.1
A very accurate three dimensional interaction could be developed
by replacing the exponents with those derived for the two-
dimensional interactions. However, the exponents vary with both
the type of interaction (AI, AO, or I0) and the B ratio, so the
exponents X, Y, and Z would have to be written as functions of
both the type of interaction and the g8 ratio. This formulation

is very cumbersome and the accuracy is not warranted given the
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scatter shown in the reference tests. A more approximate but much
simpler equation can be developed by making X, Y, and Z functions
of B only. This method requires a reformulation of the two
dimensional interaction equations so that there is only one value
of X, Y, and Z for each B.

In the reformulation of the two dimensional interaction
equations, the values of X, Y, and 4, were varied to find a lower
bound to the data for each B ratio with the lowest standard
deviation. In determining a lower bound to the data, a slightly
unconservative value of C was accepted if there was a significant
reduction in the standard deviation by accepting the set of
coefficients. The lowest value of C accepted was 0.98, which is
well within a scatter band set by the reference tests of 0.93 to
1.07. In the three dimensional interaction the axial load
phesent in the bending tests is not ignored in Eg. 5.1, but the
experimental reference values given in Table 4.2 remain
unchanged. The resulting values of X, Y, and Z are given in Table
5.1. In order to obtain a continuous value of the exponents X, Y,

and Z, the following functions of B were developed;

X=1.0 (5.1X)
Y=2.35 - 1.35(8)0.63 (5.1Y)
Z=3.44(8) + 0.01(B)~5.60 (5.17)

A plot of the X, Y, and Z vs. 8 is shown in Fig. 5.2. The

axial term remains linear for all B8 ratios as recommended in
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TABLE 5.1 EXPONENTS FOR THREE DIMENSIONAL

INTERACTION:
B X Y Z
1.0 1.00 1.00 3.45
0.67 1.00 1.30 2.40
0.35 1.00 1.65 4,78
10T
=
9T X
Oy
g+
4 5
7 -
x. vy, ©7
orZ 5t
(-5.6)
4+ Z=3.443+0.018
3 B /
5 t v E'0.6'3
=2.35-1.35
1 y -
1 : } — f 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
X=1.0 B

Fig. 5.2 Variation of Exponenets XY, and Z with B3
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Hoadley's interaction equation. The OPB term decreases with B
showing the decreasing interaction between axial and OPB with
increasing B. The IPB exponent shows more of a parabolic

variation with B.

5.2 Other Interaction Equations

Several interaction equations have been suggested for use
in the design of tubular joints. A linear interaction was
proposed by Stamenkovic [29]. The 15th Ed. of API recommendations
use the arcsine equation which is based on the plastic section
strength of the branch member. Hoadley developed a polynomial
type interaction equation based on DT interaction tests. Most
recently Stol, Puthli, and Bijlaard, have presented an equation
of the same form as Eq. 5.1 (Hoadley) with exponents that vary
with B and Y. This report will deal only with the two
formulations which are most widely recommended for use in design.
These are the equations proposed by Hoadley and the arcsine
equation.

5.2.1 Hoadley Equation: Equation 5.2 shown below was

developed by Hoadley based on nine interaction tests on DT joints
with B=0.67 [14] and was recommended for use in design by the
recent UEG Design Guide [34]. The same interaction data was
included in the development of the proposed equation; however,

the axial reference for B=0.67 was altered based on the results
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of Test A51.

1.2 2.1
(P/Pu) + (M/MU)OPB + (M/MU)IPB = 1,0 (5.2)

5.2.2 Aresine Equation: The arcsine interaction equation,

given below, is recommended for use in design in the 15th edition

of API RP 2A.

2 2.1
P/Py + (2/1) Aresine[(M/My)opB + (M/My)1ppl'/2 = 1.0 (5.3)

The arcsine interaction is based on the plastic section strength
of a hollow circular cross section assuming that plane sections
remain plane. Thus Eq. 5.3 really predicts the failure of the
branch member and not necessarily the strength of the joint,
because the strength of the joint is a function of the ability of

the chord wall to resist the branch loads.

5.3 Evaluation of Interaction Equations: Experimental Reference

Table 5.2 contains the C values for the two dimensional
(given in Appendix A), the proposed (Eq. 5.1), Hoadley's (Eq.
5.2), and the API (Eq. 5.3) interaction equations applied to the
Texas Tests where ultimate strength is taken from experimental
reference values given in Table 4.2. Table 5.3 contains the same
information except that the interaction equations are applied to
the results of the Delft tests and reference values are taken

from Table 4.3 The C values from Tables 5.2 and 5.3 are
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TABLE 5.2 C VALUES FOR INTERACTION EQUATIONS - TEXAS TESTS:
EXPERIMENTAL REFERENCE
TEST P/PU  MWMJ MMU 2-D EQ. 5.1 EQ. 5.2 EQ. 5.
(OPB) (IPB) PROPOSED  HOADLEY APT
g=0.35 Jitite) 0.95 0.00 0.00 0.% 0.95 0.% 0.9
Al 1.05 0.00 0.00 1.05 1.05 1.05 1.05
Qu2 0.07 1.00 0.00 0.99 1.04 1.03 1.01
a3 0.1 0.00 1.00 1.03 1.02 1.05 1.01
AQuY 0.28 1.05 0.00 1.10 1.23 1.28 1.13
AOS 0.71 0.62 0.00 1.04 1.12 1.24 1.12
ATU6 0.30 0.00 0.91 0.99 0.98 1.06 1.01
ATl7 0.69 0.0 0.78 1.2 0.99 1.18 1.22
Tou8 0.09 1.20 0.34 1.20 1.26 1.34 1.26
049 0.08 1.06 0.70 1.04 1.16 1.40 1.28
f=0.67 A 1.05 0.00 0.00 1.05 1.05 1.05 1.05
A51 0.% 0.0 0.0 0.% 0.9 0.% 0.9
3B 0.05 1.00 0.00 1.02 1.02 1.02 1.00
I7 0.12 0.0 1.00 1.05 1.04 1.05 1.02
AQH 0.26 0.8 0.00 1.00 1.00 1.02 0.89
AO13 © 0.70 0.ui 0.00 1.03 1.04 1.07 0.99
AT20 0.34 0.00 0.8Y4 0.99 0.99 1.01 0.98
AT17 0.70 0.00 0.65 1.04 1.04 1.07 1.14
I015 0.07 0.94 0.33 1.01 1.05 1.05 1.00
1014 0.07 0.67 0.64 1.00 0.98 1.04 0.91
ATO16  0.26 0.84 0.31 - 1.08 1.12 0.9
AIOIB  0.66 0.38 0.39 = 1.04 1.10 1.03
ATO19 0.66 0.35 0.33 ~-.— 0.99 1.03 0.98
8=1.00 A1 1.07 0.00 0.00 1.07 1.07 1.07 1.07
AZ2 0.93 0.00 0.00 0.93 0.93 0.93 0.93
@3 0.08 0.9 0.00 1.02 1.02 0.99 0.9
8 0.08 1.06 0.00 1.08 1.08 1.12 1.07
»h 0.1t 0.00 1.00 1.02 1.03 1.04 1.01
AO3 0.27 0.78 0.00 1.06 1.06 1.01 0.88
AQ32 0.54  0.57 0.00 1.12 1.12 1.05 0.94
AGR3 0.73 0.27 0.00 1.00 1.00 0.9 0.75
AT34 0.27 0.00 0.94 1.00 1.02 1.07 1.02
AI35 0.53 0.00 0.94 1.09 1.13 1.24 1.22
AI36 1.04  0.00 0.53 1.08 1.13 1.25 1.39
AT50 0.8 0.00 0.71 1.00 1.06 1.19 1.2
1037 0.09 1.02 0.26 1.05 1.11 1.13 1.06
I8 0.11 0.9 0.51 1.07 1.10 1.7 1.06
1039 0.10 0.42 0.96 1.13 1.14 1.19 1.07
IP6 0.09 0.6 0.70 1.00 0.9 1.05 0.94
Average 1.03 1.05 1.09 1.04
St. Dev. 0.05 0.07 0.1 0.13
Coef'. of Var. b7 6.81 9.10 2.08
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C VALUES FOR INTERACTION EQUATIONS - DELFT TESTS:

EXPERIMENTAL REFERENCE

TABLE 5.3

EQ. 5.2 . 5.3
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presented graphically in Fig. 5.3 where the C values for each
interaction equation are plotted for each B ratio. In Tables 5.4
and 5.5 the average, standard deviation, and the coefficient of
variation of C are presented for each interaction equation for
each series of testing in the Texas and Delft research
respectively. The average, standard deviation, and the
coefficient of variation of C for all of the data and for each
interaction equation is given in Table 5.6.

Comparison of the average values, standard deviations, and
the coefficient of variations for the 2-D and proposed
interaction equation (Eq. 5.1) given in Tables 5.2 and 5.4 shows
that the 3-D approximation has little effect on the accuracy of
the predictions of the interaction formula for the Texas data. C
values could not be calculated for the 2-D interaction formula
applied to tests AIO16, AIO18, and AIO19 because these were three
dimensional interactions in which the axial load was too high to
be ignored. This fact shows why the 2-D equation is not
applicable to design and why it will not be evaluated for other
than the Texas data.

The average values, standard deviations, and the
coefficients of variation given at the bottom of Table 5.2
indicate that in general, of the three-dimensional interaction
equations, the proposed interaction is the most applicable to the

Texas data, which is expected because this is the data base used
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TABLE 5.4 SUMMARY OF C VALUES FOR INTERACTION EQUATIONS ~ TEXAS
TESTS: EXPERIMENTAL REF. '

8=1.0 8=0.67 8=0.35
Fq. Avg. S.D. C.of V. Avg. S.D. C.of V. Avg. S.D. C.of V.

2-D 1.05 0.05 4,99 1.01 0.03 3.13 1.04 0.07 6.68
Eq. 5.1 1.06 0.06 5.64 1.02 0.04 3.54 1.08 0.11 9.%
Eg. 5.2 1.09 0.10 9.11 1.04 0.04 4,07 1.16 0.15 13.08
09|

. 5.3 1.04 0.16 14.96 0.99 0.06 6.29 1.10 0.12 10.58

5.1 - Proposed
5.2 - Hoadley
5.3 - Arcsine

E58

TABLE 5.5 SUMMARY OF C VALUES FOR INTERACTION EQUATIONS - DELFT
TESTS: EXPERIMENTAL REF.

B=.68 v=2U g=0.68 Y=15 R=0.35 Y=24
Eq. Avg., S.D. C.of V. Avg. S.D. C.of V. Avg. S.D. C. of V.

» 5.1 1.03 0.05 h.42 1.2 0.07 6.60 0.97 0.06 5.86
. 5.2 1.04 0.05 5.22 1.05 0.08 7.52 1.04 0.06 5.74

5.3 1.02 0.05 5.00 1.01 0.04 3.76 1.02 0.08 7.63

5.1 — Proposed
5.2 — Hoadley
5.3 - Arcsine

BEE|F 5 B
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TABLE 5.6 SUMMARY OF C VALUES FOR ALL DATA: EXPERIMENTAL

REFERENCE
B Num. Eq. Average Standard Coef. of Var.
of Tests No. C Deviation ‘
5.1 1.03 0.103 9.95
0.35 18 5.2 1.11 6.132 11.91
5.3 1.07 0.108 10.11
5.1 1.02 0.048 4,68
0.67 31 5.2 1.04 0.056 5.39
5.3 1.01 0.052 5.21
5.1 1.06 0.060 5.64
1.00 16 5.2 1.09 0.099 9.11
' 5.3 1.04 0.155 14.96
5.1 1.04 0.070 6.81
Total 65 5.2 1.07 0.096 8.91
5.3 1.03 0.103 10.04
Eq. 1 - Proposed
Eq. 2 - Hoadley
Eq. 3 - Arcsine
1.4 - ; . A - 14
[} A a A a
1.2 .4 — A FAY A o -+ 1.2
i A 52 & | B %
wl 5 & A 5 = B o 4 & o
g+ % 5 2 & S
0.8 r + 0.8
CValue 4
06 + 06
0 Proposed
> A Hoadley Eq. T
02 1 A Arcsine Eq. 1 oo
0.0 i } i } } } } 1 } 0.0

1 1
8=0.35 §=0.67 8=1.00

Fig. 5.3 C Values vs. B : EXp. Reference
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to generate the equation. In addition, the average C values,
standard deviations, and the coefficients of variation given in
Table 5.4 show that the proposed equation is the most accurate
for all B's tested. The importance of varying the interaction
equation with B is shown by the relatively large standard
deviations and coefficients of variation produced by Hoadley's
and the arcsine equation for 8=0.35 and 1.00 shown in Table 5.4

Comparison of the average values, standard deviations, and
the coefficients of variation given at the bottom of Table 5.3
indicate that the arcsine equation (Eq. 5.3) best fits the Delft
interaction data although there is little difference among the
three interaction equations. The information presented in Table
5.5 reveals that the proposed equation is just as accurate as the
arcsine equation for R=0.68 and Y=24, and Hoadley's equation is
the most accurate for R=0.36 and Y=24. The arcsine equation
provides a significantly better fit to the data for only the
g=0.68 and Y=15 series of tests.

Comparison of the coefficient of variation of C for all of
the data, as shown in Table 5.6, indicates that the proposed
equation fits the data better than the other equations for all B
ratios. Of the 65 tests included in the data base, 39, or 60% of
the total, were performed on DT joints while the other 26, or 40%

of the total, are from the TNO research on T joints, so
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coefficients of variation are not severely skewed toward the DT
results.

The results of the Texas and Delft tests along with the
three interaction curves are plotted in Figs. 5.4 -5.12. Because
of the two dimensional nature of the interactions, and the
variation in the forms and powers used in the three interaction
equations, the results are shown graphically in two dimensions
(AQ, AI, and I0). In addition, each B ratio is presented in a
different graph. The plots for AO, AI, and I0 for B=0.35, 0.67
and 1.0 are presented in Figs. 5.4-5.6, 5.7-5.9, and 5.10-5.12
respectively. In the figures, the Delft data is referred to as
series 1 (B=0.68, Y=15), series 2 (g=0.68, v=24), and series 3
(8=0.36, Y=24).

For B=0.35, the proposed equation does not always
represent a lower bound to the data. In the AI and IO
interactions, Figs. 5.5 and 5.6 respectively, the propocsed
equation is unconservative when compared to the T joint results
from Delft. Hoadley's equation provides a lower bound to all of
the B=0.35 data, but is very conservative for much of the Texas
test results. The B=0.67 data as well as the interaction curves
fall within a relatively tight band in the interaction figures.
The arcsine equation is unconservative in several cases for the
AQO interaction, but in general the predictions of three equations

are comparable. Comparison of the arcsine curve with the g=1.0
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data shows that it does not follow the trend of the data in
either the AO or AI interactions. The proposed and Hoadley's
curves follow the trend of the data well with Hoadley's
predictions on the conservative side in the AI and IO

interactions.

5.4 Evaluation of Interaction Equations: API RP 2A Reference

In the evaluation of interaction equations to be used in
design, it is important to note that the designer does not have
access to the experimental values of ultimate axial load and
moment by which to normalize design loads. The designer must use
the ultimate loads calculated from code equations which in most
cases are not equivalent to the experimental values. The
difference between the experimental and code predicted reference
values can have a significant impact on the accuracy of the
interaction equation used. Therefore, the various interaction
equations will be compared using values of P, and My predicted by
the predominant code used in design, the 15th edition of API RP
2A. Since the accuracy of the interaction equations is to be
determined, the safety factors will be removed from the code
ultimate load equations.

In the 15th edition of API RP 2A, P, ang My are

calculated with the following eqguations:

Pu = Qu Fy T2
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My = Qu Fy T2 (0.8d)
The factor Q, is a function of the type of load and the geometry
of the joint. For the DT and T joint the following equations are
used to define Q.
Axial DT -~ Qu = ( 3.4 +138) Qg
T-Qy =(3.4+198)0Q

OPB Qu = (3.4 +78) Qg

1PB Q ( 3.4 +198 )

u
For 82 0.6, Qg = 0.3 /[ g(1 ~ 0.8338)]

For 8 < 0.0, Qg = 1.0

The values of Py and My computed for both the Texas and
Delft specimens are given along with the experimental values for
comparison, in Tables 5.7 and 5.8 respectively . The ultimate
axial loads and bending moments from the Texas and Delft tests
normalized by Py and My computed using the API recommendations
are presented in Tables 5.9 and 5.10 respectively. Tables 5.9 and
5.10 also include the C values for the proposed (Eq. 5.1),
Hoadley's (Eq. 5.2), and the arcsine (Eq. 5.3) interaction
equations. The C values are presented graphically in Fig. 5.13
where C 1s plotted for each B ratio and for each interaction
equation. The averages, standard deviations, and coefficients of
variation of C for each test series of the Texas and Delft
research are given in Tables 5.11 and 5.12 respectively. The

averages, standard deviations, and coefficients of variation of C
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EXPERIMENTAL AND API PREDICTED REFERENCE VALUES:

TEXAS TESTS

Axial OPB IPB
{kips) (kip-in.) (kip-in.)
Test APT Test " API Test APT
1.00 162.1%% 1.1 1389%* 1148 2265% 1373
0.67 73.9%% 57.1 Loo* 330 1056% 650
0.35 Ll 1% 38.1 118% 126 25T7*

216

¥ Result of one test
*¥% Average of two test results

TABLE 5.8 EXPERIMENTAL AND API PREDICTED REFERENCE VALUES:
DELFT TESTS
Axial 0)53) IFB
(kips) (kip-in.) (kip-in.)
B Y Test APT Test "~ API Test APT
0.68 15 38.2 36.7 70.8 78.0 131.0 153.5
0.68 24 18.0 13.0 32.8 23.9 64.6 47.8
0.36 24 9.4 8.2 12.0 9.1 19.5 15.7

A1l test values represent the result of one test.
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TABLE 5.9 C VALUES FOR INTERACTION EQUATIONS - TEXAS TESTS:
API RP 2A 15TH ED. REFERENCE - :

TEST P/FU MM WMJ M. 5.1 H. 5.2 R.5.3
(oPB)  (IPB) PROPOSED  HOADLEY APT
B=0.35  AlO 1.10  0.00  0.00 1.10 1.10 1.10
Al 1.21  0.00  0.00 1.21 1.21 1.21
ou2 0.08 0.94  0.00 0.97 0.99 0.%
I3 0:13 0.00 1.16 1.22 1.25 1.21
ACM4  0.33 0.96  0.00 1.19 1.26 1.10
AON5  0.82 0.52 0.00 1.18 1.31 1.20
AT46  0.35 0.00 1.08 1.15 1.26 1.20
ATHT  0.79 0.00  0.93 1.17 1.39 1.413
o8  0.11  1.10  0.40 1.20  1.30 1.21
1049  0.09 0.93 0.8 1.18 1.46 1.30
R=0.67 Al 1.38  0.00  0.00 1.38 1.38 1.38
A51 1.24  0.00 0.0 1.24 1.24 1.24
08 0.06 1.21 0.00 1.23 1.23 1.21
17 0.15 0.00 0.62 1.68 1.68 1.63
Aol 0.35 0.97 0.00 1.24 1.26 1.10
AO13 0.92 0.54  0.00 1.33 1.36 1.27
AT20 0.4 0.00 1.36 1.57 1.59 1.51
AI17  0.92 0.00 1.06 1.9 1.60 1.65
015  0.10 1.14  0.53 1.30 1.38 1.27
1014 0.09 0.81 1.04 1.4 1.46 1.29
ATO16  0.35 1.02  0.50 1.39 1.44 1.25
ATO18  0.87 0.46  0.63 1.4 1.8 1.39
ATO19 0.86 0.42  0.54 1.32 1.39 1.32
B=1.00  A21 1.22 0.00 0.00 1.22 1.22 1.22
- A22 1.07 0.00 0.0 1.07 1.07 1.07
023 0.10 1.13  0.00 1.23 1.20 1.14
028 0.09 1.29 0.0 1.37 1.32 1.30
124 0.13 0.00 1.65 1.65 1.69 1.66
A031 0.31 0.9 0.0 1.26 1.21 1.06
A032  0.62 0.69  0.00 1.3 1.24 1.10
A033 0.84 0.33 0.00 1.7 1.09 1.05
AT34  0.31 0.00 1.55 1.63 1.69 1.62
AT35  0.61 0.00 1.56 1.76 1.87 1.81
AT36  1.20 0.00 0.88 1.45 1.64 1.78
ATSO  0.91 0.00 1.17 1.51 1.68 1.73
1037 0.11 1.24  0.42 1.3 1.1 1.32
1038 0.12 1.10  0.84 1.1 1.53 1.1
1039  0.11  0.51 1.58 1.79 1.79 1.69
I026 0.10 0.73 1.16 1.45 1.55 1.36
Average = 1.34 1.39 1.33
St. Dev. = 0.19 0.21 0.22
Coef. of Var. = 14.23 15.12 16.87
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TABLE 5.10 C VALUES FOR INTERACTION EQUATIONS - DELFT TESTS:
API RP 2A 15TH ED. REFERENCE

TEST P/PU MM MM . 5.1 . 5.2 E. 5.3
(opB)  (IPB) PROPOSED  HOADLEY APT

8=0.36 Y=2U 12 1.15 0.00  0.00 1.15 1.15 1.15
13 0:00 0.00 1.24 1.24 1.24 1.24

14 0.00 1.32 0.0 1.32 1.32 1.32

34 1.2 0.00 0.52 1.05 1.2 1.35

35 0.48 0.00 1.02 1.14 1.27 1.24

36 0.91 0.63 0.00 1.30 1.4 1.3

37 0.35 1.01  0.00 1.23 1.31 1.14

38 0.00 1.20 0.49 1.21 1.33 1.30

8=0.68 Y=l 15 1.38  0.00  0.00 1.38 1.38 1.38
16 0.00 0.00 1.35 1.35 1.35 1.35

17 0.00 1.37 0.00 1.37 1.37 1.37

39 0.56 0.00 1.07 1.22 1.38 1.3

10 1.14  0.00  0.57 1.3 1.36 1.51

1 0.2 1.15  0.00 1.18 1.50 1.31

up 0.93 0.65 0.00 1.45 1.44 1.37

u3 0.00 1.4  0.53 1.50 1.54 1.50

ul 0.00 0.77 1.13 1.4 1.50 1.37

8=0.68 Y=15 9 .04 0.00  0.00 1.04 1.04 1.0U
: 10 0.00 0.00 0.8 0.8 0.86 0.86

11 0.00 0.91  0.00 0.91 0:91 0.91

28 0.78 0.00 0.3 0.87 0.89 1.00

29 0.43 0.00 0.72 0.93 0.95 0.95

30 0.77 0.38  0.00 1.05 1.07 1.01

31 0.33 0.70  0.00 1.01 1.03 0.89

32 0.00 0.3 o8& 0.97 1.01 0.92

33 0.00 0.86 0.1 0.96 0.99 0.96

Average = 1.18 1.23 1.20

St. Dev. = 0.20 0. 0.20

Coef'. of Var. = 17.07 17.12 17.02
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TABLE 5.11 SUMMARY OF C VALUES FOR INTERACTION EQUATIONS - TEXAS
TESTS: °~ API REF.
B=1.0 g=0.67 B=0.35
Eq. Avg. S.D. C.of V. Avg. S.D. C.of V. Avg. S.D. C. of V.

Eq. 5.1 1.1 0.21 14,93 1.38 0.13 9.65 1.16 0.07 6.39

. 5.2 1.45 0.26 18.00 1.42 0.14 9.86 1.25 0.13 10.69

Eg. 5.3 1.40 0.28 20.07 1.35 0.16 12.08 1.19 0.13  10.65

Eg. 5.1 - Proposed

Fq. 5.2 - Hoadley

Fg. 5.3 - Arcsine

TABLE 5.12 SUMMARY OF C VALUES FOR INTERACTION EQUATIONS - DELFT

TESTS: API REF,
B=0.68 v=24 g=0.68 7v=15 p=0.35 Y=24
Eg. Avg. S.D. C.of V. Avg. S.D. C.of V. Avg. S.D. C. of V.
E. 5.1 1.39 0.09 6.30 0.95 0.07 7.33 1.21 0.09 7.38
Eq. 5.2 1.43 0.07 5.05 0.97 0.07 7.65 1.29 0.09 6.70
Eg. 5.3 1.39 0.07 5.05 0.95 0.06 6.33 1.26 0.08 6.34
Eg. 5.1 - Proposed
Eq. 5.2 - Hoadley
Eg. 5.3 - Arcsine
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for each B ratio and for all of the data are presented in Table
5.13.

It is interesting to note the difference in the average
C's, the standard deviations, and the coefficients of variation
obtained when the data is normalized by the experimental
references (Tables 5.2-5.3) and those obtained when the predicted
reference values are used for normalization (Tables 5.9-5.10).
For all three equations there is a significant increase in the
standard deviations. This increase means that there is a
significant increase in the size of the band of the data, and is
a result of the fact that the accuracy of the predicted ultimate
strengths varies. For example, the average P/Py Of the reference
tests for B=0.67, A1 and A51, is 1.31 but the M/M, for the IPB
reference test, 17, is 1.62. This same situation occurs for the
8=1.0 test series. The predictions for the 8=0.68 Y=15 bending
reference tests are unconservative resulting in unconservative
predictions for the inferaction results. Thus, when the
experimental ultimate strengths are normalized by the predicted
values, the interactions will change from the interactions given
when the ultimate strengths are normalized by the experimental
values.

The coefficients of variation presented at the bottom of
Table 5.9 show that the proposed interaction equation provides

the most accurate predictions for all the Texas data. The results
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shown in Table 5.11 indicate that the proposed equation also
provides the best fit to the interaction data for each individual
B ratio. The most significant improvements over Hoadley's and the
arcsine equation occur for B's of 0.35 and 1.0. The arcsine
equation produces the lowest coefficient of variation of C for
the Delft T joint interaction results as shown in Table 5.10, but
the difference among the three equations is not significant The
arcsine equation also provides the best fit to the data for each
individual test series, as shown by the coefficients of variation
presented in Table 5.12. When all of the data is considered, as
shown in Table 5.13, the proposed equation provides the most
accurate predictions as 1indicated by the coefficients of
variation, but the improvement in accuracy is not significant.
The proposed equation does provide a significant increase in
accuracy for the 8=1.0 DT interaction test series.

The results of the Texas énd Delft tests normalized by the
API RP 2A predicted reference values along with the three
interaction curves are plotted in Figs. 5.14-5.22. As before, the
results are shown graphically in two dimensions (AO, AI, and I0)
for clarity. In addition, each B ratio is presented in a
different graph. The plots for A0, AI, and I0 for Bg=0.35, 0.67
and 1.0 are presented in Figs., 5.14-5.16, 5.17~-5.19, and 5.20-

5.22 respectively. In the figures, the Delft data is referred to
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APT REFERENCE

B - Num. Eq. Average Standard Coef'. of Var.
of Tests No. C Deviation )
5.1 1.18 0.082 6.99
0.35 18 5.2 1.27 0.113 8.94
’ ' 5.3 1.22 0.111 9.10
5.1 1.2 0.226 17.90
0.67 31 5.2 1.29 0.231 17.88
: : 5.3 1.24 0.224 18.00
5.1 1.1 0.211 14.93
1.00 16 5:2 1.45 0.261 18.00
’ : 5:3 1.40 0.280 20.07
5.1 1.28 0.200 16.26
Total 65 5.2 1.32 0.223 16.85
5.3 1.27 0.224 17.55
Eq. 1 - Proposed
Eq. 2 - Hoadley
Eg. 3 - Arcsine
20 — - 2.0
1.8 + O : ﬁ\\\ 4+ 1.8
1.6 = g i é E é % <4 1.6
A ; r A
1.4 o A A B '2 A O A A 1.4
o & 4 g 4 2 B a £& ’
1.2 L E E % O - e 'E _é /A\ L2
- o m Y A
CVale 1.0 B " = E é /g m] A A ‘o
08 J u = = L oos
0.6 4 4 0.6
a Proposed
04T A Hoadiey Eq. T 04
0.2 4+ A Arcsine Eq. L o2
0.0 i ; " ! ; ; ; } } 0.0
B=0.35 B=0.67 B8=1.00
Fig. 5.13 C Values vs. B : API Reference
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as series 1 (B=0.68, Y=15), series 2 (B=0.68, vy=24), and series 3
(B=0.36 Y=24).

In general for the 8=0.35 data shown in Figs. 5.14-5.16,
the proposed equation seems to follow the trends of the data
better than the other interaction equations. In addition, there
is a reasonable amount of conservatism provided by equations due
to the conservatism of the API recommendations. The only
unconservative point is the B=0.35 OPB reference test shownin
Figs. 5.14 and 5.16. The main trend to observe in the 8=0.67 data
shown in Figs. 5.17-5.19 is the wide band in which the data
falls. The results of series 1 of the Delft research fall among
the interaction curves and in some cases below the curves, while
the results of the series 2 and Texas testing are far outside of
the interaction curves. Assuming that the Delft experimental
results are valid, this disparity is a result of the variation in
the accuracy of the ultimate strength predictions of the API RP
2A. The differences between the accuracy of the interaction
equations are small compared to the width of the band of results;
in other words better predictors of ultimate strength in tubular
joints must be developed before the interaction equations can be
made significantly more accurate. This situation is again
illustrated in the B=1.0 data shown in Figs. 5.20~5.22. The AOQ
interaction (Fig. 5.20) indicates that the arcsine equation

follows the shape of the interaction results very well, and that
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the predictions from API RP 2A are reasonable accurate for the
axial and OPB cases. However, Figs. 5.21 and 5.22 show that the
data falls far outside of the predicted interaction curves. More
specifically, the data is skewed in the in-plane-bending axis
which indicates that the predicted IPB ultimate strength is
overconservative. As was seen in the R=0.67 interaction figures,
the best way to significantly increase the accuracy of the
interaction predictions is to increase the accuracy of the

ultimate strength predictions.

5.5 Limit State Analyses

Because of the several codes and recommendations
available, the designer uses different methods to achieve a
satisfactory design; i.e. load factors, factors of safety, lower
bound or mean equations; therefore, it is difficult to recommend
a design equation without specifying the particulars of the code
being used. However, there seems to be a trend in the field
toward 1imit states or load and resistance factor type design.
Therefore, the following limit states type of design criterion
will be used to choose an interaction equation recommended for

use in design:

$Rn27YQnp 5.4

where ¢ is the "resistance factor", R, is the "nominal
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resistance", Y 1s the "load factor", and Qp is the "mean load
effect" for a certain limit state. The left side of the equation
represents the resistance or capacity of the structure while the
right side represents the loads acting on the structure [9]. The
resistance factor is affected by the accuracy of the interaction
equations, so the equations can be evaluated by the determination
of ¢ for each equation.

Since there are many statistical methods available to
describe the relationship between an equation and a population of
data, a characteristic value type analysis as used in the recent
UEG Design Guide [34] as well as an LRFD type analysis as used in
the development of the proposed AISC specification for steel
building design [9] will be utilized in the evaluation of the
interaction equations for use in design. In addition, a relative
chord thickness term which is a function of ¢ is used to give the
designer some indication of how the ¢ factor effects the amount
of material required by a design equation. The development of
this relationship between ¢ and T is given in Appendix D.

5.5.1 Characteristic Value Analysis: The characteristic

value of the ultimate limit state is defined as the 95 percentile
of the resistance of the joint. Thus, if the design equation
yields the characteristic value of the resistance as given by
experimentation, 95 % of the experimental results will be

conservative. A more detailed development of the characteristic



190

value is given in Ref. 34. The characteristic value was used in
the UEG design recommendations as a factor which was applied to a
basic equation to make the equation yield the characteristic
value of the experimental data. We can call this factor the
resistance factor, ¢. The characteristic value of the resistance
factor is given by the following equation:

6 = Pp (1 ~ zvp) (5.5)

where Pp 1s the mean value of the ratio of test to prediction for
each interaction equation and Vp js the coefficient of variation
of the ratio of test to prediction for each interaction equation,
and Z is a constant based on the population size.

Table 5.14 contains the P, vp, and ¢ values for each
interaction equation. The Z values were approximated as 1.65 for
all data (65 tests), 1.67 for the B=0.35 data (18 tests), 1.66
for the 8=0.67 data (31 tests), and 1.67 for the 8=1.00 data (16
tests). Also included in Table 5.14 are the ¢gpr and T/TArc
values. ¢gpp is defined as ¢ / Pm and is developed in Appendix
D. T/Taprc 1S the ratio of the thickness required by a design
based on an interaction equation (Hoadley's or the proposed) to
that required by the arcsine eduation given that all other
variables were equal. The experimental data nondimensionalized by
both the experimental reference values and those calculated by

API are included for comparison, but because the API ultimate
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TABLE 5.14 CHARACTERISTIC ¢ VALUES AND RELATIVE THICKNESSES FOR
INTERACTION EQUATIONS

B Fjuation Pm Vp o) OrFF T/T Are

Experimental Reference

A1 Arcsine 1.03 0.100 0.859 0.833 1.000
Hoadley 1.07 0.089 0.912 0.853 0.989
Proposed 1.04 0:068 0.923 0.887 0.969
0.3% Arcsine 1.07 0.101 0.889 0.831 1.000
Hoadley 1.11 0.119 0.889 0.801 1.019
Proposed 1.03 0.100 0.859 0.834 0.998
0.67 Arcsine 1.01 0.052 0.923 0.914 1.000
Hoadley 1.0U 0.054 0.947 0.91 1.002
Proposed 1.02 0.0u7 0.941 0.922 0.995
1.00 Arcsine 1.04 0.150 0.781 0.750 1.000
Hoadley 1.09 0.091 0.924 0.8u8 0.9u1
Proposed 1.04 0.056 0.942 0.906 0.910
API Reference
A1l Arcsine 1.27 0.176 0.901 0.710 1.000
Hoadley 1.3 0.169 0.952 0.721 0.992
Proposed 1.28 0.164 0.934 0.729 0.986
0.35 Arcsine 1.2 0.091 1.035 0.848 1.000
Hoadley 1.27 0.089 1.080 0.81 0.998
Proposed 1.18 0.070 1,012 0.883 0.980
0.67 Arcsine 1.24 0.180 0.869 0.701 1.000
Hoadley 1.29 0.179 0.907 0.703 0.999
Proposed 1.26 0.179 0.886 0.703 0.999
1.00 Arcsine 1.40 0.201 0.931 0.665 1.000
Hoadley 1.45 0.180 1.014 0.699 0.975
Proposed 1.4 0.149 1.058 0.751 0.9




192

strength values will vary with time,the data using the
experimental reference will be used for the recommendation of a
design equation.

The T/Tp,., values presented in Table 5.14 show that
overall the required thickness of a joint is not very sensitive
to the interaction equation recommended. The proposed equation
requires the least amount of material, but there is only a 3%
reduction. However, when the data base is divided by B ratio, the
T/Taprc Values show that the proposed equation will yield a 9%
savings in material for B=1.0. When the API predicted reference
values are used, the reductions are slightly smaller.

5.5.2 LRFD Analysis: This analysis is taken mostly from

the development of the proposed AISC specification [8, 9, 10,
11]. The LRFD method is more rigorous than the characteristic
value method because it accounts for a specific level of safety.
The basic equation of LRFD is given in Eq. 5.4. The resistance

factor, ¢, can be calculated using the following equations [9]:

¢ = (Rp / Rp ) exp(~0.55 n VR) (5.6)
Rpm / Bn = Pm Mm Fm (5.7)
Vﬁ = Vg + Vﬁ + V§ (5.8)

where (Rp / Rp ) is the ratio of mean to nominal strength and is

given by Eq. 5.7, n is the safety index which is selected to give

a predetermined level of safety in the design, and Vg 1S the

coefficient of variation of the resistance which is given by Eq.



193

5.8. The coefficients Pp and Vp are the mean and standard

deviation of the professional factor. The professional factor is
basically the accuracy of the design equation, thus Py 18 the
mean value of the ratio of test to prediction for each
interaction equation and vp is the coefficient of variation of
the ratio of test to prediction for each interaction equation.
The coefficients My and Vy represent the mean and coefficient of
variation of the ratio of the actual to the minimum yield stress.

Since the actual measured yield stresses are used in the

calculations, My yill be taken as 1.0. From Ref. 11, VM =0.11

will be used. The variables Fp and VFp are the mean and
coefficient of variation of the fabrication factor which
represents the geometric accuracy of the fabrication of the
element under consideration. From Ref. 9, Fp - 1,00 and VF =
0.05.

The safety 1index 1s only a relative measure of
reliability, but for the range of common probability
distributions of interest, the safety index can be used in the

following equation to determine an approximate probability of

failure, Pp [10]:
Pp = 460 x 1071-869n (5.9)

Equation 5.9 is not presented as a method to calculate an actual
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probability of failure of a tubular joint in an offshore
structure, it can only give an approximate measure for the
sensitivity of the probability of failure or reliability to the
safety index. For steel buildings n of approximately 3.0 is a
good estimate of the reliability provided for main members in
current design. Since it is desirable that connections have a
higher degree of reliability than the members that they join, a
higher n seems appropriate [8]. Thus, for this analysis, the
safety index will be taken as 3.0 and 4.0 to investigate the
differences in the calculated resistance factors. The safety
indexes of 3.0 and 4.0 translate into probabilities of failure of
1.1 x 10~-3 and 1.5 x 10-5 over the 1ife of the structure using
Eq. 5.9. These probabilities of failure compare with the
generally accepted maximum probability of failure for buildings
of 1.0 x 10-5 in any one year [21] or 2.5 x 10-4 over the 25 year
life of an offshore structure.

The ¢ values calculated with Eqs. 5.6-5.8 with P, ang vp
obtained for each interaction equation are presented in Table
5.15 along with ¢ppp values and the ratio of the chord thickness
to that required by the arcsine equation. The ¢, ¢ppp values, and
relative thicknesses are given for n values of 3.0 and A4.0.

The values of T/Tppc 8iven in Table 5.15 show that the
choice of interaction equation has very little effect on the

required thickness of the joint as was found in the
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characteristic value analysis. In general, the proposed equation
yields the most economical joint. The proposed interaction
equation provides for the largest savings for B8=1.00 joints with
an approximately 5% reduction in T when the experimental
reference is used and an approximately 3% reduction inT when
the API reference is used. When the safety index is increased to
4.0, the savings produced by the proposed equation increase

slightly.

5.6 Recommendations

Both the characteristic value and the LRFD type analysis
showed that the proposed equation will produce the most
economical design. However, the proposed equation is also the
most complicated of the three discussed. Thus, it must be decided
if the savings provided by the equation offsets its complexity.
If the database is divided by the B ratio, it is shown that the
only significant savings provided by the proposed equation occur
in the B=1.00 joints. A survey of the joints found in actual
offshore structures published in the UEG design guide showed that
of the DT joints found only 19% had B ratios of 0.8 or above.
Therefore, it seems questionable that the actual savings in the
design of the structure as a whole would be significant. Because
there is noreal difference in the final designs based on these

three equations, 1t seems logical that the simplest equation
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should be used. The simplest of the three equations due to its
polynomial form, and constant exponents is the equation proposed
by Hoadley. The polynomial format eliminates the extra check of
the bending terms required by the arcsine equation. Thus, the
Hoadley equation is recommended for design. It should be noted
that because of the additional capacity of DT Jjoints in tension
compared to compression, the recommended interaction equation can
be applied in cases where axial tension is present.

Table 5.16 compares the ¢gpp values and the relative
thickness of the chord when the interaction data 1is
nondimensionalized by the experimental reference values and the
calculated reference values. The ratios of the thickness given by
the experimental or "exact" reference and the thickness given by
the API reference indicate that making the ultimate strength
equations more accurate will result in a savings of approximately
5% for n=3 and approximately 6% for n=i.

For B=0.35, an increase in thickness is shown because the
present API ultimate strength equations are unconservative,
however; for B8=0.67 and 1.00 significant savings are shown. The
comparison of the relative designs when based on the experimental
and API reference values indicates that the more significant
savings in joints designed for combined branch loads can be
realized by increasing the accuracy of the ultimate strength

equations than by altering the interaction equations.



198

TABLE 5.16 COMPARISON OF RELATIVE CHORD THICKNESSES FOR
‘" EXPERIMENTAL AND API REFERENCE VALUES

B Fquation Exp. Ref. API Ref.

OeFF . any T/Tpp1

n=3
A1 Arcsine 0.772 0.704 0.955
Hoadley 0.781 0.710 0.954
Proposed 0.7% 0.715 10,948
g =0.35 Arcsine 0.7 0.779 1.005
Hoadley 0.756 0.780 1.016
Proposed 0.772 0. 794 1.014
B = 0.67 Arcsine 0.805 0.699 0.932
Hoadley 0.804 0.700 0.933
Proposed 0.808 0.700 0.931
g = 1.00 Arcsine 0.728 0.679 0.966
Hoadley 0.779 0.699 0.947
Proposed 0.803 0.728 0.93

n=14
Al Arcsine 0.708 0.626 0.940
Hoadley 0.719 0.634 0.939
Proposed 0.737 0.639 0.931
g =0.35 Arcsine 0.707 0.717 1.007
Hoadley 0.688 0.718 1.022
Proposed 0.709 0.736 1.019
= 0.67 Arcsine 0.749 0.621 0.911
Hoadley 0.747 0.622 0.912
Proposed 0.752 0.622 0.909
g8 = 1.00 Arcsine 0.655 0.597 0.9%5
Hoadley 0.717 0.621 0.931

Proposed 0.746 0.655 0.937




CHAPTER 6

ANALYTICAL PREDICTION OF ULTIMATE STRENGTH

During the investigation of interaction behavior in
tubular joints, several questions were raised but remained
unanswered by the the experimental data available. These
questions, which were discussed in Chapter 4, include the gap
effect on behavior in joints with B's close to 1.0, the
interaction of IPB and OPB in joints with B=0.35, and the effect
of the loading sequence on the interaction behavior. In addition,
the results of the IPB reference tests did not agree with the API
IPB strength equation. There exists experimental data on these
topics; however, the paucity of the data and the scatter inherent
in experimental results makes a confident conclusion difficult.
This situation illustrates one of the problems with a dependence
on experimental results for the investigation of structural
behavior. A balance between analytical and experimental methods
is needed.

Since normalized strength values are used to describe
interaction behavior, the interaction is very dependent on the
reference values used for normalization. Thus if not accounted
for, experimental scatter could have a significant effect on the
apparent interaction behavior. For example, the AO interaction

for B=1.00 depends on the reference tests used for

199
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nondimensionalization. Fig. 6.1 shows the interaction results
when nondimensionalized by Tests 023 and A22, Tests 028 and A21,
and average reference values along with the interaction curve
derived in Chapter 4. Comparison of the data points in Fig. 6.1
shows that the scatter in the reference data can have a
significant effect on the interaction results. In this program of
work replicate tests were performed as often as possible; but
many of the curves are based on the result of only one reference
test. This does not lead to a great deal of confidence in the
results of research.

The amount of experimental work required to investigate
these topics fully would take years and a considerable amount of
money. For example, to completely describe an interaction curve
in two dimensions for one B ratioc and one Y ratio would require
approximately 10 tests with just one replicate at each loading.
If this is multiplied by several B ratios, and Y ratios and then
by the type of joint (T, DT, K) the number of experiments becomes
considerable. Therefore, it would be advantageous to have an
analytical model which could be used to investigate these topics.
The purpose of this chapter is to find an acceptable analytical
model (for developing interaction data and apply it to the

questions raised above).



201

12 I £ 028 & A21 Ref.
10:' E (022 & A22 Ref.
T * ANl Reference Tests
08+
P/Pu 06+
0.4
024
00 + + t + ¥ 1
00 02 04 06 08 10 12

M/Mu(IPB)

Fig. 6.1 Experimental Scatter in $=0.67 A0 (nteraction



202

6.1 Program of Analysis

The cases which will be analyzed by the chosen analytical
model are shown in Table 6.1. The verification cases were chosen
for two reasons. First there are replicate data in all cases, and
second the loadings and various 8 ratios check the model's
ability to simulate both membrane and plate action.

The gap effect will be investigated by determining the
ultimate strength of specimens A21 and A22. If the gap effect
influences the ultimate strength as theorized in Chapter 4, the
analytical model should show a difference in the ultimate
strength of fwo specimens with different measured gap sizes.

Since the empirical formula recommended by the API does
not predict IPB ultimate strength adequately, the analytical
model will be used to predict the IPB ultimate strength of the
specimen tested in this study. The API recommended design formula
shown below, was derived from T data but, in the absence of any

DT data, was alsc applied to DT joints.
M, = (FyTZ/sine)(O.8d)(3.4 + 19B) {lower bound qu (6.1)

It is important to note the absence of the chord thickness ratio,
Y, in this equation. In Chapter 1, it was stated that the radial
flexibility of the joint, accounted for by Y, would probably have
an effect on the IPB strength of tubular joints. In fact several

other recommended equations do contain Y [34, 6,39]. All of these
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Table 6.1 Program of Analysis

1. Verification of Model ~ Axial compression: g=0.35 and 0.67
Axial tension: B=0.35 and 1.00

2. Problems to Investigate

A. Effect of Gap on B=1.00 Compression Strength

- Test A21
- Test A22

B. Prediction of IPB Strength

- IPB: B=0.35, 0.67, 1.00; Y=25
- IPB: g=0.67, Y=15

C. Interaction
1. AI Interaction B=0.67
- IPB to failure, P/Py= 25, 50, and 75%
—- IPB to failure, P/P,= 50%, Proportional
loading

2. I0 Interaction Bg=0.35

- OPB to failure
— OPB to failure, M/M, (IPB)=35%



204

equations use the following general format to predict IPB

strength in T joints;
M, = (FyT2)6BYo-5 {mean eq.} (6.2)

except that Yura adds a siné term in the denominator [39].
Billington and UEG [6, 34] recommendations reduce the IPB
strength given by Eg. 6.2 by 0.75 for DT joints based on the
relation between compressive strength of T and DT joints. The
present IPB data indicates that this factor is not required, and
the reduction is eliminated in Yura's recommendations [39].
Yura's equation fits the experimental data rather well as shown
in Fig. 6.2 but there is very little experimental data to verify
the magnitude of the effect of Y on the DT IPB strength. Thus,
the effect of Y will be investigated by analyzing a DT joint
with B=0.67, and chord thickness ratios of 25 and 15 subjected to
IPB. Comparison of the resulting ultimate strengths will give a
measure of the Y effect without the questions raised by
experimental scatter

The AI interaction cases with B=0.67 will be compared to
the experimental data to see if the proposed analytical method
provides a useful tool for the study of interaction behavior. In
addition, éhe influence of the load path on the interaction
ultimate strength will be investigated by comparing the results

of two interaction solutions one using proportional loading and
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one using nonproportional loading. If the load path influences
the interaction strength, there should be a significant
difference between the results. Finally, the IO interaction for
B=0.35 will be investigated with the analytical model to
determine whether the increase in OPB strength as IPB is added as
shown by the experimental data in Fig. 4.8 is just a result of
experimental scatter or a predictable phenomenon. The OPB case
for B=0.35 is required to give a reference value for use in the
I0 interaction case, and provides another loading case for
comparison of the analytical and experimental results.

The results of each analytical solution are presented in a

tabular form in Appendix G.

6.2 Selection of an Analytical Model

An acceptable analytical solution must produce reasonable
predictions of ultimate strength, be applicable to interaction
type problems, and be economical. Of the analytical tools
available, the finite element method (FEM) has proven to be the
most promising in predicting the ultimate strength of tubular
joints. In fact, the work by Stamenkovic and Holsgrove [16]
presented in Chapter 1 was intended toc lead to an application of
the model to the prediction of interaction behavior. The ring
model developed by Hoadley yielded some good predictions of

ultimate strength under simple loadings; however, the model
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cannot be used to investigate interaction behavior because the
lengths of the transition zone changes from axial to OPB, and the
IPB model was unsuccessful. Therefore, it seems that the only
practical analytical model acceptable for this investigation is
the FEM. However, the present high cost of FEM computations for
the number of runs needed makes the FEM with the models presently
available [16, 25] unacceptable. Therefore, a new model was
developed for this investigation.

Because of its simplicity and its ability to predict the
OPB strength of a DT tubular joint, the development of a new
finite element model began with the results of Hoadley's work
with ABAQUS discussed in Chapter 1. Hoadley suggested that the
reason for the poor prediction of IPB strength was that an
incorrect load distribution was used. To test this theory,
Hoadley's model was recreated except that five concentrated loads
were applied assuming a uniform distribution of stresses from a
maximum at the crown to a minimum at the saddle instead of three
equal concentrated loads at 7.75 in. from the saddle. This new
mesh and loading are given in Fig. 6.3. The new analysis
predicted the IPB strength of the joint very well as shown in
Fig. 6.4. The predicted ultimate strength of 1009 K-in. is within
5% of the experimental value, 1056 K-in.. In addition, the

analysis only required 203 sec. computation (cpu) time.
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Fig. 6.3 Revised Hoadley FEM Model - IPB
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From the results of the IPB run it seemed that this finite
element model could be applied to this investigation. But, the
stair—-stepped shape of the moment rotation curve raised some
questions about the model. In addition, since the model is
sensitive to the distributions of loads, the distribution would
effectively be determined by matching the analytical results to
the experimental results. Thus, the model becomes semi-empirical.

The stair-stepped shape of the moment-rotation curve is a
result of the large tolerance limits set on the equilibrium check
used by the solution routine in ABAQUS. The model applied forces
to the structure by controlling the magnitude of the concentrated
loads. This resulted in significant problems with obtaining a
convergent solution after significant yielding had occurred [15].
Therefore, the magnitude of the tolerances on the equilibrium
check were increased to achieve a convergent solution. The ABAQUS
user's manual recommends the use of displacement control as a
first attempt to remedy a convergence problem [13]; however, the
displacements are not known at the branch-chord intersection.
Thus, a branch member was needed in the model.

The branch member served two purposes: (1) it allowed for
the use of displacement control, and (2) it eliminated the
guesswork involved in the application of branch forces mentioned

by Hoadley. The finite element model proposed for use in this
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study is based on Hoadley's model with a branch member and a

refined mesh around the Jjoint.

6.3 Finite Element Model

6.3.1 General Inforgation on ABAQUS. ABAQUS is a

generally applicable finite element program developed by Hibbit,
Karlsson, and Sorensen, Inc. of Providence, Rhode Island. The
version used in this research is prerelease version 4-5-134 and
is available for internal use at the University of Texas College
of Engineering for academic purposes only. ABAQUS is an
established program which has been used for several years at the
University of Texas to investigate many different types of
problems; therefore, a verification of the coding is not deemed
necessary.

6.3.2 Element Type. The only shell elements available

in the ABAQUS element library suitable for this application are
general reduced integration doubly curved shell elements. These
elements follow Kirchoff's assumptions which means that the
transverse shear is assumed to be zero. Since this application
deals with fairly thin shells, it is assumed that the shear
components are negligible, thus the use of these elements is
acceptable.

The ABAQUS library of elements includes 4 and 8 noded

shell elements. Due to the low number of integrations required by
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4 noded elements and the success shown in Hoadley's analysis, the
4 noded elements were utilized in the proposed model. This
element contains one middle surface integration point, 6 active
degrees of freedom at each node, and stress/strain components in
the two directions tangent to the shell surface. An additional
option allows integration through the thickness of the shell.
This option was used to place 7 integration points through the
thickness of the chord wall and 5 integration points through the
thickness of the branch.

6.3.3 Material Properties. The material properties used

in the model were determined by tensile coupon tests using ASTM
A370~71 Specifications for the testing of steel products [2]. The
material was assumed to be isotropic. The elastic portion of the
stress-strain curve is described by a Youngs modulus of 29,000
ksi and a Poisson's ratio of 0.3.

The finite element work by Pan discussed in Chapter 1
showed that the effect of nonlinear material calculations on the
predictions of the FEM are significant [25]. Therefore, nonlinear
material behavior is included in the finite element model in all
cases. The plastic portion of the curve is described by a series
of points with yield stress and plastic strain coordinates as
shown in Figs. 6.5a and b. Fig. 6.5a shows the complete curve,
while Fig. 6.5b shows the curve up to a strain of 0.08 to give a

better indication of the shape of the curve. The values of yield
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stress and plastic strain were calculated by first digitizing the
experimental stress~-strain curves and interpolating to determine
the yield stress at several values of plastic strain (0.0, 0.005,
0.01, 0.02, 0.04, 0.08 and at ultimate). Then yield stresses
interpolated from the experimental tests were averaged at each
value of plastic strain. The actual values of each experimental
stress strain curve and the curves used in the model are
presented in Appendix E. Plasticity of the material is simulated
using a rate independent plasticity theory with a von Mises yield
function, a flow rule which satisfies the normality condition,
and an isotropic hardening rule.

6.3.4 Solution Technique. Solution of the problem is

achieved through a load increment and iteration technique. The
size of the loading increment can be input directly or set by the
program and the basic nodal variables are assumed to vary
linearly over each loading increment. ABAQUS uses a quasi-
Newtonian iteration technique. Convergence is checked by
comparing the maximum nodal force and moment residuals with
tolerances set by the user. The user's manual suggests that the
tolerances be set to a small fraction of the typical actual
forces (1% to 0.01%). This basic tolerance measure is checked at
all nodes except those with prescribed displacements.

The selection of a tolerance level was a difficult

process, and was mostly made by trial and error. Some
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experimentation with the tolerance level using Hoadley's simple
model showed that the tolerance level had a large effect on the
cost of each run, put not on the ultimate strength prediction.
However, a large tolerance level causes the program to produce
the stair-stepped type curve shown in Fig. 6.4 and overpredicts
the stiffness of the joint. When displacement control is used,
the effect of the tolerance limit on the finite element solution
is significantly reduced because convergence is not checked at
the points of force application since these are given prescribed
displacements. Thus, the tolerances used in this investigation
varied from 1% to 5% of the expected nodal forces. The exact
effect of the tolerances will be discussed as the results of the
investigation are presented.

6.3.5. Loading. The ABAQUS program allows the user
several methods of applying force to a structure. The two methods
used in this study are load control and displacement control.
After a few preliminary runs it became evident that the
displacement control method required less computation time than
the load control method. In addition, while use of the load
control method resulted in problems with convergence, the
displacement control method produced convergent solutions well
into the inelastic portion of the loading curve and in some cases

to unloading. Thus, displacement control was used in all cases
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except when applying loads in the interaction cases. Since the
movement of the joint does not always follow the line of action
of the resultant force, deflection control could only be used in
the direction loaded to failure. The force in the second
direction was applied using load control. Because the force in
the second direction is usually below the yielding load of the
joint, wusing load control did not cause any problem with
convergence.

In the ABAQUS program the user has the option to set the
size of the loading increments or to let the program determine
them automatically within a range set by the user. Because little
was known about convergence of each case, the program was allowed
to set the increment automatically. Since this investigation is
interested in ultimate strength of the joint, the limits input
for the increment size were chosen so that the first increment
(elastic portion of the loading curve) was as large as possible.
This allowed for smaller loading increments, and thus better
convergence, near the ultimate condition without a significant
increase in cost.

6.3.6. Geometric Nonlinearity. ABAQUS has the ability to

model both material and geometric nonlinearities. For shell
elements the geometric nonlinearities include large rotations and
small strains. Pan's study of nonlinear effects on the prediction

of tubular joint behavior indicated that the addition of
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nonlinear geometry to the model reduced the ultimate load by
approximately 30% [25]. Therefore, the nonlinear geometry option
was used in all cases.

6.3.7 Meshes. The development of the meshes used in this
analysis was primarily trial and error. The main parameters used
in the creation of each mesh were, minimum number of elements,
simple geometry (since no generation program was available for 4
noded elements), and a refined mesh in the immediate area of the
joint.

Since several B ratios were to be investigated while the
chord remained a constant diameter and length, the mesh was
divided into a chord section on either side of the joint which
basically remained the same and a joint section which varied with
each B ratio. The flanges at the end of the branch and chord were
modeled by thickened shell elements which were given a modulus of
100,000 ksi and assumed to be elastic. In the axial loading
cases, only 1/2 of the branch length is modeled (29 in.) while in
the bending cases the full branch length is modeled (58 in.). The
chord thicknesses were set to match the test being simulated. The
meshes used in this research are not necessarily the most
efficient for each application as an optimization of the mesh for

each case was beyond the scope of this study.
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A plan view of one quadrant of the basic mesh for each
joint area is shown in Figs. 6.7-6.10. The orientation of the
guadrant is shown in Fig. 6.6. Due to symmetry, the mesh in the
joint area was produced by replicating the basic mesh about each
line of symmetry. Two meshes were developed for the 8=0.67 case
as the first coarser mesh [Fig. 6.9] did not produce accurate
predictions of ultimate strength. The medium mesh [Fig. 6.10]
reduced the size of the elements at the branch-chord intersection
and added another row of elements in the joint region. The full
meshes are shown in Appendix F. To minimize computation costs and
take advantage of symmetry 10 different meshes were used for the
cases analyzed; three 1/8 joint meshes for the axial load cases
(which are not shown), three 1/4 joint meshes for the IPB cases
and the AI interaction, two 1/4 joint meshes for the A21 and A22
cases, onel/4 joint for the OPB g=0.35 case, and one 1/2 joint
mesh for the I0 interaction case. In addition to these, 1/8 and
1/4 joint "medium" meshes were created for B=0.67 when the
initial mesh was shown to be unacceptable. The creation of all of
these meshes was greatly simplified by the fact that the ABAQUS
program does not require sequential numbering of the nodes.
Therefore, four "master meshes" (1 for B=0.35 and 1.00, and 2 for
B=0.67) which represented 1/2 of a joint were created, then the
unnecessary nodes and elements were eliminated from each mesh to

create the 1/4 and 1/8 joint meshes.
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Fig.6.6 Location of Element Meshes shown
in Figs.6.7-6.10
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6.3.8 Storage, and Computation Time. The number of

elements, nodes, and degrees of freedom, and storage required by
each case is given in Table 6.2. Also included in Table 6.2, are
the cpu, I/0,and total TM times required for each case along with
the number of increments, the average number of iterations to

convergence, and the tolerance limit used.

6.4 Prediction of Joint Stiffness

Because the finite element method uses discretized degrees
of freedom instead of a continuous system, the method typically
overestimates the stiffness of a structure. This problem has been
alleviated somewhat by the use of reduced integration elements
which results in more flexible models. Another method for
improving the prediction of structural stiffness is by reducing
element sizes. As the element size approaches zero, the discrete
DOF comes closer to modeling a continuous system. Using these to
methods, the FEM should produce reasonable predictions of Jjoint
stiffness. However, it must be noted that the experimental
measurements are subject to several variables which are not
generally included in the finite element model and may result in
a differences between measured and predicted joint stiffnesses.

The finite element analysis of a B=0.67 DT Jjoint in
compression performed by Pan overestimated the stiffness of the

joint using the reduced integration elements even with a very
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refined mesh, as shown in Fig. 1.24 [25]. The predicted stiffness
is approximately 65% higher than the average of the experimental
stiffnesses for several B=0.67 joints loaded in compression. Pan
attributes this discrepancy to residual stresses which result
from welding at the connection, and approximations inherent in
the analytical model. However, the discrepancy can be attributed
to the fact that the measured stiffness does not represent the
actual specimen stiffness.

The displacement gages used in this research project were
placed such that the stiffness of the test frame was included in
the displacement measurements as shown in Fig. 6.11a. From the
schematic of this configuration shown in Fig. 6.11b, it can
readily be seen that the location of the displacement gage will
cause an underprediction of the specimen stiffness. The magnitude
of the error can be estimated by forming the following relation
between the total stiffness measured by the gage, KT [units
(force/length], and the individual stiffnesses of the specimen,

K1, and the setup, K2;

(1/K1) + (1/K2) = (1/KT) (6.3)

KT = (K1)(K2)/(K1+K2) (6.4)

If the specimen is much stiffer than the test setup, i.e. K1>>K2,

then from Eq. (6.4), KT would approach the stiffness of the test



227

SISO

_ LI
Test
C) | Frame
[ Test
e Gage
W2 P4
J b.) Measurement
Test
Frarne

a} lnstrurnentatwn

Fig.6.11 Experimental Stiffness Measurements

NSNS
IS SISO
& i ,
K1 Specimen
Test
Gage
| T T LTI E T
7 b.) Measurement

a.) Instrumentation

Fig.6.12 Experimental Stiffness Measurements Ref. [SA1]



228

frame, K2. If the test setup is much stiffer than the specimen,
i.e. K2>>K1, then KT would approach the stiffness of the
specimen. In order to determine the effect of the flexibility of
the test frame using Eq. (6.4), the value of K2 must be
determined.

In a series of tests related to this research an elastic
test on a B=1.00 DT joint loaded in compression using a very
stiff screw type testing machine was performed. The displacement
gages were placed as shown in Fig. 6.12a so that the only
stiffness measured was that of the specimen as shown in the
schematic in Fig. 6.12b. This series of tests was aimed at
determining strain concentration factors, and the dimensions and
material properties of the specimen were the same as the B=1.00
joints used in the research presented in Chapter 3 [32]. The
elastic load-displacement curve produced by the test using the
stiff test machine showed an initial stiffness of 2,500 kips/in.
The two compression tests on 8=1.00 joints presented in Chapter
3, A21 and A22, exhibited elastic stiffnesses of 1108 kips/in.
and 1280 kips/in. respectively. If the results of the test in the
stiff machine is taken as the specimen stiffness, K1, and the
average of the stiffnesses of specimens A21 and A22 (1194
kips/in.) is taken as KT, then the stiffness of the test frame
can be determined using Eq. (6.4). The resulting test frame

stiffness, K2, 1is 2279 kips/in. The actual stiffness 1is
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difficult to calculate due to end conditions. However, this
stiffness falls between the pinned and fixed conditions.

Using the value of the test frame stiffness, and the total
stiffness measured for Test Al, in Eq. (6.4) the actual specimen
stiffness can be approximated and compared with Pan's analytical
prediction. The total stiffness measured for Test A1 is 320
kips/in. Inserting the stiffness values into Eq. (6.4), the
specimen stiffness is calculated to be 373 kips/in. This is still
considerably lower than the stiffness of Pan's model, 511
kips/in. Pan points out that five values of stiffness were
available for the B=0.67 joint and that the average of these is
309 kips/in. and the standard deviation is 89 kips/in. Using
this value of KT, 398 kips/in., in Eq. (6.4) results in a
specimen stiffness of 482 kips/in. which compares well with Pan's
prediction.

This analysis of the prediction of stiffness by the FEM
shows that the method can be used to predict joint stiffness as
well as strength. However, the analytical predictions will
generally be an upper bound to the actual joint stiffness due to
the approximations made by assigning discrete degrees of freedom,
the residual stresses present in the joint, and the

eccentricities in the joint due to fabrication.
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6.5 Validation of Analytical Model

6.5.1 Axial Compression—-g=0.67. The load-deflection

curves obtained from the finite element model along with load-
deflection curve from Test Al are shown in Fig. 6.13. The results
of Test A51 were not included on the graph because the joint did
not have the same dimensions and material properties as joint Al
and the analytical models. The analytical model used displacement
control and the tolerance was based on 1% of the expected nodal
concentrated force which is approximately 0.04% of the total
expected load. A uniform displacement was applied to the top of
the branch with a maximum value of 0.8 in. The model using the
"coarse" mesh yielded an ultimate strength of 92.3 kips, while
the model using the "medium" mesh produced an ultimate strength
of 85.5 kips. The ultimate strength of Test A1 is 78.8 kip. The
analytical ultimate strengths are 17% and 9% higher than the
experimental value for the "coarse" and "medium" mesh
respectively.

Comparison of the analytical and experimental load-
deflection curves shows that as with Pan's model, the stiffness
of the joint is apparently overestimated. This overestimation is
due mainly to the inclusion of the test frame flexibility in the
measured stiffness as discussed previously.

This specific loading case was recently modeled by Pan

[25] whose finite element model is described in Chapter 1. A
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comparison of the results of Pan's model and the proposed model
are shown in Fig. 6.14~-6.16. Fig. 6.14 compares the results of
Pan's "coarse" mesh to the proposed model's "coarse" mesh, and
indicates that there is no significant difference between the two
loading curves. Fig. 6.15 shows the curves produced by Pan's
"medium" mesh with the proposed model's "medium" mesh, again
there is no significant difference between the two curves.
Finally, Fig. 6.16 compares the curves produced by Pan's "fine"
mesh and the proposed model's "medium" mesh, here Pan's "fine"
produces a much better prediction of the actual joints behavior;
however, the run was stopped prematurely due to the excessive
amount of computation time required.

Table 6.3 presents the number of nodes, number of degrees
of freedom and the running time required by Pan's model and the
proposed model. Comparison of the running times indicates the
economy of the proposed model. The proposed model's "coarse" mesh
produced the same results as Pan's '"coarse" mesh but only
required 1/5th of the running time. Comparison of the "medium"
meshes from both models shows that the present model required
approximately 1/8 as much running time as Pan's model. Because
most of the cases to be analyzed in this chapter require 1/4
joint meshes instead of the 1/8th joint meshed used in this case,
the savings afforded by the proposed model will be significant in

this study.
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Comparison of Running Times for Pan's and Proposed
Finite Element Models

No.

Nodes
Pan Proposed

No.

D.0O.F.
Pan Proposed

Running Time¥
Pan Proposed

Coarse

Medium

146

153

876

918

6168 1199

17161 2011

*¥TM Time in sec. (0.7 x I/0 Time + 1.6 x CPU Time)
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Comparison of the running times of the "coarse" and
"medium" meshes used in the proposed model shows that the
addition of 6 more nodes, and U2 more degrees of freedom almost
doubled the computation time. But, the predicted ultimate
strength was reduced by only 7%. The significant increase in the
computation required by the "medium" mesh over the "coarse" mesh
was a result of the smaller elements at the chord-branch
intersection. The small elements concentrate the stresses around
the branch~chord intersection which leads to yielding at lower
loads than in the large elements of the "coarse" mesh which
average the stress over a larger area. This resulted in earlier
non-linear behavior and required smaller increments to achieve
equilibrium. The "coarse" mesh required 7 increments to reach a
deformation of 0.8 in. while the "medium" mesh required 12
increments. Because of the smaller elements, the "medium" mesh
also produced a lower prediction of the initial stiffness.

6.5.2 Axial Compression - 8=0.35. In the simulation of

the 8=0.35 compression test, the force was applied by both load
and displacement control to compare the results of the two
loading types. The case using displacement control had a
tolerance of 1% of the expected nodal load (0.04% of total) and
the load control case used a tolerance of 10% of the expected
nodal load (0.4% of total). In the displacement control run a

uniform displacement was applied to the top of the branch with a
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maximum value of 0.8 in. In the load control run, equal
concentrated loads were applied to the top of the branch.

The load-deflection curve produced by the two loading
methods are shown in Fig. 6.17. Comparison of the loading curves
indicates that there is no difference between the predictions of
joint behavior. However, because of the convergence condition,
the run using load control required 8 increments compared to the
4 increments required by the displacement control run. The
running times were 1284 and 751 secs. for the load and
displacement control cases respectively. Thus, it seems that
displacement control is a more favorable way to apply force for
this application in the ABAQUS finite element system.

The load~deflection curve produced by the displacement
control run is shown along with the curves obtained from Tests
A%0 and A41 in Fig. 6.18. The maximum load achieved by the finite
element model is 50.3 kips. The maximum loads attained by Tests
A40 and Al41 are 46.3 and 42.0 kips respectively with an average
of 44.2 kips. The finite element model's ultimate strength
prediction is approximately 14% higher than the average of Tests
A40 and Al1. This overprediction of strength is probably due to
the coarseness of the mesh used in the analysis. Since the B=0.67
analyses showed the effect of reducing the mesh size on the
ultimate strength prediction, and in order to minimize

computation costs, a finer mesh was not used.



237

60..
v
AXIAL P
LoD 301 ¥
(KIPSY / “# FEM Displ. Control
207 ‘B FEM1oad Control
10 } /
OE ¢ 4 ' 4 ¢ § + 4 1
00 01 02 03 04 05 06 07 08 09

AXIAL DEF. ()

Fig. 6.17 Comparison of Axial Load vs. Deflection Curves Produced using
Load and Displacement Control Methods

60
40 g A T ot
AXIAL IAQ/
LOAD 30 %
(Pe) & ;
2 Y. Test A40
4 O Test Ad1
10 1 / B-
x O/ FEM
I
0 &= + 1 + 4 .
0.0 02 04 06 08 10 12
AXIAL DEF. (IN)

Fig. 6.18 Predicted and Measured Axial Load vs. Deflection Curves for
B3=0.35 Joint in Compression



238

Comparison of the analytical and experimental loading
curves shown in Fig. 6.18 indicates that the finite element model
replicates the measured stiffness rather well. This is because
the measured stiffness more closely approximates the actual
elastic joint stiffness since the B=0.35 joint is much less stiff
than the test frame. Using the measured stiffness,148 kips/in.,
and the calculated test frame stiffness, 2279 kips/in., in Eq.
(6.4), the actual specimen stiffness is 158 kips/in. which is
very close to the measured value.

Because of the interest in the contribution of the chord
section to the strength of the joint produced by Hoadley's ring
model, strain gages were placed along the chord centerline of
specimen A40, as shown in Fig. 6.19, to study how strains vary
along the chord. As another measure of the applicability of the
proposed model, the strains predicted by the model will be
compared to the measured strains. The strains in the
circumferential direction measured and computed at the ultimate
loading condition are plotted in Fig. 6.20. Comparison of the two
curves shows that even though the magnitudes are not the same,
the finite element model does a good job of following the trend
of the experimental strains along the chord. Fig. 6.21 shows the
calculated and measured strains for several loading cases
illustrate how the strains change with load. Comparison of the

two figures indicates that the model does a good job of
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replicating the change in strains with load. In addition, the
magnitudes of the strains indicate that the chord away from the
branch remains elastic throughout the loading.

6.5.3 Axial Tension - B=1.00. As discussed in Chapter 1,

the common mode of failure for tubular joints in tension is a
fracture along the weld of the branch—chord intersection. This
type of failure cannot be simulated by the proposed model because
the fracture depends on local conditions at the weld toe which
are not included in the model. In addition, the stress—-strain
curve used to model the material properties does not represent
the stress—strain relationship in the heat affected zone around
the weld. Therefore, the purpose of the tension runs is not to
predict ultimate strength but to see if the model could replicate
the shape of the loading curve. As before, a uniform displacement
was placed on the top of the branch to apply force and the
tolerance was set to 1% of the expected maximum nodal force.

The load-deflection curves produced by the finite element
model and by Test T3, taken from Ref. 28, are shown in Fig. 6.22.
Several replicates of this test were available; however, because
of their similarity only one is included for the sake of clarity.
It should be noted that the deflections used in the figure are
based on the deformations on both sides of the chord; thus, the
deflections given by the finite element run were doubled to match

the experimental measurements. In addition, the joint was tested
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in a screw type machine and joint displacements were measured by
gages placed as shown in Fig. 6.12 which eliminates the influence
of the test frame flexibility. Because of the automatic
incrementation, the first point on the finite element curve
occurred at a load of 286 kips and a deflection of 0.236 in.
which explains the seeming perfectly elastic behavior in the
first load step. Above this first point, the model does a very
good job of simulating the loading curve of the joint in tension.

6.5.4 Axial Tension — B=0.35. As before, axial tension

was applied by displacement control and the tolerance limit was
set at 1% of the expected maximum nodal force. The Specimen was
tested in the screw type machine and the instrumentation was
similar to that used for the B8=1.00 joint. For the specimens
being simulated, the branch was made of a lower strength steel
than the chord and the chord was cut 18" from the center of the
joint. In addition, the ends of the chord were reinforced by a
two stiffeners constructed of 4"x1/2" plate [28] as shown in Fig.
6.23a. In the finite element mesh, the reduction in the length of
the chord was attained by eliminating elements outside of the
required length. The stiffening plate was modeled by placing in
elements at the end of the chord and restricting the deflections
in the elements at the crown and saddle centerlines to O.

The load-displacement curves produced by the proposed

model and Tests T8 and T9 are shown in Fig. 6.23b. As with the
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B=1.00 case, displacements yielded by the finite element program
were doubled to match the experimental measurements. Comparison
of the loading curves, shows that the finite element model falls
between the two test results but the model shows very little loss
in stiffness at higher loads. This condition is as expected,
because the proposed model does not simulate the fracture type
behavior which controls the strength of the experimental
specimen.

6.5.5 Summary. For the purposes of this study, an
acceptable analytical model has been defined as cne which is
applicable to interaction type problems, produces reasonable
predictions of ultimate strength except for axial tension
loadings, ‘and is economical. The finite element model is easily
applicable to interaction type problems by simply altering the
boundary conditions. Comparisons of the predictions of the
proposed finite element model and experimental results indicate
that the model overestimates the experimental ultimate strength
because of the rather coarse meshes used, but the predictions are
reasonable. The model also accurately simulates the strains along
the chord. Finally, comparisons with the computation times
required by Pan's model, indicate that the present model is very
economical. Therefore, the proposed model will be accepted and

used in this study.
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6.6 The Effect of the Gap on Compression Strength of Joints
with g=1.00.

The large difference between the ultimate strength and
behavior of replicate Tests A21 and A22, and Tests 023 and 028
indicated that the distance between the saddle points, or the
gap, influences the behavior of the joints. This effect is
discussed in more detail in Chapter 4, and the gap is defined by
Fig. 4.4. In short, it was hypothesized that the compression
branch forces in a B=1.00 DT joint are resisted almost
exclusively by membrane action in the area between the saddle
points of the joint. Thus, the compressive strength of the joint
could be estimated by treating the gap area as a column. To test
this theory, the experimental loads resisted by the specimens
were plotted against the SSRC inelastic column curve [Fig. 4.51.
In Fig. 4.5, the results fell close to the SSRC curve except for
Test A22 which fell somewhat below the SSRC curve. The result of
Test A22 was well within the scatter band typical of this type of
failure. But, it would be advantageous to see if the gap effect
is also predicted by an analytical model, which is not effected
by experimental scatter

To model the geometry of the specimens A21 and A22, the
size of the branch member was determined by the average gap of
each specimen, thus the B ratio was somewhat less than 1.00 (0.97

for both specimen). The variation in the gaps was attained by
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offsetting the branch. Since the symmetry of the axial loading
was violated by the variation in gap sizes, a 1/4 joint mesh was
used in both cases. Load was applied using displacement control
at the centerline of the branch as shown in Fig. 6.24, thus
allowing the branch to rotate freely in the out-of-~plane
direction. The loading point was also prevented from translation
in the out~of~plane direction while the chord was free to move in
out-of~plane direction. It was defermined that this set of
boundary conditions best simulated the actual test condition.

The axial load-deflection curves produced by the model and
Test A21 are shown in Fig. 6.25a. Specimen A21 had gap dimensions
of 3.63 and 3.56 in. The out—-of-plane displacement produced by
the finite element model is plotted in Fig. 6.25b to give a
better indication of the movement of the joint. The finite
element model yielded an ultimate strength of 173.0 kips compared
to the experimental value of 172.7 kips, thus the model is very
aécurate for this loading case. The difference between the
analytical and measured stiffnesses shown in Fig. 6.25a can be
explained by the flexibility of the test setup which is included
in the measured stiffness. Comparison of Figs. 6.25a and 6.25b
shows that just as the joints reaches maximum load the joint
buckles in the out-of-plane direction.

The axial load~deflection curves produced by the model and

Test A22 are shown in Fig. 6.26a. Specimen A22 had gap dimensions
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of 3.88 and 3.31 in. The out~of-plane displacement produced by
the finite element model is plotted in Fig. 6.26b. The ultimate
strengths of the analytical model and Test A22 are 165.8 and
151.5 kips respectively. As in Test A21 comparison of Figs 6.26a
and b show that the joint begins to buckle out—-of-plane as the
Jjoint reaches ultimate load. Again the analytical model exhibits
much more stiffness than the experimental results show.
Comparison of Figs. 6.25b and 6.26b indicates that the model of
Test A22 shows much less stiffness in the out—of-plane direction
than the model of Test A271 which is as expected because of the
larger eccentricity in specimen A22.

As stated earlier, the difference in the analytical and
experimental stiffnesses may be explained by the test frame
flexibility included in the measured displacements. Because of
the large stiffness of the g=1.00 joint, the stiffness of the
specimen approaches the stiffness of the test frame, i.e K1=K2 in
Eq. (6.4). The resulting total or measured stiffness should be
approximately 1/2 of the actual joint stiffness. The measured
stiffnesses of Tests A21 and A22 are 1108 and 1280 respectively
which are about 1/2 of the analytical stiffnesses. A true measure
of the joint stiffness is given by the elastic compression test
performed as part of a strain concentration factor study [32]
which was discussed earlier, the elastic stiffness given by this

test is 2,500 kips/in. The finite element model produced a
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stiffness of 2,220 kips/in. to a load of 162 kips and 2,192
kips/in. to a load of 160 kips for the models of Tests A21 and
A22 respectively. Considering the fact that the analytical
stiffnesses include an inelastic portion of the load-deflection
curve, the analytical stiffnesses match the measured elastic
stiffness rather well.

Figure 6.27 is a replication of Fig. 4.5 which plots the
experimental load on a gap vs. its G/r along with the SSRC
inelastic column curve. The difference is that Fig. 6.27 includes
the maximum loads predicted by the analytical method. The
experimental load represents the compression load at the branch
saddle point and is defined as half of the axial load or the OPB
moment divided by the branch diameter. The result of the
analytical model of Test A21 falls on top of the experimental
result while the result of the model of Test A22 falls much
closer to the column curve than the experimental result. Thus,
the analytical results support the theory that the gap can be
analyzed as an inelastic buckling column. However, the fact that
the result of Test A22 is lower than predicted shows that the
scatter inherent in buckling failures must still be accounted for
in any design.

The membrane forces along the chord centerline at maximum
load are plotted against their position on the chord in Figs.

6.28 and 6.29 for the models of Tests A21 and A22 respectively in
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order to study how the size of the gaps influences the force
distribution. These forces are the reactions at the boundary of
the finite element model where the displacement of the nodes are
restrained. The distribution of the membrane forces shown in the
figures indicates that most of the axial load is resisted within
the joint proper (area of joint within branch diameter). This
distribution is corroborated by the tension tests performed by
Sanders which showed that removing the chord outside of the joint
proper had no effect on the tension strength of the joint [28].
Comparison of the load distributions of each run show very little
difference between the distribution of the membrane forces in the
two specimens. For Test A21, Fig. 6.28, in which the gap
dimensions are fairly similar the distributions of reactions at
either gap are almost identical. For Test A22, Fig. 6.29, in
which there was a significant difference between the gaps, there
is a small difference in the distribution of reactions on either
side of the joint. The reactions on the large gap side of the
joint are larger away from the center of the joint indicating
that the immediate gap area is buckling and the load is being
distributed to the adjacent chord.

As in Test A40, strain gages were placed along the outside
surface of the chord for Test A22 to measure the circumferential
strains. The layout of the gages is shown in Fig. 6.30. The

experimental and calculated strains along the saddle centerline
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and the crown centerline of the chord at the maximum axial loads
are plotted in Figs. 6.31 and 6.32. Comparison of the curves
shows that, as with the B=0.35 compression case, the model does a
very good job of predicting the strains along the chord. The
magnitudes of the strains show that the chord outside of the
joint proper remains elastic throughout the loading.

Based on the ability of the model to accurately simulate
the joint behavior, the proposed model could be used to complete
an extensive investigation into the gap effect beyond the scope
of this study. Several aspects which might be studied are the
effect of the difference between the gaps, a limiting gap
dimension beyond which there is no significant effect, the effect
of chord thickness, and a formulation for an effective width as

shown in Fig. 6.33.

6.7 In-Plane Bending Strength

When the experimental IPB strengthé were compared to these
predicted by recommended API design equations, it was found that
the design equations were overly conservative for the 8=0.67 and
1.00 cases. Since the design equation does not predict the IPB
case well, the analytical model is used to predict IPB strength.
In addition, the analytical results will be compared to another

empirical equation developed by Billington [6] and altered for DT
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joints by Yura [39], and the effect of Y on the IPB strength will
be briefly investigated.

In the IPB models, the full branch length (58") is
modeled, and force is applied by displacement control. The
displacements are applied at one end of the chord which has a
thick flange, while the neutral axis at the end of the branch is
restrained from in-plane translation. Because the experimental
cases contained axial loads, an equal proportion of the axial
load predicted by the analytical model was applied to the joint
before it was loaded to failure in IPB. Load control was chosen
to apply the axial load to allow free rotation of the branch end.
The branch moment is calculated by multiplying the reaction at
the restrained point on the branch by the branch length. The
secondary moment is calculated by multiplying the axial force and
the chord displacement. The total moment is the sum of the branch
and secondary moments. After a comparison of the results of the
B=0.35 IPB model with a tolerance limit of 1% and 5% of the total
shear showed no significant difference [Fig. 6.34], the tolerance
was set at 5% of the total shear.

6.7.1 B=0.35. The moment-rotation curves produced by the

finite element model and Test I43 are presented in Fig. 6.35. The
moment achieved at the maximum displacement input by the
analytical model is 250 kip-in. Because the model had not reached

a maximum moment at the maximum rotation, a maximum moment of 255
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kip~in. was extrapolated to the useful deformation limit from the
analytical curve. The maximum moment reached in Test is 267 kip-
in. at 9.97° rotation, the useful moment as defined by the
deformation limit is 257 kip-in. Comparison of the two curves
shows that the analytical model replicates the behavior of the
experimental joint almost exactly.

Following~up on the analytical work on IPB by Hoadley, the
radial displacements along the saddle and crown centerlines of
the chord are presented in Figs. 6.37, and 6.38. The sign
conventions for these radial displacements and a definition of
the saddle and crown chord centerline are presented in Fig. 6.36.
In Hoadley's analysis, the point on the chord where the is no
change in diameter along the saddle centerline was taken as the
neutral axis of bending [15]. However, Fig. 6.37 shows that the
chord diameter increases at the branch centerline. Thus,
Hoadley's assumption seems to be too simplistic. Fig. 6.38 shows
the deflection of the chord centerline at the crown, and the
curve illustrates the variation in the stiffness of the chord
loaded in compression and tension which was discussed by Hoadley.

Strain gages were placed along the saddle centerlines of
specimen I43 before testing as shown in Fig. 6.39. A comparison
of the calculated and measured circumferential strains taken
close to the 6° rotation limit of the finite element model is

shown in Fig. 6.40. As in other cases, the finite element model
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matches the experimental strains very well. The measured strain
for three levels of moment are shown in Fig. 6.41; calculated
values are given in Fig. 6.42. The strains close to the joint
increase rapidly with increasing moment while the strains in the
majority of the chord remain mostly unchanged.

6.7.2 B=0.67. The moment-rotation curves produced by
Test I7T and the finite elemeﬁt models are shown Fig. 6.43. The
two finite element curves are produced by the "coarse" and
"medium" meshes similar to those used to analyze the axial cases.
From the figure it can be seen that the coarse mesh does not
model the experimental behavior very well. This is due to the
large elements near the branch-chord intersection in the "coarse"
mesh which tend to reduce the softening effects of yielding by
spreading the stress over a large area. The reduction in the size
of these elements in the "medium" mesh eliminated this problem
and does a much better job of simulating the actual joint
behavior. The maximum rotation applied to the finite element
model was 6°, but the moment-rotation curve was still increasing.
However, the difference between the moments in the last 2 loading
increments is only 8 kip-in. (0.75% of total moment), which
indicates that any further increase in lcad would be negligible.

Thus, the moment at 6° rotation, 1074 kip~in., will be taken as a
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maximum. The maximum moment reached by the model compares well
with the experimental maximum of 1056 kip—in.

The radial displacements at the saddle and crown chord
centerlines at the maximum moments are shown in Figs. 6.44 and
6.45. The radial displacements at the saddle centerline show the
reverse curvature of the chord wall in the vicinity of the joint
discussed by Hoadley. The shape of the curve agrees well with the
results of Hoadley's simple model; however, the proposed model
predicts almost twice the radial deformation. Comparison with the
radial deformations calculated for the B=0.35 model [Fig. 6.37],
shows that the deformations are much larger in the g=0.67 case
and the shape is very different with a definitive change in
curvature in the joint region. This indicates that the chord is
more involved in the resistance of IPB for the 8=0.67 case. The
radial displacements along the crown centerline of the chord for
B=0.67 are very similar to those shown by Hoadley, but again the
magnitudes are larger. Comparison with the f=0.35 curve [Fig.
6.38] shows that the two curves have very similar shapes, with a
relatively stiff tension crown and a relatively "soft"
compression crown. The difference in the magnitudes of the
displacements is a result of the increased movement of the branch
tip required by the larger branch of the B8=0.67 joint to achieve

the same rotation.
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6.7.3 B=1.00. The moment-rotation curves produced by the
finite element model and Test I24 are shown in Fig. 6.46. To
account for the gaps on either side of the joint, the actual B
ratio used in the finite element mesh is 0.974. As with the
8=0.67 loading curve, the 8=1.00 analytical curve did not reach a
maximum point before the end of the run. However, there was only
a 1.4% increase moment in the last load increment. Therefore, it
was determined that any further increase in strength would be
negligible, and the last point could be used as a maximum. The
maximum moment reached by the model, 2426 kip-in., is a
reasonable prediction of the experimental maximum of 2267 kip-in.
(7.0% high). Other than overestimating the measured stiffness
which can be explained by the addition of the test frame
flexibility into the displacement measurement, the model
simulates the shape of the experimental locading curve very well.

The radial deflections produced by the finite element
model at the saddle and crown chord centerlines at the maximum
moment are presented in Figs. 6.47 and 6.48. Comparison of the
radial deflections at the saddle centerline of the 8=0.67 [Fig.
6.44] and the B=1.00 case shows that the displacements on the
tension side of the joint in the 8=1.00 case are almost 4 times
that of the B=0.67 case. In addition the points of maximum
deflection are within the joint proper which is not true of the

B=0.67 case. This indicates a large change of curvature in the



273

2500 1 o
& @«-——-—*\
o T *
2000 t N
1500 o /
MOMENT #
(KIP-IN) /
1000 1 6_@- * Test 124
()
/ O FEM
0 < + + —t
0 1 2 3 4 5 6 7 8 9
ROTATION (DEG.)

Fig. 6.46 Predicted and Measured IPB Moment vs. Rotation Curves for
3=1.00 Joint



274

o ' TENSION
04 P w SIDE
n/ : \. :
02 o \ ' —— Joint Proper
- 3
X DEFL. 00 & 4 —
L b \ 3
W) o2 E 5 /'/
04 COMPRESSION ' : "
SDE 3 n/
-0.6 4 rgw
l 1
08t : ’
0 20 40 60 80 100 120 140
2 COORD ()

Fig. 6.47 Calculated Displacements of Chord Saddle Centertine for 3=1.00

Joint with IPB
0.5 - .
: TEKSION
04 ':’.'\. SDE
COMPRESSION f: o
021 SIDE N
g /5 ™~
Y DEFL. l\,\ o B
() 00 N —pf B-rm
-] : /ll
-02 :
. T
0471 \ ﬁf{! 1— Joint Proper
-06 E\n' : f
0 20 40 60 80 100 120 140
2 COORD (N)

Fig. 6.48 Calculated Displacements of Chord Crown Centerline for B=1.00
Joint with IPB



275

chord wall and a large influence of stresses along the length of
the chord. The radial displacements of the crown centerline of
the chord, shown in Fig. 6.48, illustrates a slightly different
behavior than the smaller B ratios. The deflections at the
tension and compression crowns are of similar magnitudes, which
indicates a smaller differential in the stiffness of the
compression and tension sides of the joint than with smaller B
ratios.

The increase in the stiffness of the compression crown
relative to the tension crown may be a result of the increased
curvature in the joint region at the saddle centerline. This
increase in curvature increases the longitudinal tension stresses
in the joint area, which postpones the buckling in the chord wall

thus increasing the stiffness of the compression crown.

6.7.4 Prediction of IPB Strength. Comparison of the
ultimate strength of Tests 17, 124, gnd I43 with the values
predicted by the strength equations presented in 15th edition of
the API Design Recommendations showed that the predicted values
were conservative in all cases and very conservative for the
Tests 17 and I24 (B=0.67 and 1.00 respectively). The ratios of
test to predicted strength taken from Table 5.9 are 1.21, 1.63,
and 1.66 for Tests I43, 17, and I24 (B=0.35, 0.67, and 1.00)
respectively. Since this empirical formula is not an accurate

predictor for the tests run in this research, the analytical
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model was used to predict the IPB strength and the ratios of test
to predicted strength values are 1.01, 0.98, and 0.93 for the
Tests I43, I7, and I24 respectively. Though the predictions are
slightly unconservative, they are sufficiently accurate. However,
it is difficult to design using a finite element program.
Therefore, a new empirical formula is needed to predict IPB
strength in DT joints.

As stated earlier, the API recommended design formula was
derived from T data but in the absence of any DT data was also
applied to DT joints. In addition, the equation does not include
the effect of the chord thickness ratio which should have an
effect on the IPB strength. The IPB strength equation developed
by Billington contains the Y effect but was not fit to DT data.
With the IPB DT data recently produced, Yura expanded

Billington's equation to DT joints as follows,
M, = (FyTz/sin6)6BYO'5 {mean eq.} (6.2)

Fig. 6.49 shows a plot of the experimental along with the
analytical results produced in this study with Yura's proposed
equation (6.2). Comparison of the experimental and the analytical
data to Yura's equation shows that the equation fits the present
data slightly better than the analytical model. However, as the

database grows the distribution of points may change.
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6.7.5 Y Effect on IPB Strength. The effect of the chord
thickness ratio on the IPB strength was investigated using the
finite element model by changing the thickness of the chord on
the g = 0.35, 0.67 and 1.00 joint meshes. Failure of the joint
section was insured by defining the branch material as elastic
only. In the previously run cases the Y ratio was 25 with a
chord thickness of approximately 0.32 in. The new cases
possessed a chord thickness of 0.535 in. and Y ratio of
approximately 15.

The purpose of this analysis was to determine the effect
of the chord thickness on the IPB strength. First the results
were plotted using the common nondimensionalization of FyTZd as
shown in Fig. 6.50. This plot indicates a rather significant
scatter in the data but more importantly it should be noted that
the data point from the analyses on the joints with a Y ratio of
15 (higher thickness) fall below those from the analyses using a
Y ratio of 25 (lower thickness). Thus, the use of the chord
thickness squared in the IPB strength equation overestimates the
effect of the chord thickness. Since the only variable changed
in the analyses was the chord thickness, the ratio of the IPB
strength. Ratioing the ultimate IPB strengths from the analyses
showed that the IPB strength varied with T raised to the 1.5,
1.2, and 1.2 power for B = 0.35, 0.67, and 1.00 respectively.

This explains the increase in reliability when the Y ratio is
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included in the IPB strength equation, as shown in Fig. 6.51
which is the same as Fig. 6.49 with the three FEM results using a
Y ratio of 15. The Y ratio is defined as (D/2T); therefore, the
addition of the square root of this term to the strength equation
effectively reduces the power of the chord thickness, T, from 2
to 1.5. As a result the strength equation is very accurate for B
= 0.35 as shown in Fig. 6.51.

Comparison of the results of the analyses at the three
different B ratios indicates that the effect of the chord
thickness decreases as B increases. This can be explained by the
increasing role of membrane action in the chord wall as B
increases. Because plate action is mainly bending of the chord
wall then the increase in strength will be a function of T2;
however, membrane action is mainly axial in nature, so the
increase in strength will vary as a linear function of T. The
use of Y0-5 which effectively reduces the power of T to 1.5 seems
to be a good approximation of actual behavior. In Fig. 6.51, the
analyses points fall well within the experimental scatter and
Billington's equation falls through the mean of the data so it is
recommended for use in IPB strength design. The increase in
accuracy that would result from varying the exponent of Y with

will not warrant the increase in complexity of the equation:
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6.8 Interaction Effects

One of the main purposes for developing an analytical
model was to iInvestigate interaction behavior. The model is
applied to two cases here. The first is the branch axial
compression and IPB interaction (AI) on a 8=0.67 joint. In this
case, three runs were completed to study the interaction behavior
over a range of axial loads. As a part of this case, an
additional run is made using a proportional type loading to
determine whether the load path has an effect on the interaction
behavior. The second case consists of one run on a B=0.35 model
subjected to IPB and OPB loads. This run was set to simulate Test
I048 which showed a significant increase in OPB strength when
approximately 35% of the IPBultimate strength was applied. As
part of the second case, the simple OPB loading case was run to
determine a reference OPB ultimate strength.

6.8.1 AI Interaction - B=0.67. To reduce computation

costs, the "coarse" mesh was used for all runs in this case. As
in the experiment, the load was applied in two steps, first the
axial load was applied and held constant, then the model was
loaded to failure in IPB. The axial load was applied using load
control so the deflections at the end of the branch would not be
restricted. The magnitude of the axial reference load was taken

from the result of the "coarse" mesh axial load run (92.3 kips).
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The IPB load was applied by displacement control, with the
displacements applied to the end of the chord.

6.8.1.1 Prediction of Interaction Strength. In addition
to the axial compression and IPB reference cases which have
already been documented, three additional runs were performed
with constant axial loads set at 25%, 50% and 75% of the axial
reference load. For future reference, the runs will be referred
to as AI25, AI50, and AI75 respectively. The moment-rotation
curves produced by these runs are presented along with the IPB
reference curve in Fig. 6.52. The IPB reference run as well as
run AI25 did not reach the ultimate capacity of the model. In the
IPB reference case, the moment only increased 2.74% in the last
0.66° rotation. Because the tangent slope is relatively small at
the last point, the moment at this point will be taken as a
maximum. For the AI25 run, the curve did not reach the 6°
rotation attained by the reference test; therefore, for
comparison, the curve was extrapolated to 6° rotation to
determine a maximum moment. The resulting moment is 1267 kip-in.
The nondimensional strengths are shown in Table 6.4, and are
plotted along with both the Texas DT and Delft T data in Fig.
6.53. The distances from the origin, L1, which is a measure of
the interaction strength introduced in Chapter 5, is also
included in Table 6.4. Comparison of the analytical and

experimental data shows that the analytical data follows the
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Table 6.4 Nondimensionalized strengths of interaction tests

Run P M(IPB)

(kips) (kip-in.)
Axial 92.3 0
IPB 10.3 1314
A125 23.1 1267
A150 46.2 1073
A150 38.9 1140
(Prop.)

0.96

0.96

284
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shape of the experimental data. Thus, this analytical model can
be used to produce interaction data with confidence.

6.8.1.2 Effect of Loading Path. Stol et al. concluded
that tests on tee joints using proportional loadings produced
lower ultimate strengths than corresponding tests using non-
proportional loadings [30]. In addition, it was stated that tests
using nonproportional loadings significantly overestimate
ultimate strengths. This is a very serious conclusion considering
that almost all of the interaction tests completed in this
research used the nonproportional type loadings.

Comparison of the Delft T data (proportional loading) and
the Texas DT (nonproportional loading) data in Chapter 4 showed
no significant differences. However, it could be argued that this
is a result of a combination of joint geometry and loading
differences. Hoadley, investigated the influence of the load path
by running a three dimensional interaction test using both
proportional (AIO19) and nonproportional (AIO18) loading
techniques. The results of the two tests are shown in Fig. 6.54.
The distances from the origin, L1, which is a measure of the
interaction strength introduced in Chapter 5, are 0.86 and 0.82
for Tests AI018 and AIO19 respectively. Hoadley concluded that
the similarity of the two L1 values shows that the loading path
has no significant influence on the interaction ultimate

Strength.
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To check Hoadley's conclusion using an analytical model
which eliminates any questions of experimental scatter, the AI50
run was repeated using a proportional type loading. In this run,
the load was applied in one step with axial load and IPB moment
applied simultaneously instead of in two steps as done
previously. As with all other runs, the actual loading increments
were automatically chosen by the program. The load paths of the
two runs are presented in Fig. 6.55. From the curves shown in
Fig. 6.55, it can be seen that the proportional loading was not
exactly proportional, as it did not follow a 45° line on the
interaction diagram. This is a result of the use of a combination
of load and displacement control. However, the loading path does
represent quite a different load path to failure than the step
Wwise path; therefore, it is acceptable for the stated purpose. In
addition, the use of a combination of load and displacement
control resulted in the IPB loading direction reaching ultimate
before the axial direction, thus the nondimensional strength
values are not identical. But, the proximity of the points to
each other and the fact that the distance from the origin to the
maximum points, L1, for both points is the same, as shown in
Table 6.4, supports Hoadley's conclusion that the load path has

no effect on the interaction ultimate strength
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6.8.2 I0 Interaction ~ B=0.35.

6.8.2.1 OPB Reference. Before the IO interaction problem
could be addressed, an analytical reference value for OPB had to
be obtained. This case was set up to simulate the results of Test
042, so the load was applied in two steps. First a small amount
of axial load was applied using load control, then the joint was
loaded to failure in OPB using displacement control. Applying the
OPB displacements was more complicated than the IPB
displacements. Since only one end of the chord was modeled, the
displacements applied to the other end of the chord had to be
transferred to the joint area. The displacements around the chord
in the joint area could not be specified because local
deformations would effect these values. Therefore, it was assumed
that the chord stiffness was large enough to preclude any bending
of the chord and the centerline of the chord at the crown would
remain straight. Based on this assumption, equal displacements
were applied along the end of the chord and at the crown
centerline of the chord at the line of symmetry, as shown in Fig.
6.56.

The moment-rotation curves produced by Test 042 and the
finite element model are shown in Fig. 6.57. Comparison of the
two curves indicates that the finite element model simulates the
experimental behavior very well. In this case, the useful

deflection limit was reached by the finite element model at a
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moment of 130 kip—in. This value compares with a maximum
experimental value of 118 kip—in.

As with the other B=0.35 tests, strain gages were placed
along the outside surface of the chord to measure the
circumferential strain at different positions along the chord as
shown in Fig. 6.58. A comparison of the strains predicted by the
analytical model and measured during Test O42 at the tension and
compression saddle chord centerline at the maximum moment point
are shown in Fig. 6.59 and 6.60 respectively. These figures show
that the finite element model simulates the strains well except
near the end of the chord. This discrepancy at the end of the
chord is probably due to the presence of a collar used to apply
the OPB load in Test 042 which was not included in the finite
element model. In addition, the progression of the strains with
increasing load both measured and calculated at the tension and
compression saddle chord centerlines are shown for comparison in
Figs. 6.61 and 6.62.

6.8.2.2 I0 Interaction. Because of the lack of symmetry
in the IO interaction loading a full 1/2 joint model was
required. Due to the size of the model, only one case was run.
The case chosen was a replicate of Test I048 which indicated a
20% increase in OPB strength with approximately 34% of the
ultimate IPB moment applied. In order to allow for free

displacement of the chord, four additional stiff flange elements



293

< 70 .1
685"
¢
53"
> o
< "
¢

-»| 5.6 "

Branch

Fig.6.58 Postions of Strain Gages along Tension
and Compression Saddle on Specimen 042



. 294

1000 T -
sool i/ & Test 042
COMPRESSION, | /] e B- FEM
4001 /;
/
2001
MICROSTRAMN ;
(H/M) 0 : \ O
Temsion 0 | e it P O__'_"_:‘O’/’/_ﬁ
-400 1 /
70 80 90 100 110 120 120 140

Fig. 6.59 Measured and Calculated Circumferential Strains at the Tension
Chord Saddle Centerline for Test 042 at Ultimate Moment

200 ¢ ;
MICROSTRAIN < oint Proper
(/1) 1 + ¢ o HEI’E-:“*":—"—:E'
“ TEST 042
& FEM
80 %0 100 110 120 130 140
Z COORD (IN)

Fig. 6.60 Measured and Calculated Circumferential Strains at the
Compression Chord Saddle Centerline for Test 042 at Ultimate

Moment



295

1000 T
800 1 -
COMPRESSION O Mom =68 K-in.
o0 B Mom =107 K-in.
400 T Mom.=118 K-in.
200 1
MICROSTRAN | i
(“/m f i s, — =~
2004 | \E—-— o
“¢——— Joint Proper
TERSION :
70 80 90 100 110 120 130 140
Z COORD (IN)
a.) Measured
8007 . _
600 1 /_ © Mom.=63 K-in.
COMPRESSION I/ B Mom.=111 K-in.
400 / O Mom = 130K-in,
o:
200 --0/:/1\..
MICROSTRAN |
(H/0) : S
200 c:>--""""'i_,_.__.__---—-—-"“"‘u
E g O
-400 J ——— Joint Proper D/
70 80 90 100 110 120 130 140

Z COORD ()
b.) Calculated

Fig. 6.61 Measured and Calculated Circumferential Strains at the Tension
Chord Saddle Centerline for Test 042



296

N } } y b eeeates s

(“"“m 0 H /D

-200 ¢ !

o
400
-600 5 -
\ O Mom.=68 K-in.

TENSION \ B Mom.=107 K-in.

-1eeo T O- Mom.=118 K-in.

-1600
70 80 90 100 110 120 120 140
2 COORD (1)
a.) Measured
200 T :
MICROSTRAN 4 Joint Proper o
(/1) 0 : ¢ $ + mﬁﬁi
200 1 |
~400 15
600 + \
TENSW .(:.\. )
00| | Mom =63 K~in.
: B Mom.=111 K~in,
1000 1 T Mom.= 130K-in.
-1200 1
-1400 1
70 80 90 100 110 120 130 140
Z COORD ()

b.) Calculated

Fig. 6.62 Measured and Calculated Circumferential Strains at the
Compression Chord Saddle Centerline for Test 042



297

were added to the model at the top of the branch, as shown in
Fig. 6.63 so the branch could pivot about it true center. This is
important because the displacement of the chord does not always
follow the line of action of the force [15].

As in the actual test, a small axial load was applied to
the joint before the joint was loaded in bending and held
constant during the analysis. To allow rotation at the end of the
chord, the axial load was applied by controlling the magnitude of
concentrated lcads at the end of the branch. Then the IPB moment
was applied using load control with equivalent concentrated 1oads
applied to the end of the chord similar to the loading used in
the experiment. Finally, the OPB load was applied using
displacement control to failure as in the reference run.

The OPB moment-rotation curves obtained from the reference
and the interaction runs are shown in Fig. 6.64. The maximum
moment achieved by the interaction model was 117 kip-in. which is
10% less than the reference moment and is 16% less than the
ultimate moment achieved by Test I048. Thus,the finite element
model shows that there is a small reduction in OPB capacity when
a significant (38%) IPB moment is present whereas an increase in
OPB strength was observed experimentally.

Since the analytical model has demonstrated good
reliability for a wide variety of problems, it appears that the

experimental result should be viewed with caution. However, both
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Tests I048 and I049 showed an increase in OPB strength (209 and
7% respectively), thus some experimental error must be found
before the experimental results can be dismissed. This error is
most probably a restraint in the system which resists the OPB
shear in combination with the specimen resulting in an
overestimation of joint strength. In addition, the restraint must
have an increased effect when IPB displacements are applied to
explain the increased experimental OPB strength with IPB moment.
This restraint may be provided by the anti-twist mechanism shown
in Fig. 2.4, which is used in the test setup to prevent rotation
of the chord about the branch centerline. The restraint of the
anti~-twist mechanism was demonstrated during a series of elastic
loadings to determine strain concentration factors [32]. In
addition, since the anti-twist mechanism is constructed of
relatively thin steel plate and deflected under it's own weight,
any IPB deflection would cause a twisting in the joints of the
mechanism and thus increase its restraint as IPB moment 1is
applied. This theory explains the discrepancy between the

analytical and experimental results rather well but should be

verified by further experimentation.

6.9 Summary
The purpose of this chapter was to find an analytical

model which could be used to investigate the ultimate strength
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behavior of tubular joints including interaction effects
economically, and then to apply this model to several topics
raised by experimental results. A finite element model using the
ABAQUS finite element program was created and used to predict the
ultimate strength behavior of DT joints with 8 ratios of 0.35,
0.67 and 1.00 subjected to branch tension and compression, IPB,
OPB and interaction loadings. The results of preliminary
verification runs showed that the proposed model produced
reasonable predictions of the ultimate strength of tubular
Joints, modeled the joint behavior well, and required very little
computation time compared to some other finite element models.

When used to investigate the influence of the gap size on
the axial compression capacity of a DT joint with a B ratio close
to 1.0, the model predicted the ultimate strength of the joints
very accurately. The results of the analytical work support the
theory that the compression load is resisted almost exclusively
by membrane action in the gap area of the joint, and that the
ultimate load of the joint could be predicted by treating the gap
as a column. However, further work is needed to develop an
effective width of the gap and the exact influence of the gap
dimensions over a wider range of values.

The proposed finite element model was alsc used to predict
the IPB strength of the DT joints tested in this research.

Comparisons of predicted and test ultimate strengths showed that
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the model produced good predictions of IPB ultimate strength. An
investigation of the effect of the chord thickness ratio was
attempted using the analytical model; however, the results were
very different than experimental results. The explanation for
this discrepancy is that the model assumes no transverse shear in
the chord or branch wall. While this assumption may be acceptable
for higher Y values, it seems to cause an underestimation of
strength for joints with relatively thick chord walls.

The ultimate strength of B8=0.67 DT tubular joints
subjected to combinations of axial compression and IPB were
predicted using the proposed finite element model. The results of
the interaction runs compared well with the experimental results.
Thus, the model can be used as a tool for investigating
interaction behavior. In addition to developing interaction data,
two runs were performed to determine what influence, if any, that
the loading path has on the interactive ultimate strength of
tubular joints. Comparison of two replicate runs with different
load paths showed that the load path had no significant effect on
the interactive ultimate strength of the joint.

Finally, the finite element model was used to determine if
the apparent increase in OPB strength with application of a small
IPB moment shown by some of the experimental data on B=0.35

Joints was aresult of experimental scatter. The OPB reference
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run agreed well with the experimental result. But, the IO
interaction solution contradicted the results of the experiments,
and showed a decrease in OPB strength with the application of IPB
moment. The discrepancy between the analytical and experimental
results can be explained by an unaccounted for restraint supplied
by the anti-twist mechanism. Because the analytical model
provided reliable results in a wide variety of applications, and
because the analytical result agrees with a series of tests
performed at Delft, the increase in OPB strength shown by
experimentation should not be accounted for in the interaction
equations used for design. Reanalysis of the recommendations of
interaction equations for use in design made in Chapter 5 shows
that Hoadley's equation which was recommended does not account
for this apparent increase and fits the Delft experimental result
well. Thus, the analytical result will not effect the

recommendation of the interaction equation.



CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Experimental Conclusions

7.1.1 B Effect on Interaction. Comparison of the DT

interaction data for the B=1.0, 0.35 and the 8=0.67 interaction
data reported by Hoadley indicates that the B ratio of a jeint
has a significant effect on its interaction behavior. In
addition, the interaction equation recommended in the 15th
edition of API RP 2A, the arcsine equation, produced
unconservative strength predictions for several of the tests.
Hoadley's equation provided a lower bound to the data but does
not account for the effect of the B ratio on the interaction.
When the DT joint interaction results produced at Texas were
compared to the results of a series of interaction tests on T
joints published by TNO-IBBC near Delft, the interaction of the T
and DT joint were found to be different. However, because of the
variations in the nondimensionalized strength of the reference
values between the T and DT joints and because the differences in
the interactions were not large, it was determined that DT and T
joints could be analyzed using one interaction equation.
Therefore, a new interaction equation which accounts for the 8
ratio was developed using the Texas DT interaction data. The

following interaction equation was developed as a lower bound to

303
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the data:
Y z
P/Py + (M/My)ops *+ (M/My)1pp = 1.0
where, Y = 2.35 - 1.35p0.63

3.448 + 0.01875-6

N
Il

7.1.2 Evaluation of Proposed Equation. The proposed

interaction equation; Hoadley's equation, which is recommended
for design in the UEG design guide [34]; and the arecsine
equation, which is recommended for design in API publication RP
2A, were evaluated for accuracy using both the Texas DT Jjoint and
Delft T joint interaction data. The data base included 65 test
results. When the ultimate strengths in the interaction tests
were nondimensionalized by the experimental reference values, the
proposed interaction equation predictions proved to be the most
accurate of the three. However, the proposed equation produced
several unconservative predictions for the 8=0.35 T joint test
series. The largest improvement in accuracy provided by the
proposed equation was for the B=1.00 DT joint test series.

Since the designer does not have access to the
ekperimental reference values and must approximate them with the
use of ultimate strength formulas, the'ultimate strengths in the
interaction tests were also nondimensionalized by the reference
values calculated using the recommended ultimate strength

formulas given in the 15th edition of the API RP 2A. When the
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calculated reference values were used, the proposed equation
again provided the most accurate predictions for the test
results, but the accuracy of the three equations was very
similar. For the Delft T joint tests alone, the arcsine equation
provided a slightly better fit to the data than the other
equations. The proposed equation provided significantly better
predictions of the ultimate strength for the B=1.0 DT joint
tests.

In the evaluation of the interaction equations, it was
shown that the ultimate strength predictions from API RP 2A for
IPB strength of the $=0.67 and 8=1.0 DT joints were
overconservative compared to the axial and OPB predictions, and
all were unconservative for the 8=0.68 Y=15 T joints loaded in
IPB and OPB. This variation in accuracy of the ultimate strength
equations skewed the data and increased the standard deviations
of the test-to-prediction values for the interaction data
significantly. The scatter band of the data produced by this
variation in the ultimate strength predictions was much larger
than the variation in the three interaction equations; therefore,
the accuracy of the interaction formulations can be most
significantly improved by accurate prediction of the reference

ultimate strengths.

7.1.3 Design Recommendations. In order to make

recommendations for design, resistance factors were calculated
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for the three interaction equations based on the tests avallable.
These resistance factors were then used to calculate the relative
chord thicknesses which would be required by each equation for a
given joint. The results of the evaluation showed that the
proposed interaction equation produced the most economical design
but the only significant savings occurred in 8=1.0 joints.
Because B=1.0 joints make up only a small portion of the DT joint
population used in practice, use of the proposed interaction
equation will not have a significant effect on the overall
structure. Therefore, since the three interaction equations
produced similar design results, a recommendation for design was
made based on the simplicity of the interactive equation. Because
of its simplicity, Hoadley's equation i1s recommended for design
at this time. It should be noted that tension loadings were not
included in this study. Because the ultimate strength and
stiffness of the DT joint is higher in compression than in
tension, it is felt that joints with branch axial tension can be
designed safely using the recommended interaction equation.

In the course of the analysis of the three interaction
equations, it was found that when the interaction equations were
applied to the interactive data nondimensionalized by the
experimental reference values they required smaller chord

thicknesses than when applied to the interactive data



307

nondimensionalized by the API ultimate strength predictions for
the same level of safety. This indicates that some of the
conservatism which is present in the ultimate strength equations,
especially for DT joints in IPB, can be eliminated with no loss
in safety in the interactive design.

Comparison of replicate reference tests for axial
compression and OPB with the B=1.0 joints showed significant
differences in ultimate loads and joint behavior. A new parameter
was found which has a significant effect on the behavior of Bg=1.0
joints. This parameter is the distance between the weld toes at
the saddle points, or the gap. Comparison of the gap size and
experimental compressive capacity for tests A21, A22, 028, 023
showed that when the gap is considered to behave as a column the
compressive capacity follows the SSRC inelastic buckling curve
well. This behavior was alsoc shown when Tests A21 and A22 were
modelled using the finite element method. Based on the analysis
of the gap influence, and because measurements of the g=1.0
specimens showed a wide variation in the gap distance on
nominally identical joints, it is recommended that an additional
factor of safety be applied to the ultimate strength equations

for B=1.0 specimens in compression or OPB.
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7.2 Analytical Conclusions.

7.2.1 Verification of Simple Finite Elemental Model.

Because the experimental data raised several questions which
cannot be answered with confidence using the data available, and
because a balance between the analytical and experimental
approach to the investigation of tubular joints is needed, a
simplified finite element model using the ABAQUS finite element
program was developed and used to study the ultimate strength
behavior of tubular joints. To minimize the cost of computation,
simple 4-noded shell elements which neglect transverse shear were
used in the model. In addition, the weld was not included in the
model. However, both material and geometric nonlinearity was
included in the model. The results of several validation runs
and comparison to other published finite element solutions showed
that the proposed model produced reasonably accurate predictions
of ultimate strength and was very economical.

7.2.2 Gap Effect on g8 = 1.0 in Compression. The finite

element model was used to investigate several aspects of tubular
joint behavior. First, the effect of the gap size on compression
strength of a B = 1.00 joint was studied. The results of the
finite element study which indicated that the gap area of the
joint can be analyzed as a column, agreed well with the

experimental results.
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7.2.3 Y Effect in IPB. Because the ultimate strength of

Tests I7, I24 and I43 did not agree with the API strength
equations and very little DT bending data is avallable, each test
was modeled using the finite element analysis. The results of
the analyses agreed well with the experiments and showed that the
Billington equation modified by Yura for DT joints provides a
much better prediction of IPB strength than the API equations.

7.2.4 Interaction Analysis. The finite element model was

extended for use in the production of AI interaction data for a B
= 0.67 DT joint. When plotted with the experimental data, the
analytical data falls along the outside of the band of
experimental data indicating that the finite element predictions
are accurate and slightly conservative.

Since the model proved to be applicable to interaction
analysis, the case of I0 interaction for a B =0.35 DT joint was
analyzed. This case was chosen because the experimental results
of this research showed an increase in the OPB strength with the
addition of IPB while the results of the TNO research indicated a
decrease in strength. The finite element solution showed that
the OPB strength of the joint decreased by approximately 10% when
approximately 35% of the ultimate IPB moment is applied. This
agrees with the TNO results. The overprediction of IO strength

which occurred in this (Texas) research was attributed to an
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unaccounted for restraint in the experimental setup provided by

the anti-twist mechanism.

7.3 Summary

The results of 27 ultimate strength and interaction tests
on DT tubular joints with B ratios of 1.0 and 0.35 were
presented.

The results of this research indicates that while the
interaction curves may be different for joints with different B
ratios and for joints with T or DT configurations, the
differences in the resulting joint design are minimal. Thus,
further experimental research aimed at developing a series of
interaction curves is not recommended. Research time and effort
would be more effective if directed toward more accurate
prediction of the ultimate strength of tubular joints in bending.
The results of the analytical study showed that a simplified
analytical model using the finite element method could be used to
study ultimate strength behavior in tubular joints. It is hoped
that the finite element model developed in this work will be
further refined and utilized, as it shows promise as a widely
applicable and economical method of analyzing the ultimate

strength behavior of tubular joints.



APPENDTIX A

TWO DIMENSIONAL INTERACTION FORMULAE

In order to better understand the data, curves were
developed to fit each individual 2-D interaction case. From this
point, a three dimensional interaction formula was developed.
These 2-D interactions help to determine the loss in accuracy of
the formula which occurs when the 2-D cases are lumped into one
three dimensional equation.

Axial Compression with OPB: The interaction between axial

compression and OPB for all three g ratios used in this project
are shown in Fig.A.1. The axial and bending terms are normalized
by experimental reference values given in Table 4.2. In the OPB
reference tests, a small axial load was required to hold the
Specimen in the test frame, therefore the data points from Tests
023, 028, 08,and 042 do not fall directly on the bending axis.
But, for clarity the axial loads are ignored in the calculation
of the OPB reference tests.

Because using a linear interaction as dictated by Test
AO33 would produce overconservative predictions for the B=0.67
and 0.35 joints, different interaction equations for each B ratio
more closely represent the behavior of the joints. The
interaction equations can be written in the general form shown

below,
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P/p X + (M/My)gpgt = 1-0 (A.1)

assuming a nonlinear effect for both axial and bending terms. The
values of the exponents were determined by varying X and Y to
achieve a lower bound to the data from each B ratio. The
resulting values of X and Y are shown in Table A.1 and the
resulting equations are plotted in Fig. A.t1.

Axial Compression with IPB: The interaction between axial

compression and IPB for B = 1.0, 0.67 and 0.35 is shown in Fig.
A.2. The axial and IPB terms are normalized by the experimental
values shown in Table 4.2 As in the AO interaction, the axial
loads are ignored in the calculation of the IPB reference tests.
Using the same general equation as in the AQ interaction
the Al interaction can be written as,
P/P X + (M/M) gpp? = 1.0 (4.2)
As with the AO interaction, the values of the exponents were
determined by varying X and Z to achieve a lower bound to the
data from each B ratio. The resulting values of X and Z are shown
in Table A.1 and the resulting equations are plotted in Fig.A.2.

IPB with OPB: The results of interaction tests between IPB

and OPB are plotted in Fig.A.3. In each of these tests a small
axial load was present in the joint; however, because this is a
two dimensional analysis, the axial loads are ignored in the

development of the interaction equation.
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TABLE A.1 EXPONENTS FOR TWO DIMENSIONAL INTERACTIONS

B8 Exponent AQ AT I0
X 1.00 1.00 ———
1.00 Y 1.00 ———— 1.10
Z —— - 4.60 2.50
X 1.00 1.00 ———
0.67 Y 1.35 ———— 1.00
Z - 2.40 2.50
X 2.30 1.00 ———-
0.35 Y 1.00 ———— 1.00
Z ——— 4.00 15.00

(PP X+ (/M) Epg + (MM Epg = 1.0

P/Pu

0.0 0.2 0.4 0.6 0.8 1.0 1.2
M/Mu(OPB)

Fig. A1 2-D AO Interaction
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Using the same general equation as with the A0, and AI,

the failure line can be defined by the following equation;
(M/My)opgY + (M/My)pg2 = 1.0 (A.3)

As before, the values of the exponents was determined by varying
Y and Z to achieve a lower bound to the data from each B ratio.
The increase in OPB capacity shown by the B8=0.35 tests was
neglected so, an upper bound was set at (M/My)gpg =1:0 for the
B=0.35 interaction.The resulting values of Y and Z are shown in

Tabled A.1 and the resulting equations are plotted in Fig. A.3.



P/Pu

M/Mu
(OPB)

0.8 1
0.6 T
04T
, & ;5 067
0.2 T
EI 3=0.35
0.0 t { } {

0.0 0.2 0.4 0.6 0.8 1.0
M/Mu(IPB)

Fig. A.2 2-D Al Interaction

1.2 O

1.0

0.6 ] B=0.67
047
“1(m 8=1.0
1| & B=0.67
0.2
O B=0.35
0.0 + ; + t

0.0 0.2 0.4 0.6 0.8 1.0
M/Mu(IPB)

Fig. A.3 2-D IO Interaction

B3=0.35
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APPENDTIX B
TABULATED TEST DATA
DATA REDUCTION DEFINITIONS
Ay, Aj, = Upper and Lower Axial Loads Respectively (Kips)
L = Moment Arm of Specimen (in.), given in Appendix C
Mipg = IPB Moment (Kip-in.)

Mopg = OPB Moment (Kip-in.)

R = IPB Lateral Load (Kips)
Q = OPB Lateral Load (Kips)
81pg = IPB Branch Rotation (Deg.)
8op = OPB Branch Rotation (Deg.)
Arpg = IPB Lateral Deflection (in.)
Aopg = OPB Lateral Deflection (in.)
DATA REDUCTION CALCULATIONS
Mipg = (R /7 2) x L x cos (81pR)
Mopg = (Q 7/ 2) x L x cos (80ppR)

P=A Moment = [ ( A + Ay ) / 2] x A

i

eIPB Arecsin (AI /L)

Arecsin (Ag /7 L)

SopB
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TABLE B.1 TEST A22

LOAD UPPER UPPER LOWER LOWER AVG.
STAGE AXTAL DEFL. AXTAL DEFL. ‘DEFL.
AU AL

(KiPS) CINL) (KiPS) (IN.) CIN.D

0 .0 .000 .0 .000 .000

1 18.5 -.028 20.5 . 100 .036

2 38.2 -.033 39.9 . 135 .061

3 57.7 -.021 58.9 153 .066

4 76.3 -.018 78.1 181 .082

5 94.7 -.021 96.7 .214 .097

6 114.0 -.027 116.0 .258 .1186

7 132.8 -.038 133.8 .306 . 134

8 151.4 -.021 1561.5 .3r719 179

9 147 .7 098 147.6 477 .287

10 141.9 .319 141.9 .606 .463
11 139.9 .646 139.6 .660 .653
12 140.2 .754 139.6 7086 .730
13 141.2 .830 140.4 .768 .849
14 70.9 .786 72.5 .723 .755
15 2.1 .670 3.0 .581 .626

TABLE B.2 TEST A51

LOAD UPPER UPPER LOWER LOWER AVG.
STAGE AXTAL DEFL . AX AL DEFL. DEFL.
(KIPS) CIN.) (KIPS) CIN.) CIN.)

0 .0 .000 .0 .000 .000

1 4.7 .000 6.6 019 .010

2 12.7 041 14.6 .025 .033

3 27.6 .093 29.5 071 .082

4 41.9 . 136 43.6 . 146 . 141

5 48.9 .154 51.4 .223 . 189

6 54.5 .186 57.0 .294 .240

7 62.1 .268 64.5 .393 .331

8 66 .8 .392 69.3 .499 .446

9 68.5 .5695% 71.0 .592 .594

10 67.7 .806 70.5 .633 . 720
11 66.6 1.163 68.8 . 7569 . .961
12 36.1 1.065 37.4 .546 .806
13 2.2 . 827 3.4 .327 .577



TABLE B.3 TEST A4O

LOAD
STAGE

[ S—y

- O W NS WN -0

UPPER
AX1AL
AU

(KIPS)

TABLE B.4 TEST 028

LOAD LATERAL

STAGE

OO N DWW N -

LOAD
Q

(KIPS)

10.
20.
30.
35.
40.
45,

49.
AT .
45,
19.

. P
C O DL == OWOO -0 O

UPPER

AXIAL
AU

14.
26.
31.
38.
41.
39.
39.
17 .

(KIPS)

W W WWWwWwWWwWWwoomWow
P T T Y
WO L oW WO

W OO ~NWWwW®O-—= oo

LOWER
AXTAL
AL

(KIPS)

NN WANWWLWNWE LW

UPPER
DEFL.

CIN.)

.000
.168
.231
.330
.383
.034
.329
.806
1.206
1.044
.850

oPB
DEFL.

(IN.)

.000
.016
.087
.186
.295
.361
.435
.529
T4
.949
1.186
1.648
1.363
1114

LOWER
AX 1AL
AL
(KIPS)

16.
27 .
32.
39.

42 .

40.

39.
18.

BRANCH
MOMENT

(K-IN.)

48
296
588
878
1033
1173
1322
1468
1466
1389
1323

574

LOWER
DEFL.
CIN.)
.0 .000
.8 -.136
2 -.059
1 .044
5 147
9 .773
0 .902
2 .983
8 1.110
8 .822
.2 .553
P-DELTA or8
MOMENT ROTAT
(K-1N.)  (DEG
0
0
1
2
3
4
5
6
8
10
13 1
18 1
15 1
12 1

318

AVG.
DEFL .
CIN.)

.000
.016
.086
187
.265
404
616
.895
1.158
.933
.702
TOTAL
LON OoPB
MOMENT

L) {K-1N_.)

.00 1

.02 48

.08 297

.18 590

.29 881

.35 1037

.43 1178

.52 1327

.10 1476

.83 1465

.16 1402

.61 1341

.33 589

.09 35
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TABLE B.7 TEST AO031

LOoAD
STAGE

- T R)

13
14
15
16
17
18
19
20

LATERAL
LOAD

[s]
{(KiPS)

.0
1.7
10.2
20.4
24.3
25.3
25.1
25.2
25.9
26.6
27.3
27.6
27.0
13.7

.3

UPPER
BRANCH
AU
(KIPS)

.0
41,8
41.3
414
.
4i.0
40.9
40.8
40.5
40.5
40.4
40.4
40.4
40.3
40.3

.3

TABLE B.8 TEST AO032

LOAD
STAGE

LRI T S

LATERAL
LOAD

Q
(KI1PS)

UPPER
AXTAL
AU
(KIPS)

18.7
56.5
B4.5
84.2
841
84.0
84.0
83.9
83.6
83.6
83.0
83.14
83.2
83.1
82.9

-1

TABLE B.9 TEST AO033

LOAD
STAGE

WO ~NOh RN O

UPPER
AXITAL

(K1PS)

UPPER LOWER
DEFL. AX1AL

AL
tiN.) {(KiPS)

.000 .0
.020 7.8
.019 7.8
.08 7.9
.026 21.5
.063 57.5
.101 87.9
.129 107.6
143 118.4
.323 108.1
.4869 104.4

. 439 38.6
.367 6.2
.370 7.6

LOWER

BRANCH .

AL
(KIPS)

.0
43.7
43.7
43.7
43.7
43.8
43.9
43.9
44,1
442
44.2
44.3
44.4
44.4
44.5

4.7

LOWER
AXIAL
AL
{(KIPS)

21.1
59.0
86.7
86.7
B7.7
87.8
87.8
87.8
87.8
87.8
88.2
88.o0
88.1
88.1
88.0

4.3

LOWER
DEFL.

(IN.)

.000
~.018
~.018
-.015

.004

.036

.060

.078

100

. 148

. 182

.07

.081

.029

OoFB
DEFL.

(IN.)

.000
.020
.106
.257
L4586
841
1.392
2.033
3.340
4144
5.240
6.312
8.304
8.169
7.867
7.377

oPB
DEFL.

CINL)

.000
-000
.000
.025
021
.046
.093
.212
.340
.547
1.284
2.164
3.202
3.085
2.967
2.636

AVG. LATERAL

DEFL. LOAD
o

(IN.) (KIPS)
.000 .0
.001 1.4
.002 8.8
.002 10.1
L0185 10.1
.050 10.2
.081 9.8
.104 9.5
.126 0.4
L2386 10.6
L3286 10.3
L2585 10,1
.209 10.1
.200 .3

BRANCH
MOMENT

(K-IN.)

0
51
302
602
717
746
741
T44
763
783
601
809
789
400
8

8

BRAANCH
MOMENT

(K-iN.)

1

1

1
88
:X:]
156
302
602
722
748
620
560
522
249

OFB
DEFL.

{IND)

.000
.007
.0r4
.096
.08
. to1
118
L 147
.630
1.080
1.692
1.801
1.62¢
1.366

P-DELTA orB
MOMENT ROTATION
(K-1N.) {DEG.)
0 .00
1 .02
4 .10
1t .28
18 .44
36 .82
59 1.35
86 1.97
141 3.24
1758 4.03
222 5.09
267 6.14
as6 g.18
346 7.858
333 7.66
19 7.18
P~-DELTA ors
MOMENT ROTATION
{K-1N.} (DEG.3
] .00
[ .00
0 .00
2 .02
2 .03
4 .04
B .09
18 .21
29 .33
a7 .53
110 1.25
185 2.11
2714 3.12
2686 3.02
264 2.88
6 2.87
BRANCH P-DELTA ore
MOMENT MOMENT ROT.
(K-iN.) (K-IN.J) (DEG.)
0 0 .00
42 0 .01
253 0 .07
297 1 .08
2986 2 .09
300 & 10
288 1o PRl
218 16 .14
305 74 .61
313 117 1.05
303 176 1.65
298 60 1.56
288 8 1.49
10 9 1.33

320

TOTAL
org
MOMENT
(K-1N.)

]

52
307
614
736
782
800
830
805
858
1023
1076
1144
746
341
26

TOTAL
org
MOMENT
{(K~IN.)

90

91
160
o
620
751
795
730
1486
796
514
262

12

TOTAL
orPB
MOMENT
(K-§N.)

2
253
298
298
306
299
294
379
430
470
356
305

19
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APPENDTIX C

SPECIMEN DIMENSIONS

TABLE C.1 MOMENT ARM LENGTHS, L

SPECIMEN L (in.) SPECIMEN L (in.)
""""" w2 - Tae TTTTTTT
028 58.63 ou2 58.31

A031 59.03 143 58.00
AQ32 58.81 AO4L 58.19
A033 58.88 AQ45 58.13
AI3Y 58.75 ATY6 58.38
AI35 58.94 ATqy 58.38
AI36 58.72 1048 58.25
AIS50 58.69 1049 58.25
1037 58.63
1039 58.50 A51 58.38
1026 59.03
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TABLE C.2 GAP DIMENSIONS FOR B = 1.0 SPECIMENS

SPECIMEN COMP. GAP¥ TENS. GAP*
(in.) (in.)
"""""""""" 2t 363 3.8

A22 3.31 3.88
023 4.25 3.69
028 2.75 3.69
124 3.31 3.50
A031 4,25 3.63
A032 3.25 3.50
A033 3.50 3.50
ATI34 3.75 3.63
AI35 3.56 3.94
AI36 3.00 3.13
AI50 3.50 3.25
1037 3.81 3.50
1038 3.4y 4.13
1039 3.50 3.75
1026 3.75 4.25

= OPB compression face
Tens. = OPB tension face
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APPENDIX D

DERIVATION OF RELATIONSHIP BETWEEN ¢ AND T

The basic limit state design criterion can be written as
follows:

¢Rp27vQ, (D.1)

where ¢ is the "resistance factor™", Ry, is the "nominal
resistance", Y is the "load factor", and Qyp is the "mean load
effect" for a certain limit state.

In order to give an indication of how variations in ¢ will
effect the amount of material in the joint, the limit state
analysis can be extended to compare the relative chord
thicknesses required by each equation for a specific type of
Jjoint for a given level of safety. 1In an interaction analysis
the right side of the equation D.1 is represented by the length
of the ray from the origin to the point on the interaction
diagram corresponding to the design load condition in Fig. 5.1.
Similarly the nominal resistance of the Jjoint can also be given
by the length of the ray from the origin to the point on the
curve in the interaction diagram given by the interaction

equation. Thus Eq. D.1 can be written in the following form:

OLCP/PL)Z + (M/My)2op v (u/M)P0pgTh 2 2 YL(P/PL)2 + (M/M)2 pp
1/2

(M/M,))2pr]
u’ 0OPB-Q (D.2)
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In order for the design point and the point given by the
interaction equation to be along the same ray, the ratios of
axial and the two bending terms to each other must be the same.
Therefore, each term can be taken out of the radical. For
example, if the axial term is removed fronm the radical, Eq. D.2

can be written as shown below:

$(P/PIRLT = e®pg + e0ppTt /2 2 Y(P/PL)g [T + 2oy + Bpgl!/2 (D.3)

e%PB = (M/Mu)%pB(P/Pu) 2)
fpg = (M/My)3pg(P/Py)2)

Eq. D.3 can then be simplified to:
o(P/PyIR 2 Y(P/Py)q (D.4)

In Eq. D.4, ¢ is calculated using Egs. 5.6-5.8 for each
interaction. The ratio (P/P,) is given by the interaction
equation based on eZpg and ebpp, and Pg is given from the
structural analysis; thus, the joint must be designed for a Py
to yield a (P/P )y which satisfies Eq. D.4. So the relation
between P, (and ¢ can be written as:)

$(P/PIR(PG 2 Y(1/Pyp) (D.5)

For a given joint type, B, D and F P, is a function of the

yi
square of the chord wall thickness. Thus, a relation between ¢
and T is given by the following:

o(P/Py)/(Pg) 2 Y(1/CT) (D.6)

where C is a constant. Because the limit states analyses use

mean equation where the interaction equations are mostly lower
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bound equations, the error in the prediction of (P/Py)g Will be
accounted for by dividing ¢ by Py to create an effective ¢, ¢ppp-
When the error in the prediction of (P/Py)g 1s accounted for,

then (P/Py)/(Pq) becomes a constant for a given joint and

loading. 1In addition, for a given loading the load factor Y will
be a constant. Therefore, Eq. D.6 can be simplified to the

following:

$ppp(K) 2 (1/T2) (D.7)

where K is a constant. Since the ratios of axial and the two
bending terms to each other must be the same for both sides of
Eq. D.2, and the ultimate moments are also a function of T2, Eq.
D.7 will also hold for the moment terms i the interaction. It
should be emphasized that Eq. D.7 is only intended to given an
indication of the variation of T with the interaction equations,

and does not represent a method to calculate T for use in design.
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~  TABLE E.2 B =0.67 tensile coupon results

B D
Yield Stress = 46.4 ksi Yield Stress = 46.8 ksi
Yield Strain = 0.0011 (in./in.) | Yield Strain = 0.0019 (in./in.)
Stress Plastic Strain Stress Plastic Strain
(ksi) (in./in.) (ksi) (in./in.)
46.8 0.002 7.7 0.0019
8.3 0.004 18.9 0.0041
o7 0.0074 49,5 0.0068
5.4 0.0243 . 5.3 0.0238
68.5 0.41 67.9 o
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TABLE E.3 B =0.35 tension branch tensile coupon results

7

Yield Stress = 37.9 ksi
Yield Strain = 0.0011 (in./in.)

8
Yield Stress = 41

.8 ksi

Yield Strain = 0.0010 (in./in.)

Stress Plastic Strain Stress Plastic Strain
(ksi) (in./in.) (ksi) (in./in.)
39.8 0.0033 3.9 O.QO32
Ly 2 0.0092 7.4 0.0092
bg. y 0.0172 2.1 0.0169
53.1 0.0252 55.7 0.025

61.2 0.0488 64.1 0.528
64.8 0.0812 68.3 0.08
73.5 0.456 72.1 0.1189
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Fig. F.5 g = 1.00 IPB Mesh - Joint Region
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Axial Load Axial Def.
(kips) (in.) -
00.0 0.000
39.1 0.084
61.2 0.163
78.2 0.282
89.5 0.459
92.3 0.634
g2.3 0.809
92.3 0.811

Axial Load Axial Def.
(kips) (in.)
00.0 0.000
30.3 0.067
49.5 0.133
62.0 0.198
70.4 0.263
78.2 0.359
80.3 0.396
81.7 0.432
83.2 0.1485
84.8 0.566
85.5 0.687
85.5 0.808
85.5 0.810

Table G.3 FEM results B = 0.35 axial compression

Axial Load Axial Def.
(kips) (in.)
00.0 0.000
30.6 0.207
b46.5 0.411
50.3 0.611
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Table G.4 FEM Results Test A21

Axial Load Axial Def. OPB Def

(kips) (in.) (in.)
0 0.000 0.000

162 0.073 0.005
166 0.08 0.008
169 0.087 0.011
172 0.097 0.025
173 0.100 0.030
172 0.100 0.030
172 0.101 0.035
173 0.102 0.039
173 0.103 0.044
173 0.105 0.051

Axial lL.oad Axial Def, OPB Def.

(kips) (in.) (in.)
0] 0.000 0.000

160 0.073 0.039
166 0.091 0.093
166 0.109 0.160
166 0.110 0.164
166 0.111 0.168
165 0.113 0.174
165 0.115 0.184
165 0.119 0.198
165 0.120 0.204
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Table G.6 FEM results g = 0.35 axial tension

Axial Load Axial Def,.
(kips) (in.)
00.0 0.000
37.3 0.076
66.7 0.150
93.2 0.257
107.9 0.362
111:1 0.388
14,0 0.414
118.1 0. 453
123.9 0.511
128.9 0.569
133.5 0.627
137.6 0.685
138.5 0.700
139.5 0.714
140.8 0.736
142.6 0.768
145.3 0.817
146.1 0.833

Table G. 7 FEM results g = 1 00 axial tension

Axial Load Axial Def
(kips) (in.)
000.0 0.000
285.7 0.118
346.7 0.167
390.2 0.215
412.3 0.246
433.4 0.276
4uq,2 0.287
4u8.5 0.299
4594 0.315
47504 0.341
496.5 0.379
517.0 0.417
536.3 0.454
555.2 0.492
573.1 0.530
577.1 0.538
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Table G.8  FEM results g = 0.35 IPB

Branch P~ A Total Rotation
Moment Moment Moment (Deg.)
(kip-in. (kip~in.) (kip-in.) '
0 0.0 0 0.0
172 7.6 180 1.5
210 15.3 225 3.0
219 22.9 242 4.5
220 30.5 250 6.0

Branch P-A Total Rotation
Moment Moment Moment (Deg.)
(kip~in.) (kip~in.) (kip—in.) ‘
0 0.0 0 0.00
861 16.8 878 1.50
935 21.0 956 1.87
990 25.2 1015 2.25
1049 31.1 1079 2.81
1118 4o.8 1159 3.66
1174 50.3 1224 k. 49
1219 59.8 1279 5.34
1247 67.1 1314 6.00

Branch P-A Total Rotation
Moment Moment _ Moment (Deg.)
(kip-in.) (kip—-in.) (kip~in.)
0 0.0 0 0.0
764 15.6 780 1.50
866 24,2 890 2:33
924 32.8 957 3.16
962 1.4 1003 3.98
989 50.0 1039 4y, 82
1007 58.6 1066 5.65
1012 62.2 1074 6.00



353

Branch P~ A Total Rotation
Moment, Moment Moment
o (kip=ing) (kip~in.) (kip=in.) ~  (Deg.)
0 0.0 0 0.00
510 3.9 514 0.38
968 7.8 976 0.75
1391 13.6 1404 1.31
1592 19.4 1611 1.87
1718 25.3 1743 2.43
1815 31.0 1846 2.99
1895 36.9 1932 3.56

Branch P-A Total Rotation
Moment Moment Moment (Deg.)
(kip~in.) (kip—in.) (kip—~in.) :
0 0.0 0 0.00
828 35.0 863 1.50
894 43.7 937 1.87
U1 52.4 994 2.25
990 65.6 1056 2.81
1028 78.7 1107 3.37
1059 91.8 1151 3.93
1084 104.9 1189 L4.50

Table G.13 FEM Results B = 0.67 IPB - 50% Axial

Branch P -A Total Rotation
Moment Moment Moment (Deg.)
(kip~in. (kip~in.) (kip~in.)
0 0.0 0 0.00
728 70.0 798 1.50
781 87.5 868 1.87
813 105.0 918 2.25
843 131.3 974 2.81
856 157.5 1013 3.37
858 183.7 1042 3.93
853 209.9 1063 4.50
837 236.2 1073 5.06
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Branch Axial P -A Total Rotation
Moment Load Moment Moment (Deg.)
(kip-in.) (kips) (kip~in.) (kip=in.) '
0 0.0 0.0 0 0.00
860 11.5 17.5 877 1.50
924 14,4 27.3 951 1.87
966 17.3 39.3 1005 2.25
998 21.6 61.5 1059 2.81
1010 26.0 88.6 1098 2.27
1005 30.3 120.5 1126 3.93
983 34.6 157.3 1140 4.50
941 38.9 199.1 1140 5.06

Table G.15 FEM results B = 0.67 IPB - 75% Axial

Branch P - A Total Rotation
Moment Moment Moment (Deg.)
(kip-in.) (kip-in. ) (kip-in.)
0 0.0 0 0.00
238 26.3 264 0.38
407 53.0 460 0.76
532 92.3 624 1.32
576 131.6 708 1.88
581 171.0 751 2.44
556 210.0 766 3.00
506 249.6 756 3.56

Table G.16 FEM results = 0.35 OPB

Branch P.= A Total Rotation

Moment Moment Moment (Deg.)

{(kip—-in. ) (kip—-in. ) (kip—in.)
0 0.0 0 0.00
56 6.5 63 1.28
81 13.1 94 2.57
91 19.6 111 3.86
94 26.2 120 5.14
93 32.7 126 6.43
91 39.2 130 7.73
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Table G.17 FEM results g = 1,00 IPB

Branch P~ A Total Rotation
Moment Moment Moment (Deg.)
(kip~in.) (kip—-in. (kip~in.) ‘
0 0.0 0 0.00
842 7.0 861 0.37
1451 14,1 1465 0.75
1892 24,7 1917 1.31
1978 28.6 2006 1.52
2040 32.6 2073 1.73
2118 38.5 2157 2.05
2198 b7,y 2246 2.52
2294 60.8 2355 3.23
2323 68.9 2392 3.66
2349 76.9 2426 4.09
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Branch Moment P—~A Moment Total Moment Rotation
(kip-in.) (kip~in.) (kip-in.) (Deg.)

0 0.0 0] 0.00

Lo2 9.8 412 1.93

189 19.6 493 3.86

523 29.4 552 5.79

529 31.9 561 6.27

535 34,3 569 6.76

541 36.8 577 7.24

546 39.2 585 T.73

Branch Moment P—-A Moment Total Moment Rotation
(kip~in.) (kip~in.) (kip-in.) (kip=in.)
0 0. 0 .00
1454 7 1461 .38
2696 1y 2710 .75
3584 24 3609 .31
3771 28 3800 .52

.05
.52
.00
L7

0 0
1 0
1 0
7 1
.6 1
3919 32.6 3951 1.73
5 2
h 2
4 3
3 3
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