

# CESRL REPORT NO. 77-3 NOVEMBER 1977

# STRENGTH OF HOOKED BAR ANCHORAGES IN BEAM-COLUMN JOINTS

Ву

ROBERT L. PINC
MICHAEL D. WATKINS
and
JAMES O. JIRSA

Report on a Research Project

Sponsored by
The Reinforced Concrete Research Council—Project 33

DEPARTMENT OF CIVIL ENGINEERING / Structures Research Laboratory THE UNIVERSITY OF TEXAS, AUSTIN, TEXAS





42.5

# OMIN A TREAD A

to description

ARTHUR PERMIT

restant standered to the treeped of decrees only The restants of course to be second on the course to the

ing a state of the second of t

# STRENGTH OF HOOKED BAR ANCHORAGES IN BEAM-COLUMN JOINTS

bу

Robert L. Pinc
Michael D. Watkins
and
James O. Jirsa

Report on a Research Project
Sponsored by
The Reinforced Concrete Research Council--Project 33

Civil Engineering Structures Research Laboratory
The University of Texas at Austin

November 1977

### 2015年16日,中国19日间中国2019年18日,2014年18日20日,1947年18日20日日,1948年18日20日日,1948年18日20日日,1948年18日20日

1

Poble : TabudoS eakstry : I in Huffi eak

Report on a Wedertch Project

The Weinforced Concrete Research Compati-Project Hi

Civil Radinsonio, Strandorses Cesasion inherator The Behavesing of Tevas 21 instin

PI, romain t

### SUMMARY OF REPORT

In order to investigate the influence of straight lead embedment and lightweight concrete on the strength of hooked bar anchorages, sixteen specimens were tested. These specimens and the method of testing were patterned after a previous study of hooked bar anchorages so that direct comparisons could be made. The specimens simulate typical beamcolumn joints. The lead embedment length varied with the depth of the column in which the bar was embedded. The bars were loaded in tension to failure to establish basic strength and stiffness characteristics. The slip of the anchored bars with respect to the concrete and stress transferred to the concrete along the bars were measured.

The results of the test program and the results of previous tests were combined to develop a relatively simple relationship between the embedded length of a hooked bar and strength. The advantage of the procedure is that the hook and the straight lead embedment are considered as a unit and the strength of the hooked bar anchorage is not coupled to development provisions for straight bars. Using the relationship developed for strength, the performance of the anchored bars appears to be within acceptable limits of serviceability as set by the ACI 318-71 Code.

In orders, to among the content of the failure of configurations of the configurations of the configuration of the

The results of the test property and one results of previous Leafs were combined to devrise a relacitating simple relacionship between the embedded length of a pooked ber and absencyth. The idvintage of the procedure is the idvintage of the procedure is the thet and chocked ber set each and considerable and the set of the booked and undersays is not and as a unit and the strongth of the booked and undersays is not compled to developed the strongth of the participance of the actions but thoughts as eveloped for accessfie, the participance of the actions but appears to be within accessfie limits of services if the sevices of the set by the

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | remai ve basacqua's error representation out, agrand (1,2,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Chapter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | postanti i di singgi sa para dan para d | age                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INTRO             | ODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 =                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1<br>1.2<br>1.3 | Object and Scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEST              | PROGRAM for a first of the contract of the second of the s | 5                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1               | Test Specimens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5<br>5<br>7<br>11    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2               | 2.1.3 Specimen Instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13<br>14<br>14       |
| e de la companya de l | 2.3               | 2.2.2 Anchorage Loading 2.2.3 Specimen Reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14<br>16<br>16       |
| 65<br><b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TEST              | RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1<br>3.2        | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17<br>17<br>22       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Slip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3               | Lightweight Concrete Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27<br>28<br>28<br>32 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4               | 3.3.4 Influence of Concrete Mix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32<br>38             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Beam-Column Joints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39                   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | ARISON OF TEST RESULTS WITH DESIGN PROCEDURES HOOKED BARS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1<br>4.2        | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41<br>41<br>41       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | A D T ACT Code Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -T -A                |

| 2 Design Recommendations Proposed by Jirsa and Marques                                                                                                                                                                                                                                                | 43<br>46<br>49<br>1 4 49<br>1 4 49<br>5 5<br>5 5<br>5 5<br>5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .3 Measured Results Compared with Computed Strength                                                                                                                                                                                                                                                   | 49<br>49<br>49<br>49<br>55<br>55<br>55<br>55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| roduction roach AHook and Lead Embedment Considered arately roach BHook and Lead Embedment as a Unit1 Length to Be Considered as Embedment     Length                                                                                                                                                 | 49<br>53<br>55<br>55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| roach AHook and Lead Embedment Considered arately roach BHook and Lead Embedment as a Unit  1 Length to Be Considered as Embedment Length Length  parrison of Equations  parrison of Proposed Recommendations with ACI Test Results  1 Embedment Length  2 Slip Measurements at Working Stress Levels | 44. 44. 55. 55. 55. 55. 55. 55. 55. 55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| thtweight Concrete                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AND CONCLUSIONS                                                                                                                                                                                                                                                                                       | 6<br>839<br>6<br>140<br>6<br>87<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - 3.1.2 Irilyence of Lead Imbeduard facejus or                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A PART OF THE PROPERTY OF T                                                                           | C. 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                       | andard Hooks  The regard fusebadmä besä to someofest fille of seast for someofest fille of seast |

# LIST OF TABLES

| Table |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | age |                   |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|
|       | i naminada sent Bo eliste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8   |                   |
| 2.1   | Properties of Test Specimens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1   |                   |
| 2.2   | Mix Proportions for Lightweight Concrete (1 yd $^3$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10  |                   |
| 3.1   | Summary of Measured Slip BehaviorLead Embedment - Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23  |                   |
| 3.2   | Summary of Measured Slip BehaviorLightweight Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29  |                   |
|       | 。如此,一个人也可以是一个人的,我们就是一个人的。""我们就是一个人的,我们就是一个人的,我们就是我们的。""我们就是我们的,我们就是我们的,我们就是这个人的,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                   |
| 4.1   | Measured and Computed Anchorage StrengthACI 318-71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44  |                   |
| 4.2   | Measured and Computed Anchorage StrengthJirsa & Marques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47  | 41 <sub>2</sub> i |
| 5.1   | Comparison of Measured and Computed Anchorage Strengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                   |
|       | Using Proposed Design Recommendations (Normal Weight Concrete)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | . 3               |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                   |
| 5.2   | Measured and Computed Anchorage Strengths (Lightweight Aggregate Concrete)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hU  | )<br> -3.4        |
|       | The graph of assign coeragos ofgrewidgif to easewiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                   |
|       | · "我们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                   |
|       | indigamen or lightweight consricts mixes on the distribution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                   |
|       | Comparison of silp behavior of different miner see see the contragacy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                   |
|       | n de la companya de l<br>La companya de la companya del companya de la companya de la companya del companya de la companya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | - S - F           |
|       | ne de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                   |
|       | end beskone for desperance for desperance will be desperance for the second sec |     |                   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                   |

# LIST OF FIGURES

| Figure | e                                                                      | ge |
|--------|------------------------------------------------------------------------|----|
| 2.1    | Details of test specimens                                              | 6  |
| 2.2    | S                                                                      | 12 |
| 2.3    | Slip wires attached to bars                                            | 12 |
| 2.4    | The loading frame                                                      | 15 |
| 3.1    | Measured stress-slip relationships, Specimen 11-18                     | 18 |
| 3.2    | Measured stressesSpecimen 11-18                                        | 18 |
| 3.3    | Influence of lead embedment on slip for #9 bars                        | 19 |
| 3.4    | Influence of lead embedment on slip for #11 bars                       | 20 |
| 3.5    | Influence of lead embedment on stresses for #9 bars .                  | 25 |
| 3.6    | Influence of lead embedment on stresses for #11 bars.                  | 25 |
| 3.7    | Influence of hook geometry on slip                                     | 30 |
| 3.8    | Influence of confinement on slip                                       | 31 |
| 3.9    | Influence of lightweight concrete mixes on slip for #11 bars           | 33 |
| 3.10   | Influence of lightweight concrete mixes on slip for #7 bars            | 34 |
| 3.1    | l Comparison of slip behavior of different mixes                       | 37 |
| 5.1    | Proposed values for strength of hooked bar anchorages using Approach A | 50 |
| 5.2    | Proposed values for strength of hooked bar anchorages using Approach B | 52 |
| 5 2    | Standard hook details                                                  | 53 |

| Figure |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 5.4    | Proposed values for strength of hooked bar anchorages using Approach B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| 5.5    | Hook embedment lengthproposed and ACI 318-71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | וכ   |
|        | ស៊ីមូទី (ខេម្មម្នង បានស៊                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|        | i equil degrate de la responsa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|        | ្នាំ និងមុខ ភូមិលាលនៃ និងសេសសសស កុស៊ី និងសិសសសស                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| -      | en Carelador Los Algheros grais beaccanas en mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|        | lag valaboth od amjole both males                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|        | Jeg (Immanosofinian Pe driggerine block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|        | al gamento de la cipa esta en combinación de la completa de la combinación de la com |      |
|        | wesellopaschi Wedy by Chr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|        | Tougan of hasked one aminorage, horizonal profession of landsed burganerses, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|        | all commonweal states and a commonweal states are a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|        | conseque dus secundades don 100 de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|        | no tak ni habiasate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|        | nummerājitutus galeuse kālas motembi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|        | na the man ann an the problem of the first the control of the first the control of the first the control of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

# NOTATION

```
{f z} of hadood be dejuged to the Lategord
        = area of bar, in.
^{A}_{b}
        = factor for lightweight aggregate (ACI 318-71)
С
        = bar diameter, in.
d<sub>b</sub>
        = bar stress, ksi
£
f'c
         = concrete strength, psi
         = stress carried by standard hook, psi
fh
        = stress transferred along straight lead embedment, psi
fL
         = measured ultimate stress, psi
·f<sub>u</sub>
         = yield strength of reinforcement, psi
fv
Q/
         = minimum straight lead embedment, in.
l<sub>d</sub>
         = development length, in.
         = length of hooked bar anchorage, horizontal projection of
l_{dh}
           hooked bar anchorage, in.
         = straight lead embedment, in.
L g.
         = constant for standard hook (ACI 318-71)
ξ
         = standard deviation
\sigma
         = factor reflecting confinement
ψ
         = constant for lightweight concrete
Ω
```

# e de la la complexión de 1. de . INTRODUCTION de la dej de entre construcción de la servición de la construcción de la construc

# 1.1 Object and Scope proveducion level roll (for the beds to draw or ben food

The object of this study was to examine the influence of lead embedment and lightweight aggregate concrete on the strength of hooked bar anchorages in beam-column joints. A total of 16 specimens was tested. The program was an extension of earlier work reported in Ref. 1. The specimens were full scale models of beam-column joints in order to eliminate scale effects and to permit the use of large diameter hooked bars which conform to ACI standards for hook geometry. The purpose of the study was to refine design recommendations made in Ref. 1 and 2.

## 1.2 Previous Work

In the studies reported by Marques and Jirsa [1], the tensile stress developed by a standard hook  $\mathbf{f}_h$  was expressed by

$$3.41 \text{ (40.} \mathbf{f}_{h} = 700(1.5-0.3\mathbf{d}_{b}) \psi/\overline{\mathbf{f}_{c}'} \le \mathbf{f}_{v} \text{ (1.1)}$$

gram od investigajsken hak bode undyn ihe gubienek af A Ivsk Oveniska

where  $d_b$  is the diameter of the anchored bar and the value of  $\psi$  is varied according to the lateral confinement provided, varying between 1.0 and 1.8. If additional development length is required, the straight lead embedment length  $\ell_k$  between the initial section and the hook is calculated as follows:

$$\ell_{\ell} = [0.04A_{b}(f_{y} - f_{h})/\sqrt{f_{c}'}] + \ell'$$
 (1.2)

where  $\ell'$  is 4d, or 4 in., whichever is greater.

While Eqs. 1.1 and 1.2 provided good agreement between measured and calculated hooked bar anchorage strengths, a number of shortcomings became evident. First, there were no data available for bars embedded in lightweight aggregate concrete. Second, the straight lead embedment

was a function of the development length equations for straight bars contained in ACI 318-71 [4]. Development length provisions are based on the results of tests in which stresses vary from a maximum at the lead end to zero at the tail end. For lead embedments ahead of a hook, the stress does not reduce to zero and the development length provisions do not necessarily extrapolate linearly with stress differentials. Additionally, very little data on variation of the length of straight lead embedments were available in the literature and in previous studies.

# 1.3 Acknowledgments

The work reported herein was part of an investigation supported by the Reinforced Concrete Research Council under Project 33. The program of investigation has been under the guidance of a Task Committee composed of the following persons:

- D. J. Caldera, Chairman, TAMS, Engineers and Consultants, New York
  - J. F. McDermott, U. S. Steel Corporation, Monroeville, Pennsylvania
  - C. F. Corns, Headquarters, U. S. Air Force, Washington, D.C.
  - N. W. Hanson, Portland Cement Association, Skokie, Illinois
  - H. E. Nelson, City of Chicago, Illinois
  - P. F. Rice, Concrete Reinforcing Steel Institute, Chicago, Illinois

The project has been directed by J. O. Jirsa, Professor of Civil Engineering. Portions of the project formed parts of Master of Science theses submitted to The University of Texas at Austin by Mr. Robert L. Pinc and Mr. Michael D. Watkins. Special acknowledgment is due the Texas Aggregates and Concrete Association, which provided Mr. Watkins with partial support by awarding him the George C. Smith Memorial Scholarship.

The work was conducted in the Civil Engineering Structures
Research Laboratory at the Balcones Research Center of The University of

Texas at Austin. Cadweld splices used in testing were donated by Erico Products, Inc., through the cooperation of Mr. James Barry. The light-weight aggregate materials were obtained through the Expanded Shale Clay and Slate Institute and were donated by the Material Service Corporation of Chicago. The help of Mr. Jim Fiala of Material Service Corporation is gratefully acknowledged.

Toxas at Augila (Colweld suitan teru in custing care dominor by Error Products, inc., these Errory (Strikes united and other couperation) and the distance of the colors of the Errory (Strikes united and other Error of the Erro

### 2. TEST PROGRAM

# 2.1 Test Specimens

The test program was patterned after the hooked bar anchorage study conducted by Jirsa and Marques [1]. The same basic specimen configuration and testing procedure were used.

2.1.1 Specimen Geometry and Reinforcement. A typical exterior beam-column joint was simulated with the specimen shown in Fig. 2.1. The column cross section varied from 12 x 12 in. to 12 x 24 in. in increments of 3 in. All the specimens cast with lightweight aggregate concrete had column cross sections of 12 x 15 in. The assumed beam was 12 in. wide and 20 in. deep. The dimensions of the beam and column were chosen so that the specimen would be a realistic full-scale simulation of an exterior beam-column joint in typical concrete frame construction. The length of the column in all tests was 50 in. It was necessary to extend the column above and below the beam to eliminate lateral constraints in the joint region produced by the axial loading heads. It should be noted that the dimensions coincided with those used in the previous studies.

As seen in Fig. 2.1, the test specimen was cast without the beam extending from the joint. The anchored beam reinforcement was extended past the face of the column so that it could be loaded with hydraulic rams in the testing apparatus. The compression zone of the beam was simulated by a steel plate bearing against the face of the column over an area which approximated that of the compression zone of the assumed beam. This was considered to be a realistic model of forces on the joint after flexural cracking of the beam, with the exception that no provision was made to simulate the action of vertical beam shear on the joint. Beam shear, however, was not considered to have a significant influence on the anchorage behavior, as it is transferred to the column principally in the beam compression zone away from the hooked bar.



The 12  $\times$  12 in. columns were reinforced with four #8 longitudinal column bars and #3 closed ties spaced at 5 in. c.c outside the joint. The 12  $\times$  15 in. and 12  $\times$  18 in. columns were reinforced with six #8 longitudinal column bars, while the 12  $\times$  21 and 12  $\times$  24 in. columns had eight #8 bars. Each of these specimens also was reinforced with #3 closed ties spaced at 5 in. c.c. outside the joint. The clear cover over the ties was 1-1/2 in. The anchored bars, the longitudinal bars, and the ties used throughout the study were Grade 60 steel. Yield for the #7 bars was 66 ksi, for the #9 bars was 65 ksi, and for the #11 bars was 57 to 60 ksi.

- 2.1.2 <u>Variables</u>. Table 2.1 summarizes the properties of the sixteen specimens tested in this study. The variables considered and the range of these variables are discussed below.
- (a) Size of Anchored Bars. The embedment length tests were conducted with either #9 or #11 beam bars anchored in the columns. Previous tests, conducted with #7 and #11 bars, showed that the #7 bars almost reached their yield strength in the small 12 x 12 in. column and greatly exceeded it in the larger 12 x 15 column. In the case of specimens reaching well into the yield range, it is difficult to evaluate the influence of confinement and other variables if the concrete does not participate in the final failure. Therefore, to study the influence of embedment length on strength, it was felt that tests of #9 and #11 bars would provide more useful data. From a practical standpoint, bars larger than #11 would rarely be used in frame members. The series of tests with lightweight aggregate concrete was conducted using #7 and #11 beam bars. The use of #7 bars was warranted because it was felt that the splitting strength of the lightweight concrete was likely to be lower than normal weight concrete and failure would occur before the bars yielded.
- (b) <u>Lead Embedment Length</u>. By varying the size of the column, the lead embedment before the hook portion of the anchored bar was varied. Values of lead embedment are tabulated in Table 2.1.

TABLE 2.1 PROPERTIES OF TEST SPECIMENS

| The second of th | Average Concrete<br>Normal Strength Failure Type<br>Stress ksi<br>psi |                                                       | 4.7 Front | Side<br>Bary          | 800 3.6 Side spalled | 5.4 Side spall          | 4./ Side spall | /50 5.2 Bar ylelded<br>800 4.2 Bar yielded |                                       |                 | 850 4.2 (420)*Side spalled | 5.6 (550) Side spall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 4.7 (470) Side spall | 850 4.8 (430) Side spalled 850 5.0 (410) Side spalled |           | 850 5.6 (540) Bar yielded<br>850 4.5 (440) Side spalled |             |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|-----------|-----------------------|----------------------|-------------------------|----------------|--------------------------------------------|---------------------------------------|-----------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------|-----------|---------------------------------------------------------|-------------|----------|
| SPECIMENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Column Av<br>Load S<br>kips                                           | 3. 收益 (1)<br>化碳基)                                     | 108       | 141                   | 202                  | 116                     | 173            | 188<br>230                                 |                                       |                 | 154                        | . 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 154                     | 154                                                   | <b>†</b>  | 154                                                     | <b>†</b>    |          |
| PROPERTIES OF TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Confinement<br>Cover Ties<br>in. in Joint                             | Japan<br>Historia<br>Historia<br>Historia<br>Historia | -7/8      | 2-7/8 None 2-7/8 None | -7/                  | -7/8                    | 8/             | //-<br>//-                                 |                                       |                 |                            | 2-7/8 None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 7/8 None                                              | ə c# o//- | -7/8                                                    | Z-//8 None  |          |
| TABLE 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lead Column Embedment Size in. in.                                    |                                                       | _         | 7-3/8 12x15           | -3/8                 | 15x12<br>15x12<br>15x12 |                | 12x21 x x x x x x x x x x x x x x x x x    | •// (0<br>មើ<br>ក្រុស<br>•            | Concrete Series | 12x1                       | 6 2 1 2 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 5 x 1 |                         | 12x15                                                 | CTXZT     | 12x1                                                    | 9-1/2 12×15 |          |
| 요건함<br>사건<br>기록()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bar                                                                   | Embedment Series                                      |           | 6##                   | <i>6</i> #           | 5 #11                   | #11            | #11                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Aggregate       | 111#<br>                   | #11<br>#11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #11<br>#11              | #11                                                   | #11<br>-  | # 1                                                     | <b>1</b> #2 | had<br>M |
| ្រស់ ស្រាម និ<br>ខ្លាំ ទោក ន                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Specimen                                                              | Lead Embe                                             | 9-12      | 9-15                  | 9-21                 |                         | 11-18          |                                            | 7-11                                  | Lightweight     | 11-90-1-L-AL               | 11-90-1-H-AL<br>11-90-1-T-AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11-90-1-                | 11-180-1-L-FR                                         | 11-90-3-  | 7-90-1-L-AS                                             | 7-90-1-T    |          |

\*Split tensile concrete strength (psi).

(c) <u>Concrete</u>. The concrete used in the lead embedment series was obtained commercially and specified to give approximately 4500 psi nominal compressive strength, which is the same compressive strength used in the previous study of hooked bar anchorage. The actual concrete strengths, however, varied from 3600 to 5400 psi. As will be discussed later, two specimens, 9-15 and 9-21 had concrete strengths of 3600 psi and 3800 psi with a poor quality aggregate.

Three basic mixes of lightweight concrete were used in the study. The mix proportions were computed on the basis of a 1 yd. batch and multiples of these proportions were used as needed. All three mixes were proportioned to give an average compressive strength f' of 4800 psi at 14 to 21 days. The lightweight aggregate used was "Materialite" lightweight aggregate, a coated expanded shale produced and supplied to this project by the Materialite plant located at Ottawa, Illinois. The coating is accomplished by fusing the outer surface of the aggregate into a sealed shell enclosing unconnected dead air cells. The coarse lightweight aggregate used was the Materialite medium gradation ranging from 3/8 in. to 3/16 in., and the lightweight fine aggregate used was the Materialite fine gradation ranging from 3/16 in. to 0 in. For the mixes that required normal weight fines, the local Colorado River sand fines were used.

The proportions for the lightweight concrete mixes were established on the basis of volumes in order to account for the differences in moisture content normally found in lightweight aggregates. Before each batch was mixed, the unit weight of coarse and fine lightweight aggregate was obtained and the mix was proportioned using the unit weights. Mix proportions for the three different mixes are given in Table 2.2. All three mixes had seven sacks of Type I portland cement and two and one-half ounces of an air entraining agent. Water was added as required to obtain a 6 in. slump. All specimens and control cylinders were stripped four to five days after casting and the curing was continued at room temperature until testing. The concrete strengths are listed for each specimen in Table 2.1, including split cylinder strengths.

| _               |      |
|-----------------|------|
| yd              |      |
| け               |      |
| CONCRETE        |      |
| LIGHTWEIGHT     |      |
| FOR             |      |
| MIX PROPORTIONS |      |
| MIX             |      |
| 2.2             | 1991 |
| TABLE           |      |

| on the second of | Cement, 1bs 2 c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Coarse Aggregate, 1bs $803$ (15 ft <sup>3</sup> @ $53.5$ pcf) $885$ | Fine Aggregate, 1bs 1091 (16 ft $^3$ @ 68.2 pcf) 514 | Colorado River de la None de la Sand, 1bs.                         | inab<br>nasti<br>topigi | Air Entraining Agent**  (Airsene), oz 2.5 |  | i (2011)<br>2014 (20<br>1 (648)<br>1 (648) |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|-------------------------|-------------------------------------------|--|--------------------------------------------|--|--|
| fty Percent<br>Replacement(FR) All Sand (AS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 (a. ) 2 (a. ) 1 (a. | l5 ft <sup>3</sup> @ 59 pcf) 788 (15 ft <sup>3</sup> @ 53 pcf)      | (8.5 ft <sup>3</sup> @ 67.5 pcf) None                | 8,5 ft <sup>3</sup> @ 86.2 pcf) 1458 (18 ft <sup>3</sup> @ 81 pcf) |                         |                                           |  |                                            |  |  |

- (d) Other Variables--Lightweight Concrete Series. Seven tests were conducted using 90° standard hooks conforming to ACI 318-71 [4] specifications, and one test was conducted with a 180° hook. All specimens had a 2-7/8 in. concrete cover over the anchored bars (Type 1 confinement in Ref. 1). One specimen was cast with #3 ties through the joint at 5 in. c.c. in addition to the standard 2-7/8 in. concrete cover over the anchored bars (Type 3 confinement), and the remainder had no ties through the joint. Previous tests concluded that the effect of column axial load on hooked bar strength was negligible for cases where the tail extension of the hook was oriented in the direction of the axial load. One specimen of this series was loaded with an axial load which produced an average compressive stress of about 3000 psi (H). All other specimens (including the lead embedment series) were subjected to axial stress of about 800 psi (L).
- 2.1.3 <u>Specimen Instrumentation</u>. Comparison between specimens was made using curves of stress versus slip of the anchored bars relative to the concrete. To measure slip, the procedure developed by Minor and Jirsa [3] was used.

At the point where slip was to be measured, a 0.059 in. diameter piano wire was attached to the bar by making a short 90° bend at the end of the wire and inserting it into a hole of equal diameter drilled in the bar. Figure 2.2 shows the five slip measurement points along the length of the anchored bars: point 1H at the front face of the specimen (called "lead" slip); point 2H at the point of horizontal tangency of the bent portion of the hook; points 3H and 3V at the point of vertical tangency; and 4V at the end of the tail of the hook. The slip wires were long enough to reach through the form at the back face of the specimen. The wires were oriented in the direction displacement was to be measured at the points of connection to the anchored bars.

After a slip wire was attached to the bar, a plastic tube was placed over the entire length of the wire to prevent bond. A small amount of rubber sealer was placed at the connection between the wire



Fig. 2.3 Slip wires attached to bars



Fig. 2.2 Instrumentation

and the anchored bar to seal the tube and to allow movement of the wire in the direction it was expected to travel. It was extremely important to use this sealer to prevent interlock between the protruding wire and the concrete. The loss of bond between the anchored bar and the concrete at the point of attachment of the slip wires was considered negligible. Figure 2.3 shows the wires and tubing in place on a specimen in the form prior to casting.

To reduce the wobble of the slip wire in the tube, the wire was placed in tension using a spring between the concrete surface and a small brass plug fastened to the wire with a set-screw. This spring put a tensile load of approximately 3 to 4 lb on the wire. A linear displacement potentiometer was used to measure movement of the wire and was attached to the back face of the column using a metal frame constructed from electrical conduit pipe. This frame was clamped to two threaded rods screwed into inserts placed in the specimen at the time of casting. The potentiometers were read by using a digital voltmeter. Results of the hooked bar anchorage study indicated that the back face was uncracked until failure was imminent, and provided a good reference plane for slip measurement.

To determine the stresses in the anchored reinforcing bars, three strain gages were mounted on each bar. Figure 2.2 shows the location of these gages. One gage was located outside the front face of the specimen and monitored "lead" bar stress. A second gage was mounted at the point of horizontal tangency (fore) of the bent portion of the hook, and the third gage was located at the point of vertical tangency (aft). The application of strain gages provided a means of estimating the stress transferred from the bars to the concrete along various portions of the bars. Bond reduction was negligible in the region of the gages where an area of approximately 1/2 in. by 1-1/2 in. was waterproofed.

2.1.4 <u>Fabrication of Specimens</u>. Instrumentation of the anchored bars was completed before placing them into the form. The bars were prepared by (1) cutting the bars to proper length, (2) drilling holes

for slip wires, (3) preparing the bars for strain gages, (4) mounting and waterproofing strain gages, and (5) mounting and sealing slip wires.

Plywood forms were constructed to allow casting specimens in a vertical position. Two specimens were prepared and cast at one time.

# 2.2 Loading System

The forces applied to the test specimens are shown in Fig. 2.1. The loading of the specimens was intended to approximate the forces on the joint in a typical frame. The loading frame was constructed to apply axial load on the column, and tensile and compressive beam forces on the joint. The frame is shown in Fig. 2.4.

- 2.2.1 Axial Loading. To load the column, four 100-ton center-hole hydraulic rams were placed above the top axial loading head. Alloy steel rods, 2 in. in diameter, were passed through the rams, the top loading head, along the sides of the specimen, and through the bottom platform. Two of the four rods were instrumented with strain gages and served as load cells to monitor axial load. Hydraulic oil pressure was also monitored. The top and bottom loading heads were fabricated using a series of channels to provide a rigid loading surface and to distribute the load uniformly over the column section. In addition, a quick setting plaster was used between the specimen and loading surfaces to ensure uniform load distribution.
- 2.2.2 Anchorage Loading. The anchored beam reinforcing bars protruded from the specimen about 6 ft. to allow for installation of equipment to provide a tensile loading to the bars.

A vertical reaction beam composed of two 18 in. deep steel channels was erected about 20 in. from the front of the specimen, as shown in Fig. 2.4. This beam was mounted on an axle at the base of the loading frame. The anchored beam reinforcing bars passed between the two channels. Two 60-ton centerhole rams were placed over the bars to apply tensile load. A 5-in. Cadweld sleeve was attached to each bar immediately beyond the loading rams (see Fig. 2.4). The sleeves provided convenient loading collars



PLAN VIEW (without top and bottom loading heads)



ELEVATION VIEW

barbara Fig. 2.4 The loading frame a most assessed

for the anchored bars. The rams applied tension to the bars by reacting against the vertical reaction beam and the splice sleeves. Ram oil pressure was monitored using both an oil pressure gage and an oil pressure transducer. The load applied to the anchored bars could thus be determined and checked against lead bar strain gage readings for accurate control of anchorage loading.

2.2.3 Specimen Reactions. A steel box section strut was placed between the main reaction beam and the front face of the specimen. This simulated the compression zone of the beam. A quick setting plaster was used between the strut and the face of the specimen to ensure uniform bearing. The top of the reaction beam was connected to the top loading head with a compression strut made of steel tube sections. This connection served to resist the column shear induced when the anchorages were loaded.

# 2.3 Test Procedure

The specimen was seated in the loading frame with plaster between the specimen and the top and bottom loading heads and at the structural tube strut simulating the beam compression zone. The plaster was used to reduce possible stress concentrations between the specimen and the loading surfaces. Once all instrumentation and loading equipment was in place, testing began with the application of axial load.

The anchored reinforcing bars were loaded in tension in increments of approximately 2000 psi bar stress, which provided 20 to 30 load stages prior to failure or yield. Load increments were applied at the same rate of loading used in the previous study. Load was applied, readings were taken, and cracks were marked for a total time of 2 minutes for each load stage. Testing of the anchored bars continued until the specimen failed or until the bars had yielded. The anchored bars which yielded were additionally loaded into the strain-hardening region until the maximum stroke, about 3 in., of the hydraulic ram was reached.

### TEST RESULTS

# 3.1 Introduction

The slip and strain measurements at the points shown in Fig. 2.2 are plotted against measured lead bar stress, the stress at the face of the column measured from hydraulic pressure to the rams loading the bars. Figure 3.1 shows a plot of lead bar stress versus slip, and Fig. 3.2 shows measured stress from strain measurements plotted against lead bar stress. These figures are plotted from data measured for Specimen 11-18 and are typical of the trends observed for all specimens tested in this program. Measured data for all tests are presented in Refs. 6 and 7.

# 3.2 Lead Embedment Series

Lead stress-lead slip (at point 1H) curves are shown in Fig. 3.3 for #9 bars and in Fig. 3.4 for #11 bars. For each curve, average values for the two bars of a specimen are plotted. In addition to the curves for this series of tests, curves are plotted in Fig. 3.4 for two additional specimens from data extracted from a previous study on hooked bar anchorage by Jirsa and Marques [1]. In addition to the observations noted in this present study, findings from the previous study will also be included and used later in this presentation to develop design recommendations.

As can be seen in Fig. 3.3, Specimens 9-15 and 9-21 each failed at a strength less than that of specimens with smaller lead embedment length. These specimens had concrete strengths of 3800 psi and 3600 psi, less than the 4500 psi specified. Figure 3.3 also shows a large increase in lead slip with a small increase of stress. It was observed that at equal levels of lead bar stress the stress measured at the points of tangency of the hooks are nearly equal to each other and also to the measured lead bar stress. These observations tend to indicate that no



Fig. 3.1 Measured stress-slip relationships, Specimen 11-18.



Fig. 3.2 Measured stresses--Specimen 11-18



· 18 vv2 cliv or americaline Spell 3c ex



stress was being transferred along the straight bar embedment to the concrete. After failure, the side cover was removed and yellowish-brown powder was observed beneath the anchored bars. Very little of the aggregate was broken, indicating it had not bonded well with the cement paste. The lack of bonding and residue beneath the bars was attributed to poorly washed aggregages used in the concrete. Although the two specimens cannot be compared directly with other specimens, they can be compared with each other.

The following general trends were observed in the test results:

- (1) Most of the slip occurs along the straight lead embedment and the curved portion of the hooked bar. Very little slip was measured on the tail extensions of the hooks. In each case, the lead slip (point 1H) is the largest. If the straight lead embedment were not sufficient to develop yielding of the anchored bars, the slip at point 2H was nearly as large as the lead slip. The slip at points 3H and 3V was very small in all cases, and no significant slip was measured at point 4V until failure was imminent.
- (2) The initial stiffness (stress divided by slip, up to levels of about 30 ksi lead stress) decreased as the bar size was increased. There was a slight but not very significant increase in initial stiffness as the lead embedment length was increased.
- (3) At stress levels above 30 ksi, the stiffness was significantly less than the initial stiffness, and the effect of the increased length in straight lead embedment became apparent. For #11 bars at a given value of slip, the increase in strength was about 10 ksi for each 3 in. increase in embedment length until the yield stress of the bar was reached.
- (4) The stress transferred from the anchored bar to the concrete along the straight lead embedment (the difference between the lead bar stress and the stress at the start of the hook) was significant at lead bar stresses less than 30 ksi, but decreased rapidly as the specimens neared failure.

- (5) In nearly all the tests the stress in the tail extension was generally small, less than 20 ksi until failure was imminent. Near failure stresses on the tail increased rapidly, but this increase may represent some effects of flexure due to the bar slipping as the concrete splits.
- that the strength and stiffness of the hooked anchorages are significantly affected by the lead embedment or by the thickness of the column. The #11 bars embedded in 12  $\times$  21 in. and 12  $\times$  24 in. columns reached stresses well over the yield stress of the steel before the tests were terminated. The bars in a 12  $\times$  18 in. column reached a stress near yield before failure of the concrete, and those in a 12  $\times$  15 in. column reached 50 ksi.

In general, the longer lead embedment lengths result in higher stresses at failure, and the slip is greater at all stress levels with shorter lead embedment. A summary of measured slip behavior is listed in Table 3.1. Lead stresses at lead slips of 0.005, 0.016, and 0.05 in. are listed. In addition, slip at point lH under applied bar stresses of 0.6 of the computed anchorage strength using the provisions of ACI 318-71 [4] is given. Slip and stress at failure are also tabulated. Stress at a slip of 0.016 in. was selected because it is in the range suggested as a permissible crack width in beams in the ACI 318-71 Commentary [ 5]. If it is assumed that the crack width at the beam-column joint is about equal to the slip of the anchored bar, the observed stress at 0.016 in. slip provides a measure of the serviceability of the hooked bar. In a similar manner, slip values at a level of 0.6 of yield correspond to the provisions in Sec. 10.6.3 of ACI 318-71 [4] for computing crack width at service loads. In general, stresses at 0.005 in. slip were about 20 ksi, at 0.016 in. slip about 30 ksi, and at 0.05 in. slip, between 40 and Only in specimens which fail at stresses higher than yield 50 ksi.

SERIES PREMAVIOR—LEAD EMBEDMENT SI SFILE CONTRACTOR MEASURED AND A MEASUR OF. SUMMARY ( -12552 854<mark>7</mark>88 **M** TABLE

| Liberari<br>Algeliyetik (Medil<br>Jaroberik<br>German ayalka | Stress       | Failure<br>in.                                                     |                                        | 200000<br>2000000<br>20000000000000000000000 | <b>4</b> 2                              | 6 <b>6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 7 4 4<br>4 4 4 4<br>4 4 4 4<br>4 4 4 4<br>4 4 4 | ~ · · · · · · · · · · · · · · · · · · · |                                          |                       |                                                      |
|--------------------------------------------------------------|--------------|--------------------------------------------------------------------|----------------------------------------|----------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------|------------------------------------------------------|
| EMB EDMENT SER I ES                                          | Approx. Slip | at Bailure in                  |                                        | 20.21                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 70. E<br>- 20. E<br>- 20. E<br>- 20. E<br>- 20. E<br>- 20. E<br>- 20. E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | own.<br>own.<br>own.<br>own.<br>own.              | 0.24                                    | 0.05.05.05.05.05.05.05.05.05.05.05.05.05 |                       |                                                      |
| LEAD                                                         | slip         | $0.0(\frac{1}{h}, \frac{1}{h}, \frac{1}{h})$<br>Lead Stress<br>in. | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.072                                        | 0.008                                   | 1 884<br>10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 100.00 (a.c.) 100.00 (b.c.) 100.00 (c.c.) | 0.011                                             | 0.012                                   | 00.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   |                       | 98891019<br>501119494<br>1801197<br>187480<br>187480 |
| OF MEASURED SI                                               | Slip of      | 0.05 in.<br>ksi                                                    | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  |                                              | 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | <b>57</b> - 60<br><b>57</b> - 60<br>60 | ert ve<br>er <b>S</b> e<br>er Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 00<br>10 00<br>87, 1                           | 1999 1999 1999 1999 1999 1999 1999 199  | onei<br>Propr<br>Pilas<br>Pilas          | gas<br>Valga<br>Valga |                                                      |
| SUMMARY                                                      | at Lead      | 0.016 in.<br>ksi                                                   | 31                                     |                                              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                         |                                          |                       | a serve sign<br>A fore gar<br>tip<br>Selp Care       |
| TABLE 13:1                                                   | Stre         | 0.005 in.                                                          |                                        |                                              | 3                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in in in 1896.<br>Inseli s<br>Militali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   | 12                                      |                                          | i v                   |                                                      |
| e tress A<br>t Volence Casse<br>of acceptago<br>vital Newsch | ani.         | pecimen                                                            | 9-12                                   | 9-15                                         | 9-18                                    | 9-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   | 1-21                                    | 1-24                                     |                       |                                                      |

stresses of the anchored bars do the stresses at the specified slip levels begin to increase.

3.2.2 <u>Influence of Lead Embedment Length on Stress Characteristics</u>. The stress measured at the start of the hook is plotted against the measured lead bar stress in Figs. 3.5 and 3.6. Figure 3.5 shows curves for #9 bars, and Fig. 3.6 shows #11 bars. Curves are plotted in Fig. 3.6 for two additional specimens from Ref. 1. It must be kept in mind that as the bars pulled out, bending stresses were induced on the bars near the bend, and at large slips the stresses measured at the start of the hook can only be considered approximate. Stresses greater than lead bar stresses, shown as dashed lines in Figs. 3.5 and 3.6, are attributed to bending stresses in the bars.

At a given level of stress, the difference between the lead bar stress and the stress at the start of the hook may be considered as the amount of stress that is transferred to the concrete by the straight lead embedment. As can be seen in Figs. 3.5 and 3.6, in the specimens with short lead embedment much less stress was transferred along the straight bar portion than in specimens with longer lead embedment. For the specimens which exceeded the yield stress of the anchored bars, the stress transferred was large up to stresses of about 30 ksi and began to decrease somewhat as additional load was applied to the bars. For the specimens which failed before reaching yield stress of the bars, the stress transfer increased only up to lead bar stresses of 10 to 20 ksi and then decreased rapidly as the specimens neared failure. At failure, the stress at the start of the hook in many of the specimens was nearly equal to the lead bar stress, indicating that no stress was being transferred along the entire lead embedment length.

3.2.3 Mode of Failure. In early all the tests the general performance and crack formation followed a similar pattern. As tensile load was applied to the anchored bars, the first cracking was located in the front face of the specimen radiating out from the anchored bars. The vertical cracks developed most rapidly and eventually terminated in the



Fig. 3.5 Influence of lead embedment on stresses for #9 bars



Fig. 3.6 Influence of lead embedment on stresses for #11 bars

compression zone of the beam and near the top of the specimen. While the vertical cracks were extending, horizontal cracks also radiated out from the bars forming a crack extending between the bars and out to the edges of the specimen. At higher load levels these horizontal front face cracks extended around the corners of the specimen. In most tests a vertical crack appeared on the side faces of the specimen about where the column longitudinal bars were located nearest the front face. Cracking of the front face and the front edge of the sides is thought to be a result of splitting stresses caused by lead slip of the anchored bars in the unconfined concrete at the front of the specimen.

As stress and slip progressed, the horizontal cracks on the side faces extended toward the back of the specimen and additional vertical cracks appeared about where other column longitudinal bars were located. At higher stress levels vertical cracks appeared on the side faces of the specimen in the vicinity of the bent portion of the anchored bar. As the specimens neared failure, the vertical cracks extended rapidly above and below the level of the anchored bar in a slightly inclined direction. The back face of some specimens showed vertical cracking at high load levels. The cracking was outside the area of the slip wires and was not considered to affect significantly the accuracy of the slip measurements referenced against the back face.

When a load increment was applied at high stress levels, slip continued to increase and stresses tended to reduce slightly. Failure was always sudden with the load dropping immediately to a fraction of its previous level whether a load increment was being applied or held. With the exception of Specimen 9-12, the drop in load was accompanied by severe cracking and portions of the side cover spalling away. In each case there was a significant separation of the side cover from the remainder of the specimen. Any attempt to increase the load on the anchored bars only resulted in very large slip and additional separation. The depth of spalling was to the level of the anchored bars.

and with the concensation we commissions and commissions in Section 1.

Specimen 9-12, which had the shortest straight lead embedment length, developed a severe diagonal crack extending up from the hooked portion of the anchored bar to the top front face of the specimen and also down to the compression zone of the beam. At failure the crack opened toward the front of the specimen. No spalling or separation of the sides could be observed. Specimen 9-12 is the only test in this series or those of Ref. 1 in which shear could be considered a contributing factor in producing failure.

### 3.3 Lightweight Concrete Series to all the some fixed and standing of

From the data for the lightweight concrete tests, the following trends were observed. These trends are similar to those noted in the lead embedment series using normal weight concrete.

- (1) Most of the slip occurs over the lead embedment and the curved portion of the hooked bar. Very little slip was measured on the tail extensions of the hooks. In all cases the lead slip (location 1H) is the greatest. The bars that did not yield exhibited slip at the start of the bend (location 2H) of approximately the same magnitude as the lead slip near failure. Slip at the end of the bend (locations 3H and 3V) was significantly smaller and in most specimens slip at the end of the tail extension (locations 4H or 4V) was negligible until high levels of stress were attained and failure was imminent.
- (2) The initial stiffness defined as stress divided by slip for the initial portion of the curves decreased as bar size increased.
- (3) The measured slip at location 4H on the specimen with the  $180^{\circ}$  hook indicated that the entire hook was being pulled towards the front of the specimen rather than around the bend.
- (4) Stress transfer along the straight lead embedment (the difference between the lead bar stress and the stress at the start of the curved portion of the hook) was negligible as the specimen reached failure for #11 bars. For #7 bars at lead bar stresses of 40 to 50 ksi,

the stress transferred varied from 20 to 40 ksi, but decreased rapidly as the specimen approached failure.

(5) Stresses measured at the tail extension were generally small.

Near failure, stresses on the tail extension increased very rapidly
while the magnitude of the slip at this location remained very small.

A summary of measured slip behavior is presented in Table 3.2. Values of slip and stress at the same reference points used in Table 3.1 are included here.

To evaluate the influence of the individual parameters considered in the lightweight concrete series the stress and slip data for comparable tests will be discussed in detail. Slip data presented are for the lead slip only.

- 3.3.1 <u>Influence of Hook Geometry</u>. Figure 3.7 presents lead bar stress versus lead bar slip curves for four specimens, two of 50 percent replacement lightweight concrete and two of normal weight concrete. These curves represent specimens in which lateral confinement remains constant but bend geometry varies. As reported in Ref. 1, there is little significant difference in the strength of 90° and 180° hooks. However, slip for the lightweight specimens is significantly greater.
- through the joint at 5 in. c.c., referred to as Type 3 confinement, versus no ties through the joint, referred to as Type 1 confinement, can be seen in Fig. 3.8. The two lower curves represent specimens from this test program (FR--50 percent fines replaced), and the two upper curves are companion normal weight specimens from Ref. 1. The inclusion of ties through the joint on the two normal weight concrete specimens shows an increase of about 19 percent in the ultimate stress. It can also be seen that to obtain this increase in strength approximately 50 percent increase in slip was required. The two 50 percent replacement lightweight concretes behaved similarly; strength was increased by

SUMMARY OF MEASURED SLIP BEHAVIOR -- LIGHTWEIGHT CONCRETE SERIES TABLE 3.2

|                      | Stress    | s at Lead Slip of | ip of     | Lead Slip at (0.6)<br>Anchorage Strength | at (0.6)<br>Strength | Lead Slip<br>at (0.6) | Approx.<br>Slip | Lead<br>Stress |
|----------------------|-----------|-------------------|-----------|------------------------------------------|----------------------|-----------------------|-----------------|----------------|
| Specimen             | 0.005 in. | 0.016 in.         | 0.050 in. |                                          | JSING ACL<br>W/O     | Anchorage<br>Strength | at<br>Failure   | at<br>Failure  |
|                      | ksi       | ksi               | ksi       | C Factor                                 | C Factor             | Measured<br>in.       | in.             | in.            |
| - 37<br>- 37<br>- 75 |           |                   |           |                                          |                      |                       |                 |                |
| 11-90-1-L-AL         | 18        | 29                | 38        | 900.0                                    | 900.0                | 0.012                 | 0.10            | 777            |
| 11-90-1-H-AL         | 15        |                   | 40        | 0.008                                    | 000.                 | 0.014                 | 0.09            | 46             |
| 11-90-1-L-AS         | 25        | 33                | 77        | 003                                      | 700.0                | 0.012                 | 0.10            | 52             |
| 11-90-1-L-FR         | 13        | 21                | 31        | 0.015                                    | 0.016                | 0.019                 | 0.11            | 38             |
| 11-180-1-L-FR        | 16        | 24                | 34        | 0.010                                    | 0.011                | 0.015                 | 0.11            | 38             |
| 11-90-3-L-FR         | 12        | 21                | 35        | 0.016                                    | 0.018                | 0.030                 | 0.16            | 47             |
| 7-90-1-L-AS          | 34        | 09                | 73        | 900.0                                    | 0.007                | 0.011                 | 0.12            | 82             |
| 7-90-1-L-FR          | 37        | 45                | 99        | 0.004                                    | 0.005                | 0.021                 | 0.16            | 80             |
|                      |           |                   |           |                                          |                      |                       |                 |                |



Fig. 3.7 Influence of hook geometry on slip



approximately 23 percent and it required about a 40 percent increase in slip to attain the higher strength. At this point it should be noted that in a range of slip that is more reasonable with respect to service-ability requirements, Type 3 confinement does not represent a very substantial increase in stress.

3.3.3 Influence of Axial Load. The effect of axial load was studied by comparing results from four specimens—two from this test program consisting of all lightweight aggregate specimens and two from the test program of Ref. 1 (normal weight aggregate). All specimens had the same geometry but the axial load produced stresses of approximately 0.8 ksi and 3.0 ksi on the gross area of the specimens. The effect of axial load was negligible for normal weight as well as lightweight concrete specimens. It should be noted that the tail extension of the hooked bar was oriented in the direction of application of axial load in all four cases. Other orientations of bent bars and different lateral confinements might produce different results.

### 3.3.4 <u>Influence of Concrete Mix</u>

General Characteristics. Three different mixes were cast in this test program to cover the range of lightweight concrete fine aggregates in usage. The difference between the three mixes is the amount of lightweight fine aggregate used: all lightweight fine aggregate, replacement of 50 percent of the lightweight fine aggregates with normal weight sand aggregate, or replacement of all of the lightweight fine aggregate with normal weight sand aggregate. The coarse aggregate used in all three mixes was lightweight coarse aggregate.

Figure 3.9 presents lead bar stress versus lead slip for four specimens. All specimens shown had the same confinement, same level of axial load, and #11 bars with  $90^\circ$  standard hooks. Three curves represent specimens with anchored bar embedded in each of the three lightweight concrete mix categories and one curve representing a specimen with the anchored bars embedded in normal weight concrete. Figure 3.10 presents lead bar stress versus lead slip for three specimens. Two curves





represent specimens with #7 bars in two of the lightweight concrete mix categories from this test program, and one specimen with #7 bars anchored in normal weight concrete.

All-Lightweight Concrete. Referring to Fig. 3.9, it can be seen that the all-lightweight concrete specimen reached approximately 85 percent of the ultimate stress attained by the normal weight concrete specimen. It also can be seen that at failure the all-lightweight concrete specimen exhibited approximately 50 percent more slip than the normal weight specimen.

Fifty Percent Replacement. Figure 3.9 shows that the 50 percent replacement concrete specimen reached approximately 75 percent of the ultimate stress attained by the normal weight concrete specimen. Also, it can be seen that the 50 percent replacement concrete specimen showed approximately 80 percent more slip at failure than the normal weight specimen. Figure 3.10 shows that the 50 percent replacement concrete specimen reached approximately 82 percent of the ultimate stress attained by the normal weight concrete specimen. However, it should be noted that the shape of the curve is dictated mainly by yielding and strain hardening of the anchored bar rather than crushing of the concrete. The slip at failure of the 50 percent replacement concrete specimen is roughly equivalent to the slip of the normal weight specimen at failure.

All-Sand Lightweight Concrete. Figure 3.9 shows that the all-sand lightweight concrete specimen reached roughly the same ultimate stress attained by the normal weight concrete specimen. It also shows that at failure the all-sand lightweight concrete specimen exhibited approximately 50 percent more slip than the normal weight concrete specimen. Figure 3.10 shows that the behavior of the all-sand lightweight concrete specimen was very similar to the normal weight concrete specimen throughout the range of loading. It should be noted that the shape of the curve was greatly influenced by yielding and strain hardening of the anchored bars. The all-sand lightweight concrete specimen test was

stopped prematurely, due to difficulties in loading the anchored bars.

General Observations on Lightweight Concrete Specimens. In general, the stress-slip curves for the all-sand lightweight and the all-lightweight specimens are quite close. If the effect of concrete strength difference is eliminated by normalizing with respect to  $\sqrt{f'_c}$ , the band is narrowed further and the effect of different lightweight mixes appears to be quite small. However, the 50 percent replacement mix was consistently below the other lightweight mixes.

Figure 3.11 repeats the curves presented in Fig. 3.9 and shows a curve for the 50 percent replacement lightweight with the 180° standard hook. Figure 3.11 shows that the 50 percent replacement specimens have consistently lower lead stress values for the same slip than the other two lightweight mixes studied. The 50 percent replacement specimens shown in Fig. 3.11 were cast at two different times from entirely separate concrete batches.

The 50 percent replacement specimens would have been expected to plot somewhere in the band encompassed by the all-sand lightweight specimen and the all-lightweight specimen. After careful consideration of the compressive and split tensile strengths of the different lightweight mixes, it is believed that the lower stresses observed for the 50 percent replacement mix were a direct result of these specimens having been cast using an entirely different shipment of fine as well as coarse lightweight aggregate than the one used for the other two lightweight mixes of this study. The same trend can be observed in Fig. 3.10 if the portions of the plot below lead bar stresses of 60 ksi are considered.

In summary, the effect of different lightweight concrete mixtures, insofar as the fine lightweight aggregate replacement with sand, offers very little improvement on the performance of hooked bar anchorages. It may be that some characteristic of lightweight coarse aggregates, possibly the crushing strength of the aggregate, determines the performance of the hooked bar anchorages.



crack formation and failure similar to that discussed for the lead embedment series. Load increments at load stages nearing failure load showed large amounts of slip and greater tendency for the stresses to reduce after the load application. Failure was always sudden with the load dropping to a fraction of its previous level whether load was being applied or held. Failure was accompanied by severe cracking and by a significant separation of the side cover from the specimen, and, in some cases, by small portions of the side cover spalling away. Any increase of load resulted in very large slip and more severe separation of the cover, deformation of the longitudinal column bars initiating the cracking of the side cover, as evidenced by the vertical cracks in the vicinity of the column bars on the front and back faces.

In the tests by Jirsa and Marques [1], some improvement in stress and slip characteristics was noted when the column thickness was increased or ties were carried through the joint. However, the limitation to the small size columns showed this was not significant for the #11 bars. The increased column size, or increased straight lead embedment length, used in this study does show this to be of considerable value. Since the stress measurements show that stress transfer over the straight lead embedment cannot adequately account for the increased strength, it appears that the increased column thickness provides more concrete area resulting in a larger total tensile force being developed before the side cover spalls.

In the case of lightweight concrete, the tensile capacity of the concrete is reduced, thereby reducing the tensile force developed by the side cover prior to failure. The increased slip of the bars in the lightweight concrete series can be attributed to the tendency for greater deformations ahead of the bar lugs and bent portion of the bar when lightweight aggregates are used.

## 3.4 A Failure Hypothesis for Hooked Bars in Beam-Column Joints

Considering the measured data and observed modes of failure, a reasonable estimate of the pattern of failure of a hooked bar can be made. In nearly all cases, both in this study and in previous ones [1], the side cover spalled away at failure with a decrease in the load-carrying capacity. Therefore, it is apparent that the failure of a hooked bar is governed primarily by a loss of cover rather than pulling out. Slip between the bar and concrete produced splitting of the side cover. Starting at the lead end of the anchored bars, the splitting gradually progressed backward. As indicated by some of the stress measurements at the start of the hook, the effect of the lead slip was to reduce the stress transfer capacity along the straight lead embedment, especially for the short lengths, and this portion of the hooked bar anchorage was not transferring any stress to the concrete as failure approached.

The very large compressive stresses at the inside surface of the bend resulted in a stress condition which also tended to split the cover. As slip increased and the hook moved forward, a condition was created near failure where the hook acted similar to a wedge forcing the concrete cover to split.

## 5 9 2 Mar Jarra siramana and Por Booksa's factor of the Booksa's fac

Convidenting the assistanced data and correspond and so that the conventual of the conventual contractors of the conventual conventual conventual conventual and the conventual and conven

The very large compressive eccesses at the inside seriese of the bedded resulted in a stross condition which also tended to split the cover. We slip increased and the brokenoved forward, a condition out breateston to hook stroke to a redge foreign the concrete cover to soft.

## 4. COMPARISON OF TEST RESULTS WITH DESIGN PROCEDURES FOR HOOKED BARS

### 4.1 Introduction

The design provisions for hooked bar anchorages in ACI 318-71 are based primarily on provisions appearing in previous codes. Pullout tests of hooked bars embedded in massive concrete slabs provide some information, and tests on hooked bars in beam-column joints provide additional information for hooked bars with short embedment lengths. The tests performed in this study, as well as those performed earlier by Jirsa and Marques [1] and Hribar and Vasko [6] provide an opportunity to evaluate present and proposed design recommendations and to suggest changes.

In the following discussions, the strength of hooked bar anchorages will be evaluated by using the provisions of the ACI Building Code and Commentary (318-71) and the proposed design recommendations for hook strength by Jirsa and Marques [2].

### 4.2 Measured and Computed Strength

4.2.1 <u>ACI Code Procedure</u>. Using the provisions of the ACI Code Sec. 12.8, the stress developed by the standard hook is given as  $f_h = \xi \sqrt{f_c'}$ . Values for  $\xi$  are found in Table 12.8.1 of the ACI Code. Since a hook generally extends vertically through the concrete, it is not clear whether "top bars" or "other bars" coefficients for  $\xi$  should be used. However, for these tests, values of "other bars," where  $\xi$  is 540 for bar sizes #3 to #9, 480 for #10, and 420 for #11, resulted in hook stresses closer to the measured values.

The stress developed over the straight lead embedment,  $f_\ell$ , was computed using the basic equation for development length, Sec. 12.5, and solving for  $f_\ell$  in terms of a known anchorage length.

where  $\ell_{\ell}$  is the straight lead embedment and  $A_{b}$  is the area of the bar.

The computation of hooked bar anchorage strengths in lightweight concrete using the ACI 318-71 Code provisions is somewhat ambiguous. Different interpretations of Code provisions will yield substantially different values of predicted anchored strengths.

Section 12.5(c) of the ACI 318-71 Code specifies that "when lightweight aggregate concrete is used the basic development lengths in (a) shall be multiplied by 1.33 for all lightweight concrete and 1.18 for sand lightweight with linear interpolation when partial sand replacement is used." Section 12.8.2 of the ACI 318-71 Code specifies that "An equivalent embedment length shall be computed using the provisions of Section 12.5(a) by substituting  $f_h$  for  $f_y$  and  $f_z$  for  $f_d$ ." Section 12.8.2 does not specify that the provisions of Section 12.5 with all of its subsections, including Subsection 12.5(c), must be applied thereby leaving open to interpretation whether or not the standard hook strength must be modified to account for the effect of lightweight aggregate concrete or not.

If the straight lead embedment  $\ell_{\ell}$  is known, the stress over the straight lead embedment  $f_{\ell}$  can be computed. The stress developed by the standard hook  $f_h$  can also be computed and the anchorage stress  $(f_h + f_{\ell})$  resulting from the two interpretations of the ACI 318-71 Code procedure can be computed as indicated in Eqs. 4.2 and 4.3:

Find 
$$\hat{\mathbf{f}}$$
 with the distribution of the result of  $\hat{\mathbf{f}}_{\mathbf{c}}^{\prime}$  in  $\hat{\mathbf{f}}_{\mathbf{c}}^{\prime}$  and  $\hat{\mathbf{f}_{\mathbf{c}}^{\prime}}$  and  $\hat{\mathbf{f}_{\mathbf{c}}^{\prime}}$  and  $\hat{\mathbf{f}}_{\mathbf{c}}^{\prime}$  and  $\hat{\mathbf{f}_{\mathbf{c}}^{\prime$ 

and (ii) not is a second of the most like , of 
$$\frac{\mathbf{P}_{c}}{\mathbf{f}_{c}'}$$
 , we also red and the first  $\mathbf{f}_{c}'$  and the second  $\mathbf{f}_{c}'$  are also second as  $\mathbf{f}_{c}'$  and  $\mathbf{f}_{c}'$  are also second  $\mathbf{f}_{c}'$  and  $\mathbf{$ 

Interpretation of ACI 318-71 Code procedure based on Eq. 4.3 results in higher values of computed anchorage strengths and it was used in this study.

Using the measured concrete strengths, values of  $f_h$  (using the "other bar" coefficients),  $f_{\boldsymbol\ell}$  and computed hook strength  $(f_h + f_{\boldsymbol\ell})$  are tabulated in Table 4.1a. Values of computed hook strength  $(f_h + f_{\boldsymbol\ell})$  without usage of the lightweight concrete reduction factor are tabulated in Table 4.1b to permit direct comparisons with the normal weight concrete specimens.

It is clear from the tabulations in Table 4.1a that the ACI Code grossly underestimates the hook capacity (average  $f_{hm}/f_{hc}=1.75$ ,  $\sigma=0.29$ ) and the ultimate strength of the entire anchorage (average  $f_{u}/(f_{h}+f_{\ell})=1.45$ ,  $\sigma=0.23$ ). From the values in Table 4.1b for lightweight specimens, the ACI Code provides a better estimate of hook and anchorage strength, but the ambiguity of the provisions makes it difficult to interpret the intent of the Code with respect to hooked bars in lightweight concrete.

4.2.2 <u>Design Recommendations Proposed by Jirsa and Marques</u> [2]. Because the ACI Code underestimated the strength of hooked bars in normal weight concrete, a different design procedure was proposed by Jirsa and Marques [2]. The strength of the hook was given as

$$f_h = 700(1 - 0.3d_b)\psi \sqrt{f_c'}$$
 (4.4)

where  $d_b$  is the diameter of the bar. The coefficient  $\psi$  should be taken as unity unless the following conditions are satisfied.

The value of  $\psi$  may be taken as 1.4 if (a) the bar is #11 or smaller, (b) the lead straight embedment between the standard hook and the critical section is not less than 4 bar diameters or 4 in. whichever is greater, (c) side concrete cover normal to the plane of the hooked bar is not less than 2.5 in., and (d) cover on the tail extension is not less than 2 in.

The value of  $\psi$  may be taken as 1.8 if the joint is confined by close ties at a spacing of  $3d_b$  or less and meets the requirements for  $\psi=1.4$ . No distinction is made between top bars and other bars.

TABLE 4.1a MEASURED AND COMPUTED ANCHORAGE STRENGTH--ACI 318-71

Normal Weight Concrete

|                   | ti gazerez                   |                              | General Section    |                      |                                                        |                                       |
|-------------------|------------------------------|------------------------------|--------------------|----------------------|--------------------------------------------------------|---------------------------------------|
|                   | e a literatura (PA) ili ili  |                              |                    | Compute              | d Stresses                                             | an ar it never                        |
| Mea               | sured                        |                              |                    | i waren aray kan     | Meas/Comp                                              |                                       |
| Specimen Str      | esses                        | f<br>h                       | f                  | fh+f                 | $f_{hm}/f_{hc}$ ** $f_{u}(f_{l})$                      | $_{ m h}^{+f}\ell^{)}$                |
| f <sub>h</sub>    | f                            |                              | ~                  | 11 2                 |                                                        |                                       |
| h                 | _u                           | Other*                       |                    |                      | , "我只要你是这些傻话。"<br>———————————————————————————————————— |                                       |
|                   | ksi                          | ksi                          | ksi                | ksi                  |                                                        |                                       |
|                   | -, ., .,                     | - AL 1                       | 2 + 24 - 5,17 #    |                      |                                                        | 1 //                                  |
| J7-90-15-1-H 66   | 91                           | 36.5                         | 26.8               | 2-63 <b>,</b> 3 dead | and 1.80 tagabetee y                                   | 1.44                                  |
| J7-90-15-1-M 65   | 100                          | 38.5                         | 28.3               | 66.8                 | 1.69                                                   | 1.50                                  |
| J7-90-15-1-L 65   | 97                           | 37.8                         | 27.6               | 65.4                 | 1./2                                                   | 1.48                                  |
| J7-90-12-1-H 62   | 62                           | 34.9                         | 17.4               | 52.3                 | (0 = 1.78 ( ) + ( ) + ( )                              | 1.19                                  |
| J7-90-15-2-Н 73   | 99                           | 37.3                         | 27.3               | 64.6                 | 1.96                                                   | 1.53                                  |
| J7-90-15-2-M 70   |                              | 37.3                         | 27.3               | 64.6                 | 1.88 maga magina                                       | 1.47                                  |
| J7-90-15-3-H 70   |                              | 36.8                         | 27.0               | 63.8                 | ind $A90$ is agains                                    | 1.63                                  |
| J7-90-15-3a-H 66  |                              | 33.1                         | 24.3               | 57.4                 | 1.99                                                   | 1.71                                  |
| J7-90-15-4-H 62   |                              | 36.1                         | 26.5               | 62.6                 | - 1.72 min i 07 mas                                    | 1.17                                  |
| J7-180-15-1-H 64  |                              | 34.1                         | 24.9               | 59.0                 | is spec $1$ . $87$ phay if $\mu$ is                    | 1.47                                  |
| J7-180-12-1-H 61  |                              | 35.6                         | 17.8               | 53.4                 | 1.71                                                   | 1.14                                  |
| Compress for      | -                            | lyd bo                       | raccom 4           | anends thous         | A.C. Pesiga Rotos                                      |                                       |
| 9-12              | 47                           | 37.0                         | 7.5                | 44.5                 | 1.14                                                   | 1.07                                  |
| 9-15 43           |                              | 33.3                         | 11.4               | 44.1                 | 800 000 <b>1.29</b>                                    | 0.98                                  |
| 9-13 modili v 65  |                              | 37.0                         | 17.8               | 54.1                 |                                                        | 1.37                                  |
| 9-21 59           | - :                          | 32.4                         | 20.1               | 51.9                 | 1.82                                                   | 1.14                                  |
| 9-21              | , ,,                         | s Deiri                      | g (1897 )          | of the Neol          | Princetta adri - ISI a                                 |                                       |
| 11-15 28          | 3 50                         | 30.9                         | 7.1                | 38.0                 | 0.91                                                   | 1.32                                  |
|                   |                              | 28.8                         | 9.9                | 38.7                 | 2.01                                                   | 1.50                                  |
|                   |                              | 30.3                         | 13.9               | 44.2                 | 1.68                                                   | 1.65                                  |
|                   | _                            | 27.2                         | 15.6               | 42.8                 | 2.13                                                   | 1.80                                  |
| 11-24 58          |                              | 27:4                         | 13.0               |                      | to responsible to be the                               |                                       |
|                   | 8 48                         | 29.0                         | , 6.6              | 35.6                 | , <b>1.66</b>                                          | 1.35                                  |
| J11-90-15-1-H 48  |                              | 28.9                         | 6.6                | 35.5                 | 1.80 * * * * * * * * * * * * * * * * * * *             | 1.46                                  |
| J11-90-15-1-L 5:  |                              | 28.6                         | 3.3                | 31.9                 | 1.47                                                   | -1.32                                 |
| J11-90-12-1-H 4   |                              | 29.8                         | 6.8                | 36.6                 | 7.64 mai an asili                                      | 1.34                                  |
| J11-90-15-2-H 49  |                              | and the second second second | 6.4                | 30.0<br>34.6- 14.    | lsava <b>1.88</b> eda (d) Ja                           | 1.53                                  |
| J11-90-15-2-L 5   | _                            | 28.2                         | 6.7                | 36.1                 | 2.11                                                   | 1.72                                  |
| J11-90-15-3-L ##6 |                              | 29.4                         | 6.8                | 36.5                 | dom si $\frac{1}{2}$ i $\frac{1}{3}$ idome invitati    | 1.89                                  |
| J11-90-15-3a-L 6  | and the second of the second | 29.7                         | 6.4                | 36.3<br>42342 87     | varano1.61 = (a)a =                                    | 1.31                                  |
| J11-180-15-1-H 4  | 5 45                         | 27.9                         | 0.4                | J4.J                 |                                                        | · · · · · · · · · · · · · · · · · · · |
| .or ti animama    |                              | 19 BU 188                    |                    |                      | ak i Sundin regiones                                   | al Tag                                |
| •                 |                              |                              |                    | Average              | 1.75                                                   | 1.45                                  |
|                   |                              |                              |                    | σ                    | 0.29                                                   | 0.23                                  |
| 4 Janifinos       | g Armanda<br>S               | i serie                      | - 3 <u>- 1 - 1</u> | and the second of    |                                                        |                                       |

<sup>\*&</sup>quot;Other bars" as defined in Sec. 12.8 of ACI 318-71 Code.

\*\*fhm - measured; for 5 computed. - see second where his continuous to a few few

TABLE 4.1b MEASURED AND COMPUTED ANCHORAGE STRENGTH -- ACI 318-71

Lightweight Aggregate Concrete

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         | 10.7                             | 100                                   |                                                                    |                  |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|----------------------------------|---------------------------------------|--------------------------------------------------------------------|------------------|----------------------------------------|
| of Society of the second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S ACI 31                                | 318-71                  | f <b>&amp;</b> +f                |                                       | # n                                                                |                  | a                                      |
| Specimen Specimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f (Computed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f (Computed                             | puted)                  | (Computed                        | Stress)                               | Measured<br>Stress at                                              | Meas/Comp        | Jomp                                   |
| sin<br>d<br>s<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |                                  | o/w                                   | Failur                                                             | with             | o/m                                    |
| e Fil<br>Sasa<br>Sasta<br>Sasta<br>Basi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C Factor<br>ksi                         | C Factor<br>ksi         | C Factor<br>ksi                  | C Factor                              | ksi                                                                | C Factor         | C Factor                               |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·   | 100<br>00               |                                  |                                       |                                                                    |                  |                                        |
| 11-90-1-L-AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7                                     | 6.2                     | 31.9                             | 33.4                                  | 74                                                                 | 1.38             | 1.38                                   |
| wie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000<br>316<br>1325<br>1111             | San F                   |                                  |                                       |                                                                    | (                |                                        |
| ТТ-20-Т-Т-01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | <b>&gt;</b> #1          | 7. T. T.                         | ئ<br>ئ                                |                                                                    | 1.35             | 1.28                                   |
| 11-90-1-L-AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31.45 end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 385<br>9 <b>7</b><br>997                | 7.5                     | 37.5                             | 38.6                                  | 52                                                                 | 1.39             | 1.35                                   |
| 11-90-1-FR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° | 9.9<br>6.99<br>6.99     | 34.0                             | 35.4                                  | 4,5 4<br><b>8</b><br>33 <b>6</b><br>93                             | 1.12             | ************************************** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |                                  |                                       | e an                                                               | <b>.</b>         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  |
| 11-180-1-L-FR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.1<br>20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.3                                     | 6.7                     | 34.4                             | 35.8                                  |                                                                    | 1.10             | 1.06                                   |
| 11-90-3-L-FR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 201. April |                                         | 1                       | 440<br><b>1.</b><br>2.2.<br>3.4. | 36.5                                  | 5 to 10                                                            | 1.34             | 12.20                                  |
| eregri<br>Britania<br>Personalis<br>Personalis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                         |                                  |                                       | ine<br>Unio                                                        | -<br>)<br>• :    | 99                                     |
| 7-90-1-L-AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.1                                    | .50°.                   | 930<br><b>9</b><br><b>9</b>      | 70.0                                  | 85<br>80<br>80<br>81                                               | 1.25             |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ilo<br>zoit<br>zp<br>do                 |                         | sinc<br> <br> ELE<br>  UVS       | , 16<br>                              | sin<br>Lad                                                         | )<br> <br> -<br> | <br>!<br>! ?!                          |
| 7-90-1-L-FR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36.2<br>8.45<br>9.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.1<br>1.12                            | <b>5</b> 96.6           | 57.3                             | 62.8                                  | 2008<br>1008<br>1005                                               | 1.40             | 1.27                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aga<br>Ten<br>Ten<br>Ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e Cons<br>de Ad<br>e Ger                |                         | en<br>en<br>en e<br>en e         | los.                                  | ii<br>Yan                                                          | -                |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 3 5,6<br>9 5 6<br>5 6 6 |                                  | Averag                                | - 6<br>- 6<br>- 6<br>- 6<br>- 6<br>- 6<br>- 6<br>- 6<br>- 6<br>- 6 | $\sim$ -         | L.23                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o <del>d</del> :<br>evet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | :977,<br>:5072;         | wa.                              | <b>5</b><br>83                        |                                                                    | 0.11             | . 14<br>                               |
| o á                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iat<br>tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e )<br>vec<br>mai                       |                         | es figur                         | i -<br>Bruij                          | er<br>Arti                                                         |                  | 3078<br>43                             |
| *All values for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for "other bars" val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | values for \$                           | 90<br>101<br>114        | i de est                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                    |                  | ROOT<br>HENRI                          |

The stress developed over the straight lead embedment was computed using the ACI Code equation for development length and solving for  $f_{\ell}$  in terms of a known anchorage length.

$$f_{\ell} = \frac{(\ell_{\ell} - \ell')\sqrt{f_{C}'}}{0.04A_{b}}$$
 (4.5)

where  $\ell_{\ell}$  is the straight lead embedment,  $\ell'$  is 4d or 4 in. whichever is greater, and A is the area of the bar.

Using the measured concrete strengths, values of  $f_h$ ,  $f_{\ell}$ , and  $f_h+f_{\ell}$  calculated from the recommendations proposed by Jirsa and Marques [2] are listed in Table 4.2. This approach reduces the conservatism present in the ACI Code and results in nearly the same ratios of measured to computed stress for the hook and the entire anchorage.

4.2.3 Measured Results Compared with Computed Strength. Comparing measured and computed values of  $f_h$ , the ACI Code predicts values 10 percent greater than measured for short lead embedment of #9 bars to 80 percent greater for longer embedment lengths, and 60 percent to 110 percent greater for #11 bars. The recommendations proposed by Jirsa and Marques [2] give values of  $f_h$  10 to 50 percent greater for #9 bars and 20 to 60 percent greater for #11 bars. These results indicate that the provisions of Sec. 12.8 are quite conservative when applied to hooked bars in beam-column joints such as those tested. The Jirsa and Marques equation is in better agreement for short embedment lengths but also becomes very conservative when the embedment length is large.

The ratio of measured to computed stress at failure at the lead end of the anchorage varies from 1.0 to 1.4 for the #9 bars for both the ACI Code and the Jirsa and Marques predictions. The ratio is 1.3 to 1.8 using the ACI provisions and 1.2 to 1.6 using the Jirsa and Marques recommendations for the #11 bars. The values of lead bar stresses indicate that the stresses computed using the ACI Code for the lead straight bar length tend to be unconservative because the ratio of measured to computed lead bar stress ( $f_h + f_\ell$ ) is less than the ratio

TABLE 4.2 MEASURED AND COMPUTED ANCHORAGE STRENGTH--JIRSA & MARQUES

Normal Weight Concrete

| <u> </u>                |                    |                           | gan or any sing i           | e dan er er er er           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------|--------------------|---------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| anenori pelo rel        | Меа                | sured                     | Turns A de                  |                             | outed Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | esses                            | ing and a supplication of the supplication of |
| Specimen                |                    | esses                     | $-\frac{1}{2} \mathbf{f_h}$ | est <sub>e</sub> e          | f <sub>h</sub> +f <sub>l</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Meas                             | /Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| randu erdi i.           | $\overline{f}_{h}$ | $\mathbf{f}_{\mathbf{u}}$ | n                           | X                           | n k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>hm</sub> /f <sub>hc</sub> | $f_u(f_h+f_l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                    | ksi                       | ksi                         | ksi                         | ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | voletiai dekio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ord on best             |                    | ia rann                   | . ६ - इत्या ४८              |                             | of the party of the control of the c |                                  | i.<br>Produkti unach ber Sch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| J7-90-15-1-H            | 66                 | 91                        | 49.0                        | 15.5                        | 64.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.35                             | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J7-90-15-1-M            | 65                 | 100                       |                             | 16.3                        | 67.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.26                             | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J7-90-15-1-L            | 65                 | 97                        | 50.1                        | 15.9                        | 66.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30                             | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J7-90-12-1-H            | 62                 | 62                        | 46.6                        | 6.7                         | 53.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ા <b>્1.33</b> ક                 | 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J7-90-15-2-H            | 7.3                | 99                        | 49.8                        | 15.8                        | 65.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.47                             | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J7-90-15-2-M            | 70                 | 95                        | 49.8                        | 15.8                        | 65.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.41                             | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J7-90-15-3-H            | 70                 | 104                       | 49.3                        | 15.6                        | 64.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.42                             | 230 <b>1.60</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| J7-90-15-3a-H           | 66                 | 98                        | 56.9                        | 14.0                        | 70.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.16                             | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J7-90-15-4-H            | 62                 | 73                        | 34.6                        | 15.4                        | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>1.79</b>                      | 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ј7-180-15-1-Н           | 64                 | ara 1 <b>87</b>           | 993 <b>45.7</b> / 3         | 14.5                        | 60.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.40                             | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J7-180-12-1-H           | 61                 | 61                        | 47.7                        | 6.9                         | 53.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.27                             | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | • •                | *                         |                             | TAJČE M                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dd lo ann.<br>1.32               | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9-12                    | 42                 | 47                        | 31.7                        | 0.0                         | 31.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.08                             | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9-15                    | 43                 | 43                        | 40.0                        | 4.5                         | 44.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | 0.97<br>1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9-18                    | 65                 | 74                        | 44.4                        | 10.1                        | ः €54 <b>़</b> 5 ः                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.46 - 1.52                      | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9-210 John              | :59                | 59                        | əə <b>n38.9</b>             | 13.3                        | 52.2 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ាន៨ ចំរិន់ដែល                    | ១១ សិ <b>ទី</b> វីទីស៊ីកាល់                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11-15                   | 28                 | 50                        | 41.6                        | 0.5                         | 42.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.67m                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11-18                   | 58                 | 58 70                     |                             | 4.1                         | 42.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.49                             | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11-21                   | 51                 | 73                        | 40.8                        | 8.1                         | 48.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.25                             | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11-24                   | 58                 | 77                        | 36.6                        | 10.8                        | 47.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1:58                             | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| and a server has a con- |                    | . gy eta                  |                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ј11-90-15-1-Н           | 48                 | 48                        | 39.6                        | 0.4                         | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - T. 1.21                        | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J11-90-15-1-L           | 52                 | 52                        | 39.0                        | 0.4                         | 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.33                             | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J11-90-12-1-H           | 42                 | 42                        | 27.4                        | 0.0                         | 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.53                             | -1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ј11-90-15-2-Н           | 49                 | 49                        | 40.0                        | 0.4                         | 40.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.23                             | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J11-90-15-2-L           | 53                 | 53 %                      | 37.9                        | 0.4                         | 38.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.40                             | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J11-90-15-3-L           | 62                 | 62                        | 39.4                        | 0.4                         | 39.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.57                             | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J11-90-15-3a-L          | 69                 | 69                        | 51.4                        | 0.4                         | 51.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.34                             | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| J11-180-15-1-H          | 45                 | 45                        | 37.5                        | 0.4                         | 37.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20                             | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Jobson Opalie.          |                    | Gidien                    |                             | estra a como                | in ara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                    | si via en los esperantes  |                             |                             | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.34                             | 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                    |                           | A PER TRANSPORT FRANCE ()   | i kiri kiri ing Karabaya da | (14명 전환 - 첫분성) 4<br><b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.20                             | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                    |                           |                             | JAKKAT S                    | ,<br>Distriction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | anit (spor                       | e transfer and the first transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                       |                    |                           |                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

of measured to computed hook stress, f<sub>h</sub>. However, in most instances the stresses computed using the proposed Jirsa and Marques Eq. 4.4 appear to be much more accurate as the two ratios are nearly equal for each test. Even though the proposed equation gives a good prediction for the increase in strength with the increase in lead embedment length, the tests show that where failure occurred prior to yielding, the stress at the start of the hook was equal or nearly equal to the stress at the lead end. Since the ACI equation for development length was based on tests in which bar stress varied from a maximum at the critical section to zero at the end of the straight bar, it seems unrealistic to use the ACI approach for computing the anchorage capacities for short bars with little stress variation along the straight portion between the critical section and the hook.

As was noted in Chapter 3, Specimens 9-15 and 9-21 were cast with a concrete of questionable quality. Observations of test results and appearance of the specimen after testing tend to indicate that poorly washed aggregate had been supplied. The crushed concrete at the inside of the hook had a tan appearance, whereas in all previous tests the crushed concrete had a whitish gray appearance. The tan coloring is likely the result of dirt and clay in the aggregate. It is possible that some of this residue built up under the hook, attributing to the large slips starting at low levels of load.

At the time of casting, the appearance of the concrete from the ready-mix truck was the same as in previous tests, giving no indication that problems would develop later. Looking at these two specimens from a serviceability point of view, it is clear that a small increase in load resulted in a large amount of slip. At stress of  $0.6(f_h + f_L)$ , a value selected to approximate service load, the slip measured was about 0.07 in. or four times the 0.016 in. suggested as permissible by the ACI Code. The use of poor quality concrete with unwashed aggregate would likely result in severe cracking at service loads.

#### PROPOSED DESIGN RECOMMENDATIONS

#### 5.1 Introduction

Because of the observation that anchorage strength increased significantly as the lead embedment length increased, two possible approaches for the design of hooked bar anchorages will be examined. Approach A is similar to that currently in the ACI 318-71 Code and the modified version developed by Jirsa and Marques [2]. Using this approach the strength is determined by calculating a stress which can be developed by the hook plus an additional straight lead embedment to provide the difference between the hook stress and the stress at the critical section. Approach B is based on considering the hook and straight lead embedment as a unit.

To take the previously observed factors into account in developing design recommendations, the strength of hooked bar anchorages will again be divided into three classes with the distinction between these classes based on the lateral restraint provided against splitting. A modification factor  $\psi$  will be used as defined in the proposed design recommendations by Jirsa and Marques.

## 5.2 Approach A--Hook and Lead Embedment Considered Separately

The recommendations by Jirsa and Marques were used, as described in Chapter 4, to compute the strength of the hooks,  $f_h$ , for the specimens in this study. By deducting  $f_h$  from the strength measured at failure,  $f_u$ , the additional strength for the straight lead embedment,  $f_\ell = f_u - f_h$ , was determined. The results were plotted as  $f_\ell/\sqrt{f_C'}$  versus  $f_\ell/d_b$  (Fig. 5.1) where  $f_\ell$  is the straight lead embedment length and  $f_\ell$  the bar diameter. The strength due to the lead embedment can be approximated by the



Fig. 5.1 Proposed values for strength of hooked bar anchorages using Approach A

equation

$$f_{\ell} = 67(\ell_{\ell}/d_{b} - 3)\sqrt{f_{c}'}$$
 (5.1)

for the specimens with confinement factor  $\psi$  = 1.4. Reducing this equation to add the effect of confinement, and adding the equation for  $f_h$  to give the total strength of the anchored bar,  $f_u$ , results in

$$f_u = 67/1.4 \psi(l_b/d_b - 3)\sqrt{f_c} + 700 \psi(1 - 0.3d_b)\sqrt{f_c}$$

or, equivalently

$$f_{11} = 550(1 - 0.4d_b + 0.8 \ell_b/d_b)\psi \sqrt{f_c'}$$
 (5.2)

## 5.3 Approach B--Hook and Lead Embedment as a Unit

5.3.1 Length to Be Considered as Embedment Length. Two different equations can be derived, depending on how the embedment length is considered as a variable. First, the embedment length is taken as the straight lead embedment,  $l_{\ell}$ , and the strength considered is the measured strength at failure,  $f_{u}$ . Figure 5.2 shows  $f_{u}/\sqrt{f_{c}'}$  plotted against  $l_{\ell}/d_{b}$ . This plot indicates that the strength for the class of specimens with  $\psi = 1.4$  is given by

$$f_u = (350 + 75 l_l/d_b)\sqrt{f_c'}$$
 (5.3)

or

$$f_{u} = (250 + 54 l_{g}/d_{b}) \psi \sqrt{f'_{c}}$$
 (5.4)

Second, the embedment length is considered as the straight lead embedment plus the horizontal projected length of the hook (bend radii +  $d_b$ ) and will be noted as  $\ell_{dh}$ , Fig. 5.3.

en Vinadistribus varios estas



Fig. 5.2 Proposed values for strength of hooked bar anchorages using Approach B



Fig. 5.3 Standard hook details

The results are plotted in Fig. 5.4 as  $f_u/\sqrt{f_c'}$  versus  $\ell_{dh}/d_b$ . A conservative line through the test results with  $\psi$  = 1.4 produces the following relationship

$$f_u = 70 \, \ell_{dh} \sqrt{f_c'}/d_b \tag{5.5}$$

or

$$f_{u} = 50 \psi l_{dh} \sqrt{f_{c}'}/d_{b}$$
 (5.6)

### 5.4 Comparison of Equations

In comparing the equations from Approach A and the two equations from Approach B, the form of the equations is generally the same with the major difference being the number of terms in each equation. In each case the stress can be easily calculated as a function of the straight lead embedment length and the bar diameter. However, in practice the engineer is more often concerned with the length required to develop the yield stress of the bar rather than the stress the bar can carry for a given length. From this point of view, the equations of Approach B are much easier to use, with Eq. 5.6 being the simplest. Rearranging terms,  $\ell_{\rm dh}$  can be determined directly



Fig. 5.4 Proposed values for strength of hooked bar anchorages using Approach B

$$\ell_{dh} = \frac{d_b}{50\psi} \frac{f_u}{\sqrt{f'_c}} \quad \text{or} \quad \frac{0.02d_b f_y}{\psi \sqrt{f'_c}}$$
 (5.7)

It should be noted that the length given is the total horizontal length and there is no need to add a length for the hook to determine whether the column can accommodate the hooked anchorage.

As was noted in Chapter 4, many tests showed that at failure the stress in the bar at the start of the hook was the same as that measured at the lead end of the anchorage. In all the tests, the concrete failed by splitting rather than a pullout failure of the bars. The behavior suggests that the strength is derived from the splitting strength of the concrete and it is, therefore, illogical to assume that there is a significant stress transfer along the straight length of the bar. It should be noted that for the results of tests by Hribar and Vasko in which bond release was provided over the lead embedment length, the equations of Approach B provide a better estimate of the strength than does Approach A.

Since no tests have been performed on bars of small diameter with very short lead embedment length or on bars where the hook is very near the critical section, it is difficult to determine what minimum length, if any, should be specified for the hook. The two specimens tested with  $\ell_{\ell}/d_{\rm b}$  less than 4, #11 with  $\ell_{\ell}/d_{\rm b}=2.1$  (Jirsa and Marques), and #9 with  $\ell_{\ell}/d_{\rm b}=3.9$ , give strengths well within the proposed stresses. A lower limit is obviously an embedment length,  $\ell_{\rm dh}$ , not less than the bend radii plus one bar diameter (the horizontal projection of the hook alone).

### 5.5 Design Recommendations was seen and digests to not sotbat

The following recommendations are made for determining the strength provided by hooked bars embedded in normal weight concrete.

The embedment length  $\ell_{\rm dh}$ , in inches, of deformed bar in tension terminating in a standard hook shall be not less than

$$\ell_{dh} = \frac{0.02d_b f_y}{\psi \sqrt{f_c'}}$$

In no case shall  $\ell_{dh}$  be less than 8d or 6 in., whichever is greater. The coefficient  $\psi$  shall be taken as unity unless the following conditions are satisfied.

The value of  $\psi$  may be taken as 1.4 if (a) the bar is #11 or smaller, (b) the total embedment length,  $l_{\rm dh}$ , is not less than the minimum bend radii plus an additional embedment of five bar diameters or 4 in., whichever is greater, (c) the side concrete cover normal to the plane of the hooked bar is not less an 2.5 in., and (d) cover on the tail extension is not less than 2 in.

The value of  $\psi$  may be taken as 1.8 if the joint is confined by closed ties at a spacing of  $3d_b$  or less and meets the requirements for  $\psi = 1.4$ .

In no case shall the embedment length,  $\ell_{\mathrm{dh}}$ , be less than for the standard hook.

No reduction in  $\ell_{\rm dh}$  shall be permitted for tail extensions or bend radii greater than required for a standard hook. For better control of deflections and cracking, 90 degree hooks are preferable.

# 5.6 Comparison of Proposed Recommendations with ACI and Test Results

5.6.1 Embedment Length. The proposed design recommendations are compared with ACI 318-71 provisions in Fig. 5.5, which shows the required embedment length  $\ell_{\rm dh}$  plotted against bar diameter.

Computed strengths using these recommendations for the bars tested in this study and by Jirsa and Marques are listed in Table 5.1. For the thirty tests available in normal weight concrete, the average ratio of measured to computed strength using Eq. 5.6 was 1.24 with a standard deviation of 0.20. Comparing these ratios with those tabulated in Table 4.1, it can be seen that the proposed equations give a better indication of strength than does the current ACI Code (average 1.45, standard deviation 0.23) and the proposal of Jirsa and Marques (average 1.36, standard deviation 0.16).

5.6.2 Slip Measurements at Working Stress Levels. In addition to the computed to measured strength ratios, Table 5.1 also lists the stress corresponding to 0.6 of the computed strength of the hooked bar

- MENTS TOWNORDER GETTISTED AND CHRESTON ACCOUNTS ON SOIL AND CHRESTON OF THE STATE OF THE STATE



TABLE 5.1 COMPARISON OF MEASURED AND COMPUTED ANCHORAGE STRENGTHS USING PROPOSED DESIGN RECOMMENDATIONS (NORMAL WEIGHT CONCRETE)

| Co                                               | nfinement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Measured                               | 1             | 37 . | 0.6 Comp              | Meas. Lead          |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|------|-----------------------|---------------------|
| Specimen                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stress at                              | Computed      | Meas | Stress                | Slip at             |
| obec Timen                                       | ψ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Failure                                | Stress        | Comp | Stress                | 0.6 Comp.           |
| W.                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ksi                                    |               |      | ksi                   | in.                 |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 73 - F        |      | /<br>                 | 0.000               |
| J7-90-15-1-H                                     | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91                                     | 70.5          | 1.29 | 42                    | 0.009               |
| J7-90-15-1-M                                     | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                    | 73.9          | 1.35 | 44                    | 0.009               |
| J7-90-15-1-L                                     | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97                                     | 72.1          | 1.35 | 43                    | 0.008               |
| J7-90-12-1-H                                     | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 62                                   | 51.5          | 1.20 | 31                    | 0.012               |
| J7-90-15-2-H                                     | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99                                     | 71.7          | 1.38 | 43                    | 0.010               |
| J7-90-15-2-M                                     | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95                                     | 71.7          | 1.33 | 43                    | 0.014               |
| J7-90-15-3-H                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104                                    | 70.9          | 1.47 | 43                    | 0.009               |
| J7-90-15-3a-H                                    | 1.4<br>1.8<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98                                     | 81.9          | 1.20 | 49                    | 0.011               |
| J7-90-15-4-H                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73                                     | 49.8          | 1.46 | 30                    | 0.005               |
| J7-180-15-1-Н                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87                                     | 65.8          | 1.32 | 40                    | 0.011               |
| J7-180-12-1-H                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61                                     | 5 <b>2.</b> 8 | 1.15 | 32                    | 0.012               |
| 3, 100 11 1                                      | Parties<br>(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | 1             |      | Section with the same | 2 22/               |
| 9-12                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47                                     | 30.4          | 1.55 | 18                    | 0.004               |
| 9-12<br>9-15*                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43                                     | 49.7          | 0.86 | 30                    | 0.086               |
| 0 10                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74                                     | 68.1          | 1.09 | 41                    | 0.016               |
| 9-18<br>9-21*                                    | - , P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59                                     | 70.7          | 0.83 | 42                    | 0.107               |
| 4 <b>7 2 4</b> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |               |      |                       | 0.01/               |
| 11-15                                            | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                     | 47.4          | 1.05 | 28                    | 0.014               |
| 11-18                                            | The state of the s | 58 🥢                                   | 54.5          | 1.07 | 33                    | 0.020               |
| 11-21                                            | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73                                     | 68.0          | 1.07 | 41                    | 0.025               |
| 11-24                                            | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                     | 70.8          | 1.09 | 43                    | 0.019               |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |               |      | 07.5                  | 0.012               |
| J11-90-15-1-H                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / 48                                   | 45.2          | 1.06 | 27                    | 0.012               |
| J11-90-15-1-L                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52                                     | 44.5          | 1.17 | 27 ੂ                  | 0.002               |
| J11-90-12-1-H                                    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42                                     | 24.1          | 1.75 | 15                    | 0.002               |
| J11-90-15-2-H                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / 49                                   | 45.6          | 1.07 | 29                    | 0.020               |
| J11-90-15-2-L                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | √ 53                                   | 43.3          | 1.22 | 32                    | 0.020               |
| J11-90-15-3-L                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62                                     | 44.9          | 1.38 | 27                    |                     |
| J11-90-15-3a-L                                   | T 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69                                     | 58.7          | 1.18 | 35                    | 0.012<br>0.003      |
| J11-90-15-4-L                                    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44                                     | 29.5          | 1.49 | 18                    |                     |
| J11-90-15-5-L                                    | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>6</b> 6                             | 45.6          | 1.45 | 27                    | 0.020               |
| J11-180-15-1-H                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                                     | 42.8          | 1.05 | 26                    | 0.016               |
| J11-180-15-1-L                                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                     | 42.6          | 1.17 | 26                    | 0.005               |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |               |      |                       |                     |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ************************************** | Average       | 1.24 |                       | a specie a colorida |
|                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | σ             | 0.20 |                       |                     |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <u>ن</u>      |      |                       |                     |

<sup>\*</sup>Poor concrete quality.

anchorage and the lead slip measured at a stress level of 0.6 of the computed strength. The reason for these comparisons is to give an indication of the possible crack width at the beam-column joint due to slip of the anchorage at service loads. The limit for crack width suggested in the ACI Code Commentary (Sec. 10.6) is 0.016 in. The figures indicate that, except for Specimens 9-15 and 9-21, only five specimens had a slip greater than 0.016 in. at the assumed service load stress, with the largest slip being 0.025 in. In each case, a #11 bar was tested with a low level of axial load (700 to 800 psi) applied to the columns, and in two cases the computed stress is greater than the yield stress of the bars tested.

In evaluating the proposed design recommendations, those recommended by Jirsa and Marques, and those contained in ACI 318-71, it is evident that the main gap in the experimental results is the lack of data for bars with the start of hook located at the critical section and bars with a minimum amount of cover. In addition, data are needed to determine the confinement characteristics of bars embedded im "mass concrete." Based on the current data available, it appears that design procedures can be adjusted to reflect realistically the strength of hooked bar anchorages considering the hook and the straight lead embedment as a unit.

## 5.7 Modification of Design Recommendations for Lightweight Concrete

Table 5.2 lists the lead bar stress at failure ( $f_u$ ) for the eight lightweight specimens and the computed strength using Eq. 5.6. Ratios of measured to computed bar stresses at failure are tabulated. No reduction was applied to computed strengths to account for the effect of lightweight concrete. The ratios of measured to computed stresses at failure varied from 0.85 to 1.07 for #11 bars and from 1.05 to 1.15 for #7 bars.

TABLE 5.2 MEASURED AND COMPUTED ANCHORAGE STRENGTHS (LIGHTWEIGHT AGGREGATE CONCRETE)

| d G to Lavel                                 | i seong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                      | MADES                           | DOMEST.                 | M Est        | hesi                                                        | ed#                         | ing at 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eg 555 €1<br>H                   | t s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|-------------------------|--------------|-------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Meas. Lead<br>Slip at 0.6<br>Comp. Stress    | 100.000<br>100.000<br>100.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·     |                                      | 0.017                           | 10.0140                 | 0.018        | 200.0                                                       | 100.00<br>100.00<br>100.00  | aticie<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Branch<br>Br | iones<br>vigas<br>i fra<br>vi ba | are in the second secon |
| Computed Stress (ksi)                        | 214 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - 124 - | 25 50 50 50 50 50 50 50 50 50 50 50 50 50 | 7 <b>7</b> 77 (                      | 2.5                             |                         |              |                                                             | 985<br>9 <b>32</b> 0<br>985 | ikai<br>12 g.<br>grai<br>01 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | euna.<br>Me a<br>eas             | on in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Meas<br>Comp<br>Eq. 5.8                      | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.23                                      | 1.29                                 | 1.03                            | 1.02                    | 1.24         | 1.27                                                        | 1.38                        | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.13                             | 560 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Computed (ksi)                               | 2892.65<br>6 por <b>0</b> 4<br>5044603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | 1900<br><b>200</b> 0<br>1900<br>1900 | 6.6<br>6.6<br>6.6<br>6.6<br>7.6 | 34.34<br>34.34<br>34.34 | 38.0         | 944<br>1944<br>1944<br>1944<br>1944<br>1944<br>1944<br>1944 | 157.9 H                     | va n<br>milo-<br>masi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | រំ<br>កុមា វិសា<br>ប វិសាស       | i de estati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Meas<br>Comp<br>Eq. 5.6                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -51 50<br>-670<br>-70                     | of %                                 |                                 |                         |              | o Mo<br>1 <mark>.02</mark><br>Erent I                       | 12.05<br>12.05<br>13.05     | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70]<br>70]<br>913-91             | anda<br>resi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Computed<br>(ksi)<br>Eq. 5.6                 | 7.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111.0v                                    | e sur<br>- <b>5</b> 00<br>d          | <b>7. 77</b>                    |                         |              | fr see                                                      | bees<br>sd•9<br>sacto       | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | edner<br>adner                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| f<br>easured<br>tress at<br>Failure<br>(ksi) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8174×3                                    |                                      |                                 | 552 j                   | ngalia :     | <u> </u>                                                    | ngi i                       | YA YA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b<br>Bloom                       | Astro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ∏ ∑∑o sant                                   | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2467                                      | 25                                   | 38<br>36 b                      | eni i                   |              | 20. 2 <b>8</b> .                                            | 8.0                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Confinement                                  | 13. <b>4.</b> 17. <b>17.</b> 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | 4 7 5 5<br><b>7</b>                  | 7 n d                           | <b>7</b>                | 4            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                       | 74-14 <b>4</b>              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ho so                            | ll r A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| teres para o                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                      |                                 |                         |              | - <b>AS</b>                                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wojy)<br>o asy<br>osa            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Specimen                                     | 11-90-1-L-AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11-90-1-H-AL                              | 11-90-1-L-AS                         | 11-90-1-L                       | ्<br>11-180-1-L-FR      | 11-90-3-L-FR | 7-90-1-E                                                    | 7-90-1-L-FR                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Because the average ratio of measured to computed strength is lower for the lightweight specimens (1.01) as compared with the normal weight specimens (1.24 from Table 5.1), an adjustment for lightweight concrete is needed to make the ratios for both materials coincide more closely. It should be noted that there is no tendency for all-lightweight specimens (AL) to give lower values than those with all fines replaced by sand (AS). Because the number of tests was small, it was decided to propose one factor covering all mixes with lightweight aggregate. As discussed previously, it appears that the behavior may be significantly determined by the characteristics of the coarse lightweight aggregate.

Using this approach, the adjustment factor  $\Omega$  for lightweight concrete was calculated as  $\Omega=1.01/1.24=0.82$ . Because the equation for  $\ell_{\rm dh}$  involves the inverse of  $\Omega$ , the term was changed to 0.83 which results in a 20 percent adjustment for lightweight concrete.

The design recommendation proposed previously, Eq. 5.6, is modified by the coefficient  $\Omega$  to produce the following equation:

$$f_{u} = 50 \psi \Omega \ell_{dh} \sqrt{f_{c}'} / d_{b}$$
 (5.8)

where  $\Omega$  = 0.83 and  $\psi$  is as defined in Chapter 4.

Table 5.2 shows computed anchorage strengths using the modified design recommendations (Eq. 5.8) and the ratios of measured to computed strength. The ratios of measured to computed stresses obtained using the proposed design recommendations vary from 1.02 to 1.38, with an average ratio of measured to computed strength of 1.22, and with a standard deviation of 0.13. The measured lead slip at a value of lead bar stress equal to 0.6 of the computed anchorage strength is also given, and as can be seen all specimens are below or very near the suggested limit for crack width of 0.016 in.

With the modification for lightweight concrete, the proposed method for predicting the hooked bar anchorage strengths requires the use of one equation to obtain the required strength and embedment length, whereas the ACI 318-71 Code procedure requires the use of a table to obtain the stress developed by the hook while the remainder of the stress required by the anchorage must be supplied by a straight lead embedment. The lead embedment is obtained by means of a second equation that must be adjusted to reflect the type of lightweight aggregate concrete used. The simplicity of application of the proposed method is obvious. In addition, ambiguity regarding lightweight concrete is eliminated.

ានស្រាស់ នេះស្រាស់ និង ស្រាស់ ស្ ស្រាស់ ស្រាស

Using this approach, the adjustment forcer () for it ghowship to concrete was coloniated as 50 m indept. If m milk is secured the aquesion for \$4.35 milk involves the involves of \$3, car tests our dealers coloniated on 0.83 which results in a 30 percein adjustment for its because concrete.

si (a.C.)p8 (yfauctvirg basuqurg nottphopamoonr ngfaab ed?) (cotrauja gniquifoù edr apuborg od Ω ametrifânoc edr ye bothibae

8.6) 4 (50% A 7 50% A

where  $\Omega \approx 0.33$  and  $\delta$  is an defined in thepton 4.

Table 5.2 shows computed suchdays strengths withy the modified disting recommendations (By. 5.6) and the sortion of maximist to computed strongth. The inclination of measured to computed strength of the inclination of measured to computed strength of 1.32 to 1.34 paint with an increase constant deviation of measured to camputed strength of 1.32, and with a strength of deviation of 0.33. The measured food ally as a vertee of lead bas strength to 0.5 the suspense and other strength is strength to a stee given.

Indicate our can be seen all speciments and helps or very near the magnetic.

With the goods Sisterion for Lightsweight contends file process. See process the settled for graduoting the hootest has antiquely strengths requires the curious to obtain the randical antique to obtain the randical antique to obtain

### 6. SUMMARY AND CONCLUSIONS

#### 6.1 Test Program

In order to investigate the influence of straight lead embedment and lightweight concrete on the strength of hooked bar anchorages, sixteen specimens were tested. These specimens and the method of testing were patterned after a previous study of hooked bar anchorages so that direct comparisons could be made. The lead embedment length varied with the depth of the column in which the bar was embedded. The bars were loaded in tension to failure to establish basic strength and stiffness characteristics. The slip of the anchored bars with respect to the concrete and stress transferred to the concrete along the bars were measured.

The results of the test program and the results of previous tests were combined to develop a relatively simple relationship between the embedded length of a hooked bar and strength. Using the relationship developed for strength, the performance of the anchored bars appears to be within acceptable limits of serviceability as set by the ACI 318-71 Code.

Marca establication and a constitue of the absence of the action of

#### 6.2 Conclusions

Based on the evaluation and discussion of test results from this and previous studies of hooked bar anchorages, the following conclusions can be made:

(1) A failure hypothesis was developed which appears to explain the basic behavior of hooked bar anchorage. The failure of a hooked bar is governed primarily by a loss of cover rather than by pulling out. Stress measurements indicate that at failure of the concrete very little, if any, stress is

- transferred to the concrete along the straight lead embedment for small ratios of lead embedment to bar diameter.
- (2) The principal factors affecting anchorage capacity are the length of embedment and the degree of lateral confinement of the joint.
- (3) Replacement of lightweight aggregate fines with sand fines does not seem to significantly affect the strength of hooked bars anchored in lightweight aggregate concrete based on the eight tests reported. More studies are required to confirm this finding. A characteristic of lightweight aggregate, possibly the crushing strength of the coarse aggregate, seems to be of major importance insofar as the strength of hooked bar anchorages is concerned.
- (4) The equation

socivers to solve a 
$$f_u^{ij}=50$$
  $\frac{dh}{d}\Omega$   $\psi$   $\sqrt{f_c'}$  and to solve  $\phi$   $\phi$ 

can be used to adequately predict the strength developed by a hooked bar. This equation reflects the principal factors affecting anchorage capacity and the fact that the straight lead embedment and the hook act together as a unit to develop the strength.

(5) Research is needed to examine the significance of lateral reinforcement in relation to the straight lead embedment.

Research is also needed to establish the strength of hooked bars with short embedment lengths in mass concrete. Data are also needed for bars of small diameter with hooks located near the critical section and for groups of closely spaced bars. The results of the limited study reported herein only provide an indication of the anchorage strength for a high degree of confinement.

### 6.3 <u>Design Recommendations--Model Code</u> Clause for Standard Hooks

- 6.3.1 The embedment length  $l_{\rm dh}$ , in inches, of deformed bars in tension terminating in a standard hook shall be computed as the product of the basic embedment length from Sec. 6.3.2 and the applicable factor or factors in Sec. 6.3.3, but  $l_{\rm dh}$  shall not be less than 8d or 6 in., whichever is greater.
- 6.3.2 The basic embedment length shall be computed by:

$$\ell_{\rm dh} = \frac{0.02 \, d_b f_y}{\sqrt{f_c'}}$$

6.3.3 The basic embedment length shall be multiplied by the applicable factor or factors for:

6.3.3.1 #11 bars or smaller with side cover normal to the plane of the hooked bar not less than 2-1/2 in. and cover on the tail extension of not less than 2 in.

6.3.3.2 #11 hooked bars or smaller with side cover of not less than 2-1/2 in., tail extension cover of not less than 2 in., and enclosure by closed stirrups or hoops at a spacing of 3db or less.

6.3.3.3 Lightweight aggregate replacing all or a portion of the aggregate.

6.3.4 Hooks shall not be considered effective in compression.

### (c) 3 generating Recommendational established their Clause for Standard graphs

out it The embedment loopin (m). In tacher, of cultured back to remain the material appropriation of several and material appropriation of several and the seven and several appropriation of the Section of St. 2 and the epuliarial form of the control form of the factor of the several appropriation of the several appropriation of the several appropriation of the several appropriation.

get bedrivere an Elada digetal absolution object edg. 2.2.2

5.3,3 " the bank ambedmant lingel whill be deletabled by the spellest to factor or factors sint.

6.3.3.1 #11 bars or smaller with olds cover normal to the plane of the hooked has out less than 2-1/2 to the cover up the real extension or two less than 2 in.

ovanska i magnerometali etakeriseri eriperen eriperen eriperen eriperen. 15. oktober 18. januari - 18. oktober 1

animierzana at inimenta beneficience en sea light wason. Alt., a

#### REFERENCES

- 1. Jirsa, James O., and Marques, Jose L. G., <u>A Study of Hooked Bar Anchorages in Beam-Column Joints</u>, Final Report to Reinforced Concrete Research Council, Project 33, Austin, 1972.
- Marques, Jose L. G., and Jirsa, James O., "A Study of Hooked Bar Anchorages in Beam-Column Joints," <u>Journal of the American</u> <u>Concrete Institute</u>, Proc. V. 72, No. 5, May 1975, pp. 198-209.
- 3. Minor, John, and Jirsa, James O., "Behavior of Bent-Bar Anchorages," <u>Journal of the American Concrete Institute</u>, Proc. V. 72, No. 4, April 1975, pp. 141-149.
- 4. ACI Committee 318, <u>Building Code Requirements for Reinforced Concrete (ACI 318-71)</u>, American Concrete Institute, Detroit, 1971.
- 5. ACI Committee 318, <u>Commentary on Building Code Requirements for Reinforced Concrete (ACI 318-71)</u>, American Concrete Institute, Detroit, 1971.
- 6. Hribar, J. A., and Vasko, R. C., "End Anchorage of High Strength Steel Reinforcing Bars," <u>Journal of the American Concrete Institute</u>, Proc. V. 66, No. 11, November 1969, pp. 875-883.
- 7. Pinc, Robert L., "The Influence of Lead Embedment on the Strength of Hooked Bar Anchorages," MS thesis, The University of Texas at Austin, May 1976.
- 8. Watkins, Michael D., "The Influence of Lightweight Aggregate Concrete on the Strength of Hooked Bar Anchorages," MS thesis, The University of Texas at Austin, May 1977.

#### 医多方质医多耳氏菌素

- Assistant leaves U., and Marques, Jones L. C., h kinds of Booked Sar Assistants in home tological indials, I had Depict to Relationers documents Research Countil, Explact 33, Special, 1922.
- 2. Marques, Juna J. G., and Jimsa, Jemes O., 'A Junay of Breind Bur Anchoveses if Ferm-Column Schmist!' Jerschi of Hesternary Vendunge intitue, Fultion Frace V. P., Hor J. Hay 1873, ... Theren.
  - 3. Miret, Sabo, val dirke, dames O., Tadrefor of Barrets Anderragoe, design of the American Corn old Tagricetus Reserve, V. Vi, Rosey, April 1975, pp. 143-149.
  - ACR Momenterac 118, Bydidion deda Requirements for defedenced deposits. (aCL 518-77), American Concrete Instituent, Security, 1771.
- 5. ACI Combalines 318, Commands in Building Code Requirements for Estudored Concrete (ACI 318-71), American Concrete Lostfunce. Betroic, 1971.
- 61 Bilber, J. A., and Vasko, B. C., "Med Assborage of High Strangth Steel Reinforcing Bars," Jugupal of the American Sporvete Institute, Four V. 66, Mo. J., November 1969, pp. 875-883.
- 's Pinc, Robert L., "The Enfiltence of Lead Rebedmuck on the Strength of Hooked Bar Anchorages," MS thecis, The University of Toxas at Auctin, has 1975, ".
  - 8. Mackins, Michael D., Mino influence of Lightweight Aggregate Generated on the Strongers, 1998 chasts, Lite University of Panea & Austin, May 1473.