
Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

FHWA/TX-92+1239-1

4. Title and Subtitle 5. Report Date

May 1992

BRACING REQUIREMENTS FOR ELASTIC STEEL BEAMS 6. Performing Organization Code

Research Report 1239-1

r---:,~:;-...,-::-;----------------------------!8. P erformi ng Organi zation Report No.
7. Author! s)

Joseph A. Yura and Brett A. Phillips

9. Performing Organi zation Name and Address 10. Work Unit No. (TRAIS)

Interim

14. Sponsoring Agency Code

Center for Transportation Research
The University of Texas at Austin
Austin, Texas 78712-1075

11. Contract or Grant No.

Research Study 3-5-90/1-1239

f-::-::---:----------.,.--:'"""77------------------....J 13. Type 0 f Report and Peri ad Covered
12. Sponsoring Agency Name and Address

Texas Department of Transportation
Transportation Planning Division
P. O. Box 5051

I Austin, Texas 78763-5051

15-. Supplementary Notes

Study conducted in cooperation with the U. S. Department of Transportation, Federal
Highway Administration

Research Study Ti t1e: "Bracing Effects of Bridge Decks"
16. Abstract

Two types of bracing are studied to control the lateral-torsional buckling of
steel beams; namely, lateral bracing at the compression flange and torsional bracing.
A computer program, BASP, was used to study the effects of brace type, size and
number of braces on the buckling strength of beams subject to different loading
conditions. It was found that cross section distortion at the brace point signifi­
cantly affects the efficiency of torsional bracing. Properly attached web stiffness
can minimize the distortion.

Based on the analytical solution two bracing equations are developed; one for
lateral bracing and one for torsional bracing. The torsional bracing formula
accounts for cross section distortion and the presence of web stiffness. Top flange
loading requires larger bracing members and the equations consider the effect as well
as the variation of moments along the span.

Seventy-six lateral buckling tests were conducted on twin W12X14 beams with a
24-ft. span with a top flange concentrated load at midspan to compare with the
analytical solution and the bracing equations. Lateral bracing or torsional bracing
of different magnitudes were attached to the beams to determine the required bracing
to force the buckle between the end and the midspan. Different beam initial out-of­
straightness and web stiffeners were considered. It was found that the bracing
equations and buckling program, BASP, compare very well with the test results.

17. Key Words 18. Distribution Statement

bracing, lateral-torsional buckling,
steel beams, compression flange,
buckling strength, loading, distortion,
web stiffness, cross section, moments

No restrictions. This document is
available to the public through the
National Technical Information Service,
Springfield, Virginia 22161.

19. Security Clossif. (of this report)

Unclassified

20. Security Classi!. (of this pagel

Unclassified

21. No. of Pages 22. Price

88

Form DOT F 1700.7 (8-72) Reproduction of completed page authorixed



BRACING REQillREMENTS FOR ELASTIC STEEL BEAMS

by

Joseph A. Yura and Brett A. Phillips

Research Report No. 1239-1

Research Project 3-5-90/1-1239
"Bracing Effects of Bridge Decks"

Conducted for

Texas Department of Transportation

In Cooperation with the
U.S. Department of Transportation

Federal Highway Administration

by

CENTER FOR TRANSPORTATION RESEARCH
BUREAU OF ENGINEERING RESEARCH
THE UNNERSITY OF TEXAS AT AUSTIN

May 1992



NO INTENDED FOR CONSTRUCTION,
PERMIT, OR BIDDING PURPOSES

Joseph A. Yura, P.E.
(Texas No. 29859),

Research Supervisor

The contents of this report reflect the views of the authors who are responsible for
the facts and accuracy of the data presented herein. The contents do not necessarily reflect
the official views or policies of the Federal Highway Administration. This report does not
constitute a standard, specification, or regulation.

11



PREFACE

This report documents the results of an analytical and experimental study on bracing
of steel beams. The purpose was to develop an understanding of the varioius factors that
influence brace design and to develop bracing equations suitable for design which are
verified by experiments. The equations can be used to determine the required size of
bracing to prevent lateral instability.
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SUM:MARY

Two types of bracing are studied to control the lateral-torsional buckling of steel
beams; namely, lateral bracing at the compression flange and torsional bracing. A computer
program, BASP, was used to study the effects of brace type, size, and number of braces on
the buckling strength of beams subject to different loading conditions. It was found that
cross section distortion at the brace point significantly affects the efficiency of torsional
bracing. Properly attached web stiffeners can minimize the distortion.

Based on the analytical solution two bracing equations are developed; one for lateral
bracing and one for torsional bracing. The torsional bracing formula accounts for cross
section distortion and the presence of web stiffness. Top flange loading requires larger
bracing members and the equations consider the effect as well as the variation of moments
along the span.

Seventy-six lateral buckling tests were conducted on twin W12X14 beams with a 24-ft.
span with a top flange concentrated load at midspan to compare with the analytical solution
and the bracing equations. Lateral bracing or torsional bracing of different magnitudes were
attached to the beams to determine the required bracing to force the buckle between the
end and the midspan. Different beam initial out-of-straightness and web stiffeners were
considered. It was found that the bracing eguations and buc1din~program, BASP, comp=ar"'-'e"--__
very well with the test results.
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IMPLElVIENTATION

The bracing equations presented in Appendix B can be used to determine the effect
of lateral and torsional bracing on the buckling strength. These formulas are fairly accurate,
but may be too complicated for general design use. The equations in a simpler form are
illustrated in Interim Report No.3. These formulas were ultimate strength and factors of
safety and need to be implemented for use in service load design.
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CHAYfERONE
INTRODUCTION

1.1 Beam Buckling Strength

The flexural capacity of beams with
large unbraced lengths is often limited by
a mode of failure known as lateral
torsional buckling. Lateral torsional
buckling generally involves both an out-of­
plane displacement and a twist of the beam
cross section as shown in Figure 1.1.
Timoshenko (1961) presented the following
equation for elastic critical buckling
moment of a doubly-symmetric beam
failing by lateral torsional buckling,

11 M~ ~AA
\1 tJ=eu6 Angle of Twist
"
~ Center of Rotation

Section A-A

Figure 1.1 Geometry of buckled beam.

1t 2E2T 2h2

_____________--ll'M,~-=-=1t~I-ETGJ +L===--y='-- (lL':1~.1:L)__
cr ~ -y 4Ii

where 4 = unbraced length, E = modulus of elasticity, I y = weak axis moment of inertia,
G = shear modulus, J = S1. Venant's torsional constant, and h = distance between flange
centroids. Equation 1.1 is applicable to beams where the twist at the ends of the unbraced
length is prevented. The first term under the radical denotes S1. Venant torsional resistance
of the cross section while the second term is related to the warping torsional resistance. The
unbraced length used in this equation should be the distance between points of full lateral
support (no twist). The design bending stresses for laterally unsupported beams in the 1990
AASHTO Interim Specification for Highway Bridges for both Allowable Stress Design
(ASD) and Load Factor Design (LFD) are based on the Timoshenko formula. The LFD
method defines the moment capacity, Mr> as (AASHTO formula 10-102c),

My = 91 x 1()" c;, (t]0.772 ~ + 9.87 (~)2
~c ~

(1.2)

where Mr is given in lb-in. units, My is the yield moment, lye = moment of inertia of the
compression flange about the vertical axis in the plane of the web (in4

) = 1y/2 for rolled
sections, d = depth of the beam and Cb is a modifying factor to account for non-uniform
moment within the unbraced length. Equation 1.2 is more general than Eq. 1.1 because it
is applicable to unsymmetric girders. For cross sections with equal flanges, Eqs. 1.1 and 1.2
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give almost identical results. In ASD (AASHTO Table 10.32.17) the allowable bending
stress Fb = Mr / (1.82 Sxc) ~ 0.55 Fy where Sxc = section modulus with respect to the
compression flange and 1.82 is the safety factor.

When a beam is subject to a loading other than uniform moment, the lateral buckling
capacity may be significantly greater than that given by Equation 1.1. For this reason, a
modifying factor, Cb, is used to account for portions of the beam that are subject to a lower
moment. The 1990 AASHTO Specification gives Cb = 1.75 + 1.05 (M! / M2) + 0.3 (M!
/ M2)2 ~ 2.3 for the case of a linear variation of moment between the braces, where the
maximum moment M 2 occurs at one of the braces. When the maximum moment occurs
between the braces, Cb = 1.0. The Load and Resistance Factor Design Specification of
AISC, 2nd Edition to be published, gives the following formula for Cb which is applicable
to all moment diagrams,

~ 12.5~ (1.3)
:;: 2.5~ + 3~ + 4 Mel + 3M4

where M max = maximum moment on unbraced segment, M 2 =moment at 1/4 segment, M4
= moment at 3/4 segment, Mel = moment at mid-segment (all moments are taken as
positive). This equation is a modification of a formula which first appeared in a text by

-~KifDY anQ~Netliercot (1979).

In most cases, load points are also brace points and in such cases, the point of load
attachment (top flange, centroid, etc.) has no effect on the lateral buckling load. When the
load point is not a brace point, then load applied to the top flange is more critical than
centroid loading (Timoshenko, 1961). The top flange loading causes an extra twist during
buckling, whereas bottom flange loading restrains the twist, thus increasing the buckling
capacity. Adjustments to account for the effects of load height can be found in Bleich
(1978) and the SSRC Guide (Galambos, 1988).

1.2 Beam Bracing

In practice, beams are braced in a variety of ways in order to increase their budding
strength. Braces can be placed continuously along the length of a beam, as in the case of
a floor system, or they can be placed at discrete intervals. In some cases, bracing of beams
may be provided by another part of the load-carrying system such as a slab, secondary
stringer, or purlin.

The effectiveness of a brace is determined by its ability to prevent twist of the cross
section. For this reason a brace should be placed at the point where it will best counteract
the twisting of the cross section. For the brace to be effective in preventing twist, it must
possess not only the required strength but also a definite minimum stiffness. Designing a
brace to support some percentage (say 2%) of the compressive bending force in the beam
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4 Compression Flange Brace

Figure 1.2 Lateral brace location.

"- Centroid Brace - No Distortion

Centroid Brace with Distortion

Lateral Bracing Stiffness Re­
quirements.

~

~ lateral Brace

~ r ,I. W16x26-10ft·f

o±----4Q=---:80=---:-1=o,..-----:-r=----.=-

Lateral Brace Stiffness (k/in)

Figure 1.3 Cross-section distortion.

3o
:iE-b 2
:iE

Number of Evenly Required Stiffness for
Spaced Braces Ideal Bracing

1 2 Pe / l

2 3Pe / l

3 3.41 Pe / l

4 3.63 Pe / l

Continuous Bracing 4.0 Pe / l

Table 1.1

usually provides sufficient strength in the
brace, but it does not guarantee that the
brace will provide sufficient stiffness to
raise the buckling load of the critical
member to the desired level.

Bracing can be categorized into two
main types, lateral bracing and torsional
bracing. Lateral bracing increases the
buckling strength of a member by
restraining the lateral movement of the
beam. Since most buckling problems
involve twisting about a point near or
below the tension flange as shown in Figure
1.1, lateral bracing is most efficient when
placed at the top compression flange of the
member. Figure 1.2 shows the relationship
between Mer and brace stiffness for a
lateral brace at midspan placed at either
the centroid or the top flange. For full or
complete bracing, a top flange brace
stiffness of 10 k/in. is required to reach the
maximum moment associated with buckling
between the braces, Mer / Mo = 3.6 where
Mo is the buckling capacity with no brace.
IT the lateral brace is at the centroid
instead of the top flange, an eighteen fold
increase in brace stiffness is required to
reach the same moment. Figure 1.2 also
shows the effect of cross-section distortion
on the stiffness requirements for braces
placed at the centroid. While distortion
does not significantly effect the stiffness
requirements of braces placed at the
compression flange, it will significantly
increase the required stiffness for braces
placed at the centroid. When the brace is
placed at a distance below the top flange,
the compression flange can move laterally
by distorting the web as shown in Figure
1.3.

Historically, requirements for full
lateral bracing have been determined using
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a simple model presented by Winter (1960). His model was developed for elastic column
buckling and therefore can only be used to determine the required strength and stiffness of
an ideal lateral brace attached at the compression flange. The ideal stiffness is defined as
the stiffness required to force the member to buckle between the brace points. Table 1.1
shows a summary of Winter's ideal stiffness requirements where Pe is the Euler buckling
load of the compression flange between brace points and £ is the distance between brace
points.

Winter has shown that initial
imperfections increase the ideal brace
stiffness of a column by a factor of (1 + do
/ d) where do is the magnitude of the
initial imperfection and ..1 is the additional
deflection permitted before the column
fails. Typical values for the deflections are
..1 = do = L / 500 which gives a brace
stiffness requirement of twice the ideal
stiffness. The required brace strength is 2Pe

I

s I (..1 + do) / L, which reduces to 0.008 Pe for
... • the assumed values of ..1 and do as shown

-------'----------'------,b=y:-'Y'<7u=r=a-(TI971).

Figure 1.4 Buckled shape of bridge girders.

3

No Web Distortion

Web Distortion

tA: 9;.1 ,

~ S7x15.3 -17ft. ':t
ot-----;;-250~-----;:c...-------;:;;750O;;------,1=()()()=-----,1""250=----::-::'1500

Single Brace Stiffness (k-infrad)

When two or more adjacent beams
are loaded simultaneously, they may buckle
in such a way that the lateral restraint
provided by the connection member is
nearly zero (Figure 1.4). The presence of
a connection member such as a diaphragm
or bridge deck may, however, provide
adequate torsional bracing to stabilize the
beams. Bridge decking in the form of a
concrete slab or wood planks can provide
torsional bracing with a stiffness of 6EI/S
where E and I are deck properties and S is
the spacing of the girders.

Effects of cross-section distor­
tion.

Figure 1.5
Figure 1.5 shows the behavior of a

beam braced torsionally at midspan. For a
beam with no web distortion, the buckling

strength increases with brace stiffness until it reaches the load associated with buckling
between the bracing. The value of ideal stiffness required to produce this load is not as
sharply defined for torsional bracing as it is with lateral bracing. The lower curve in this
figure show the behavior for a torsionally braced beam with the web thickness reduced and
no stiffeners. Note that the beam is limited to a much smaller load even at high values of
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brace stiffness. Figure 1.6 shows
schematically the web distortion of a
slender web beam with a torsional brace
placed at the compression flange. Since
many beams do not possess the required
web stiffness to prevent distortion, it is
often necessary to either attach a stiffener
at locations of torsional bracing or reduce
the allowable load of the member to
account for web distortion.

....~·i

--$--

i'~ Torsional Brace
I
I
I
I
I
I
I

Brace Stiffness

Ii1QIeMlaspan Brace

==2nd Mode

Continuous Bracing

O±------'----------I-

Figure 1.6 Cross-section distortion.

Figure 1.7 Continuous vs. discrete bracing.

Figure 1.7 shows the relationship
between brace stiffness and critical load for
one discrete torsional brace at midspan and
continuous torsional bracing along the
entire span. With continuous bracing, the
critical moment of the member will
increase without limit, until yielding occurs,
as the brace stiffness is increased whereas
a beam that is braced at discrete intervals

-----"'Wl""*'ll-oe limited to the critlcal moment
corresponding to buckling between the
brace points. For a single brace at
midspan, the maximum moment is reached
when the beam reaches the load
corresponding to the second mode of
buckling. The second mode can be
identified by the "S"-shaped curve of the
compression flange, The relationship in
Figure 1.7 indicates that a design formula for continuous bracing can be used for discrete
bracing if the maximum moment is limited to the buckling load between braces.

1.3 Previous Approaches to Beam Bracing

Many authors have studied beam bracing requirements and some texts have given a
brief review of bracing requirements. A partial list of these texts include Salmon and
Johnson (1990), Rhodes and Walker (1982), Kirby and Nethercot (1979), and the SSRC
Guide (Galambos, 1988). To provide a brief historical review of the developments in beam
bracing, only a few selected papers are presented.

Flint (1951a) presented experimental data for the buckling of a beam with a lateral
brace located at midspan on the top flange, bottom flange, or at the shear center. He also
presented graphical solutions for a torsional brace at midspan. In his theoretical solution,
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the critical moment increased to a maximum moment of twice the unbraced beam moment
at a brace stiffness of infinity. The inaccuracy of this solution can be seen by observing that
the critical moment will increase nearly linearly with brace stiffness until the second mode
"sit shape is reached at a finite brace stiffness, as shown in Figure 1.5. Flint also indicated
that a brace can be effective by only preventing twist of the cross section while allowing
lateral movement to occur.

Flint (1951b) studied the stability of beams loaded through secondary members. He
examined the restoring effect of a load that is applied through a relatively stiff secondary
member resting on the top flange of the critical beam. Ignoring the effects of cross-section
distortion, Flint found that no lateral buckling can occur in the first mode unless the beam
has an initial bow greater than half the flange width. This conclusion has not been verified
by experiments.

Winter (1960) has shown that an effective column brace must possess not only the
required strength, but also a minimum stiffness (Table 1.1). He examined discrete column
bracing both experimentally and analytically, and concluded that an initial imperfection has
the effect of increasing the required brace stiffness by a factor of (1 + ~o / ~).

Taylor and Ojalvo (1966) presented solution for the buckling capacity of a beam with
----;;;c=on=t~in=u=o=uc;rs"t=o=r~si~o=n=a·l bracmg or a discrete torsionalorace at miospan. Theo-::ce=am=-c=a=n:-1IJ=-e::-------

loaded with uniform moment, point loading at midspan, or uniform load. The analysis used
to determine the critical load was an improvement over previous approaches since it
included both S1. Venant and warping resistance. The buckling moment is

(1.4)

The main drawback to this equation is that the constant m must be obtained from a set of
graphs corresponding to unique bracing cases. In addition to graphical solutions, Taylor and
Ojalvo indicated that the critical moment of a beam with continuous torsional bracing under
uniform moment can be determined from the following equation:

(1.5)

where {3T = continuous torsional brace stiffness (k-in/rad per in. length).

Mutton and Trahair (1973) presented equations for the interaction of lateral and
torsional bracing for beams subject to equal end moments or central concentrated loads.
Their paper gave close-form equations to find the amount of additional torsional bracing
needed when a lateral brace is placed at the centroid of the beam cross section. The effects
of cross-section distortion were not considered.
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Trahair and Nethercot (1982) presented an overview of bracing requirements for
beams. Graphical solutions were given for beams loaded with uniform moment, point loads,
or uniform load braced by continuous or discrete braces. Their evaluations of lateral brace
attachment heights indicated that a lateral brace is most effective when placed at the
compression flange. The influence of load height on brace stiffness was examined and
presented in graphical form. A method for estimating the torsional restraint with flexible
brace connections was given as follows,

1 1 1 1
- ;:: - + - + - (1.6)
"kr "p "web "j

where aweb = 0.5£t3
, t = web thickness, akr = reduced torsional brace stiffness, a p = brace

stiffness, and aj = stiffness of connection.

Tong and Chen (1988) have studied the buckling behavior of a simply supported
beam under uniform moment. Their equations are applicable to doubly-symmetric or mono­
symmetric beams braced laterally or torsionally at the midspan. Closed-form solutions for
the required stiffness of ideal bracing for these cases were obtained. For torsional bracing,
the ideal brace stiffness is given by the following equations:

21t ( 8 + "~ ) V(4 + "~)
K ilkal = -----'-------'-2....:....:.------'--

"c
(1.7)

where 2" ;::c (1.8)

The Tong and Chen solutions do not consider web distortion which often has a significant
effect on the bracing requirements as shown in Figure 1.5.

1.4 Limitations of Current Approaches

While the approaches mentioned above provide useful information on the behavior
of bracing, they do not provide practical design guidelines for the determination of brace
requirements under normal design situations. Few authors have considered the effects of
cross-section distortion, initial imperfections, or inelastic behavior. Little work has been
done to verify the behavior of partially effective braces or to determine the effects of cross­
section distortion, initial imperfections and moment gradients experimentally.
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1.5 Objectives of Research Program

A testing program was undertaken to study experimentally the lateral torsional
buckling of beams with lateral and torsional bracing. The objective of the program was to
develop general design equations and to provide experimental evidence of their validity.
The program involved the testing of two 24-foot-Iong W12x14 steel beams with point loads
at midspan. Both lateral braces and torsional braces were applied at the midspan of the
beams. Varying levels of initial imperfection and stiffener sizes were studied. Design
recommendations are developed based on previous literature, finite element computer
studies, and the current experimental work.



CHAPfERTWO
ANALYTICAL PROGRAM

2.1 General

The analytical portion of the research program consisted of two key components:
finite element buckling analysis of rolled steel beams and development of design equations
for beam bracing. The finite element analysis was conducted to study the effects of brace
type, location, number and size on the buckling strength of beams subjected to a variety of
loading conditions. Bracing design equations for initially straight beams are presented and
compared to results from finite element studies.

2.2 Description of BASP Computer Program

The finite element program, BASP, an acronym for Buckling Analysis of Stiffened
Plates, was developed at The University of Texas by Akay (1977) and extended for use on
a personal computer by Choo (1987). The BASP program will handle many types of
restraints including lateral and torsional braces at any node point along the span. It is
limited, however, to elastic modeling of initially straight beams with loads acting only in the
plane of the web. Due to these limitation, the effects of initial imperfections were not
studied using the program. However, BASP does account for web distortion and was used
extensively in the development of basic design equations for straight beams.

8
Out of Plane Pins

Free to Warp

24ft

8

One of the beams modeled by BASP was the W12x14 test beam using the boundary
conditions shown in Figure 2.1. The in-plane supports were modeled as a pin and roller and
out-of-plane displacements at the ends were prevented. In order to more accurately analyze
web distortion that may occur near the brace point, the finite element mesh was broken into
finer elements near the brace locations at
midspan (Figure 2.2). This change also
provided the proper node location for
attachment of the torsional bracing at 5 in.
on either side of the test beam at midspan.

Elevation

Boundary conditions used ill

BASP program.

The output of the BASP program is
the buckling load and the buckled shape. Load
Figure 2.3 shows the buckled shape of a •
W12x14 beam with no bracing at Per = 1.28 C W12x14 I
kips and Figure 2.4 shows the buckled ;fiih==;;<==============;;:A<='
shape at Per = 6.50 kips of the same beam Rollers Allow End Rotation

with a relatively stiff brace at midspan.
The curves in these plots show the lateral Figure 2.1
displacement of each longitudinal line of

9
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2.3 Design Equations for
Intermediate Lateral Bracing

A general design equation has
been. developed by Yura (1990) for
discrete or continuous lateral bracing
of beams as follows,

SOO.O

Per = 1.285 kips

Figure 2.3 First mode buckled shape.

Hl2xl~-Span=28Bin.-Conc. Load at Midspan

c.n=
~
t; III

~ d
l.L.
Ul=
-la:
E5
I­
<I:
-l

=Ul III

:J ?
a:
1:E== 0..

nodes on the beam mesh. The outer
curve corresponds to the nodal line on
the top flange while the inner-most
curve corresponds to the bottom flange

~~~~~~~~~~~--~~~~~~~~~~--=oft:neoeam. Bot:lnne center oftw1sf~~~~~-
o

~ / TOP FlANGE and the amount of cross-section
distortion can be estimated and
compared by careful observation of
these plots.

M =cr
(2.1)

where

(2.2)
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Per = 6.503 kips

35 no stiff;Full Bracing at Midspan

EIGENVALUE = 6.503Y7

~12xlY-Span=288in.-Cono. Load at Midspan
Rota~lonal Spring at Midspan

PROBLEM NO

Figure 2.4 Second mode buckled shape.

a
~

(2.3)

<f)
:z
to
i=
u "'
~ d
It

where Mo is given by Equation 1.1, ~
a: c

assuming the beam is unbraced, Ms = ffi d~~=iii50;e::;=;~~ffs~-2iiD.o~~'""lE3!l11;;oD:o.D-

buckling strength assuming the' ~
unbraced length is the bracing spacing, ~ ~

~ = yield moment, L = span length, ~

and II = equivalent continuous lateral ~ c

brace ~tiffness in k/in./in. Since lateral i'

bracing becomes ineffective when
placed at a distance below the
compression flange, Equation 2.1
applies only to compression flange
bracing. Analytical studies using BASP have shown that the effect of cross-section distortion
on the effective stiffness of lateral bracing placed at the compression flange is minimal and
can be neglected.

When using Equation 2.1, a finite number of discrete lateral braces along a beam
should be converted to an effective continuous lateral brace. In general, multiple braces can
be represented by summing the stiffness of each brace and dividing by the beam length.
This approach is accurate for two or more intermediate braces; it is conservative for one
brace at midspan. A single discrete brace at midspan can be more accurately represented
as a continuous brace by dividing the brace stiffness by 75 percent of the beam length.

Equation 2.1 has no limit as the stiffness of continuous bracing is increased. When
Equation 2.1 is used with discrete braces, the critical moment must be limited to the value
corresponding to buckling between the braces, Ms. Also Mer is not valid beyond the yield
moment. Figure 2.5 shows the maximum moment level that can be reached for various
numbers of equally spaced braces. The solid line represents Equation 2.1; the dashed line,
Ms for three different bracing spacings. Figure 2.6 shows a comparison of Equation 2.1 and
solutions given by the BASP program for a W16x26 beam under uniform moment with three
equally spaced braces. Equation 2.1 shows good agreement with the theoretical solutions.

2.4 Design Equations for Intermediate Torsional Bracing

Taylor and Ojalvo (1973) derived an equation for the critical moment of a beam
under uniform moment with continuous torsional bracing along the compression flange as
follows,
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(2.4)

Analytical studies using BASP and
earlier research by Milner and Rao (1978)
have shown that the effective stiffness provided
by a torsional brace is greatly reduced by web
distortion that may occur at the brace location.
Since many beams do not possess the required
web stiffness, a stiffener must often be attached
at locations of torsional bracing to increase the
brace effectiveness. Equation 2.5 was
developed to account for the effect of web
distortion on the effective brace stiffness or to
determine the required stiffener size to develop
the desired effective torsional stiffness of the
beam cross section.

Brace Stiffness per Brace (kiln)

~
1 Brace

Limiting values of critical
moment.

Comparison of lateral brac­
ing under uniform moment.

equation 2.4~
.:=====

BASP~

~
3 Braces

M
Cf 4 E>' ",' ... ,

sao . J,. W16x26 - 40 ftit
5.5x1/4 stiffener

0;1;--"""-----.-.1""--""1..,.--------;=-

Brace stiffness per Brace (k-Inlrad)

1800

1800

I W12K14- 24ft·1
oJ.-----,,;=-----=--~:;;===:::::::;:1;;:-
EqUivalent Continuous Brace StIffness (k/IrV1n * 1000)

800

1000

Figure 2.5

Figure 2.6

where Mo is given by Equation 1.1, and iJ =
effective continuous torsional brace (k-inlrad
per in. length). Yura (1990) showed that this
equation can be used to represent multiple
discrete torsional braces by summing the
stiffness of each brace and dividing by the
beam length provided cross-section distortion
is controlled. For a single brace at midspan,
the equivalent continuous brace stiffness can
be found by dividing the brace stiffness of the
single brace by 75 percent of the beam length;

11500 this is the same procedure that was suggested
~ 1200 for a single lateral brace at midspan. Figure
~ 900 Equation 2.1 2.7 shows a comparison of Equation 2.4 and
~ 600 solutions predicted by the BASP program for a
o r Y L, beam under uniform moment with three

------'sao-,JI~-----fwfllX2lr-4llif1f'----~e=q=u=a'l1yspacea-15races anaSfiffeners at t1l=e-----
brace points. The excellent agreement
between the BASP solutions and Equation 2.4
indicates that discrete braces can be
represented by equivalent continuous bracing.

Figure 2.7 Comparison of torsional
bracing under uniform mo­
ment.
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(2.5)

(2.6)

where {jb = attached brace stiffness, {jsec = cross section stiffness, ~ = thickness of web, h
= depth of web, ts = thickness of stiffener, bs = width of stiffener, and lJ = {jT X number
of braces/span length. For continuous bracing use 1 in. in place of 1.5h in Equation 2.6.

When a beam is braced with both lateral and torsional bracing, Equations 2.1 and
2.4 can be combined as follows,

___~ ~M----,er=---=-'\._I.(~ + Pi~( 1 + A ] + llT E!, < M, or M,-__~(2~.7~) _

A typical interaction solution is shown in
Figure 2.8 for a 24-ft. W12x14 section braced
at midspan. The theoretical bracing required
to enable the section to support a moment of
212 k-ft is given by the BASP solution. The
exact relationship is non-linear indicating that
combined lateral and torsional bracing is more
effective than torsional or lateral bracing alone.
The BASP solution shown in Figure 2.8 agrees
with the solution of combined bracing given by
Tong and Chen (1988). Equation 2.7 is a
conservative approximation of the interaction
between lateral and torsional bracing. The line
labeled "Linear Interaction" corresponds to the
levels of bracing that would be required if
Equation 2.1 and Equation 2.4 were applied
independently.

;s
tT 0.8
w

i 0.6

~ OA
iii

~ 0.2

{!.

Figure 2.8

212 ~ 212
~A ,,\/,'I. W12x14· 24ft. .1

EqUBlion 2.7

Unear Interaclion

BASP

0.2 OA 0.6 0.6
Lateral SUflnessI Eq. 2.1

Interaction of lateral and
torsional bracing.
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2.5 Bracing Modifications for Moment Diagram Effects and Load Height

The bracing equations given in Sections 2.3 and 2.4 were derived for the case of
uniform moment. Beams are usually subjected to concentrated loads from wheel loads or
uniform loads due to dead weight and lane loads which cause nonuniform moment diagrams.
The buckling capacity of such beams is increased by the ~ factors discussed in Chapter 1.
This increa&ed buckling capacity will also require larger braces. In addition the position of
the load also affects the brace requirements as will be shown subsequently.

Numerous braced beams were analyzed using BASP. Variables studied included
number of braces along the span, beam length, beam section, load type, continuous beams,
load position (top flange, centroid) and bracing type (lateral, torsional). For the case of
simply supported beams, the following modification to Eqs. 2.1 and 2.4 give reasonable
correlation to the exact BASP solutions for lateral and torsional bracing:

Lateral Bracing

where

.67 13L and C = 1 + 1.2
CL E~ L No. of braces

Torsional Bracing

(2.9)

where Cor = 1.2 and Cbu and Cbb are the two limiting Cb factors corresponding to an
unbraced beam (very weak braces) and an effectively braced beam (buckling between the
braces). CL and Cor are top flange loading modification factors; CL = Cor = 1.0 for centroid
loading.

In Figure 2.9, the approximate bracing Equation 2.8 is compared to the exact theory
for a simple span beam with three lateral braces on the top flange and a midspan
concentrated load at the centroid. As the brace stiffness increases, the lateral buckling load
increases rapidly from 1.7 kips to 14.5 kips for small values of bracing. In this region the
buckled shape resembles a half sine curve. At a brace stiffness of 2.0 k/in., the buckled
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shape becomes a full sine curve with no lateral
movement at midspan. Additional brace
stiffness becomes less effective at this stage but
the moment corresponding to buckling between
all three braces has been reached as denoted
by the k = 1 curve. The limiting moment, Ms'

was calculated by Equation 1.1 with the
AASHTO Cb factor of 1.3 corresponding to M1

/ Ms = -0.5.

Equation 2.8
25

~20
;g,
~ 15

~ 10

~
o 5

In this example, ~u = 1.32 from Eq.
1.2, the Cb factor for an unbraced beam with a

Figure 2.9 Three lateral braces with concentrated load at midspan. AASHTO
centroid midspan loading. conservatively recommends 1.0 for this case.

~b = 1.3 for the critical braced span. In this
example the two C

b
values are similar. For centroid loading, CL = 1.0. The conservatism

of the design equation at high load level is due to the method used to determine the
buckling moment between brace points. Each unbraced length was treated independently
and for equal brace spacing, the interior unbraced lengths are critical. The moment levels
are much higher between the midspan brace and the 1/4-span brace and the interior

25

sections also has the lowest Cb factor. The exterior spans are not critical so they provide
additional lateral restraint to the interior spans. The out-of-plane restraint provided to the
most critical portions of the beam can be accounted for through the use of an effective
length factor~ as outlined in the SSRC Guide (Galambos, 1988). For the example
shown, K = 0.88 was determined. The buckling solution given by Equation 2.8 is
unconservative at the high load levels associated with K < 1.0, therefore the use of effective
length factors for lateral buckling of beams is not recommended. It takes very little bracing
for the beam to reach load levels corresponding to K = 1.0; conversely, a large brace is
required to force buckling between the braces when the load in each unbraced length is not
uniform. In the example problem, a brace
stiffness = 1000 k/in. was still not sufficient to
reach a K = 0.88. The AASHTO Specification
does not use effective length factors for beams.

EqUBlIon 2.9

K-.8B

Three torsional braces with
centroid midspan loading.

centroid l.o&d , Cb- 1.3

... .t GO't. W12x14-ll4!t·t

o-k--~"--'1"""---':;1~----"""'----""""--NW.
Brace Stiffness per Brace (k-Injrad)

~20

g 15

~ 10

~
B 5

Figure 2.10

Figure 2.10 shows good correlation
between Equation 2.9 and the exact solution
for three torsional braces and centroid loading.
The ~ factors are the same as in Figure 2.9
and Cr = 1.0.

The effect of top flange loading on the
buckling capacity of laterally braced beams and
torsionally braced beams is illustrated in
Figures 2.11 and 2.12, respectively. For lateral
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Figure 2.11 Load position effect for
lateral braces.

Figure 2.12 Load position effect for
torsional braces.

bracing at the top flange, the required brace stiffness for a given load level is significantly
greater for top flange loading compared to centroid loading. At a load level of 10 kips, the
brace stiffness for top flange loading is double that required for centroid loading. It was
also found that the difference in required stiffness of lateral braces due to load position
decreased as the number of braces increased. The CL factor in Equation 2.8 varies with the
number of braces. For one brace CL :::: n;r6r tliree braces, CL :::: 1A. The top flange
loading effect is not as significant for torsional bracing as illustrated in Figure 2.12. A
constant Cr = 1.2 was satisfactory for all torsionally braced beams with top flange loading.
Figures 2.13 and 2.14 show good correlation between the bracing equations and the exact
solution. Mo in Eqs. 2.8 and 2.9 is the beam capacity assuming no bracing which should
consider the effect of top flange loading. The SSRC Guide recommendations give load
position effects. The top flange loading effect can also be approximated by neglecting the
warping term in Eq. 1.1. This approach was used in Figures 2.13 through 2.16.

25 25

'[20 BASP '[20;g. g BASP~
~

~ 15.9 15

~
'-....

Eq. 2.9, Cb -1.3 ~
10

Eq. 2.9, 9J -1.3, If. -1.4
~ 10

Top Flange Load 0
5 >4' k >4' 5

tW12x14 - 24ft.~
0 0

12 16 20
Brace StIffness per Brace (I</In)

Figure 2.13 Lateral bracing under top Figure 2.14 Torsional bracing under top
flange loading. flange loading
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Figure 2.15 Midspan lateral brace and
top flange loading.

Figure 2.16 Midspan torsional brace and
top flange loading.

For the case of one lateral brace and top flange loading at midspan in Figure 2.15,
the comparison between Equation 2.8 and the exact theory is not as good as the previous
cases. The buckling equation is conservative as the load approaches the limit of buckling
between the braces. The equation indicates that a brace stiffness of about 1 k/in. is
required to force the beam to buckle between braces (ideal brace). The theory indicates

-----""O~/in. woul<rbe suffiCient. Since tliis amount of bracmg IS still extremely small, the
difference has little practical significance. At low loads the braCing equation is
unconservative. The difficulty of developing a simple expression that accurately predicts the
buckling load for any brace stiffness is illustrated in this figure. At low load Cb = 1.32; at
Ms' ~ = 1.75. The effect of top flange loading on braCing increases as the load increases.
Once the beam buckles between the braces, top flange loading then has no effect. In
addition, it is more approximate to convert a single brace into an equivalent continuous
brace than the multiple brace examples given earlier. In Fig. 2.15, CL = 2.2 and the
equivalent continuous brace stiffness was obtained by dividing the single brace stiffness
(k/in) by 0.75 times the span as discussed earlier. If Cbu = ~b = 1.75 is used as shown by
dashed curves, the ideal stiffness is predicted accurately but the results are unconservative
for less than ideal braCing.

The case of a single torsional brace at midspan shown in Figure 2.16 shows good
agreement with Equation 2.9. For the combination of one torsional brace plus top flange
loading, it was found that P

T
= {3T I L, not 0.75L. For centroid loading, 0.75L can be used.

Equations 2.8 and 2.9 will form the basis for the development of practical braCing
design formulas in the final report. Factors of safety must be incorporated and adjustments
made for initial beam out-of-straightness. At this stage, the braCing equations illustrate the
significance of the moment diagram and load position and that a single formulation can
handle both discrete and continuous braCing. In the following chapters an experimental
program is described which was used to check the validity of the theoretical results.





CHAPfER THREE
EXPERIMENTAL PROGRAM

3.1 General

End Lateral Braclng

Elevation

Test Beam .--Load Point I
...,Loal--::d::-lng...,..Be=--am_-........---JII--______ 5 ft.

Test Bean

·1
24ft.

I"

The experimental program consisted of
76 tests designed to evaluate the effects of
lateral and torsional brace stiffness, brace
location, stiffener size, and initial imperfections
on the lateral torsional buckling of steel beams.
Two identical simply supported beams were
loaded at midspan, as shown in Figure 3.1,
until buckling occurred. The buckling load
determined from this beam arrangement was
an average buckling load for the two beams.
Figure 3.2 shows the overall test setup.

Both test beams were taken from the Figure 3.1 Schematic of test setup.
same mill batch of high-strength steel so that
all buckling would occur in the elastic range.
The measured yield strenEths of the flange and web were 65 ksi and 69 ksi, respectively.
Figure 3.3 shows the average measured cross-section properties of the two beams.

Figure 3.2 Overall test setup.

19
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Figure 3.3 Average cross-section prop­

erties of test beam.

3.2 Loading and Support System

In the laboratory, gravity type loads are
usually applied by using a testing machine or a
firmly supported jack. This technique works
well for structures that displace following the
line of action for the loading device. For
structures that are allowed to sway or buckle,
the line of action of the load will no longer be
vertical and care must be taken so that the
loading device will not restrain the lateral
movement of the test specimen. When a
structure sways, the vertical nature of true
gravity load must be approximated.

In the twin beam setup, the
midspan load was maintained vertical
by the use of a gravity load simulator
mechanism shown in Figure 3.4. This
mechanism has been used extensively
III e testing of structures pern:lltted~~--~~
to sway. The design concept of the
simulator is given by Yarimci, Yura,
and Lu (1966) and will not be
discussed here. The simulator used in
the test setup could safely maintain a
load of 44 kips with a sway of six
inches.

Figure 3.4 Gravity load simulator.

o7:"'---..-.----r-:;r----:l""O---:1""2------:0'14
Ram Load (kips)

Figure 3.5 Lateral stiffness of gravity
load simulator due to fric­
tion.

x

While the mechanism does a
very good job of simulating gravity

load, it is not perfect. The friction in the
bearings produce a slight "lag" in the
realignment of the ram to the vertical position
during sway. This effect was determined
experimentally by applying a lateral load to the
base of the loading ram at point 0 (Figure 3.5)
and measuring the corresponding lateral
movement. The value of this restraint was
determined at six different load levels. During
the first test it was found that the friction in
the gravity load simulator produced a
sawtooth-type load-deflection curve. In order
to minimize this effect, a small vibration motor

Data Points
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Ji\!
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Figure 3.7 Knife edges.

Figure 3.6 End roller bearings.

was attached to the frame of the load
simulator that served to increase the
rate at which the ram was realigned to
the vertical position. It was not possible
to perform a calibration of the gravity
load simulator with the vibration motors
running due to the sensitivity of the
instrumentation.

The effects of non-ideal
behavior, such as restraints at the ends
of the beam, were studied using BASP
and found to have a significant effect on
the buckling load. In light of this, the
friction at the end supports was
minimized by using ball-bearing fixtures
that would allow axial lengthening of the
beam as well as out-of-plane rotations at
the supports (Figure 3.6). Load was
transferred to the test beams through

~~~~~IrnIfe-edges placed between the l()ading~

beam and the test beam (Figure 3.7).
The knife edges were placed at the
center of the flange, parallel to the beam
span, so that they would not affect the
twist of the test beam. The knife edges
were connected to the loading tube with
roller bearings to prevent the addition of
significant warping restraint to the test
beams from the applied loading.

3.3 Instrumentation

Lateral deflections, vertical deflections, flange rotation, and load were recorded
during testing. Lateral deflection measurements were recorded on both the top and bottom
flange at the midspan and quarter points of each beam. Vertical deflections were recorded
at the midspan of each beam. Load was recorded using a load cell located between the ram
and loading tube. The load cell had a capacity of 50 kips and a precision of 50 pounds. A
pressure transducer measured the hydraulic pressure in the ram to provide another measure
of load. There was no significant difference between load levels reported by the load cell
and those calculated from the pressure readings.
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All deflections were recorded using electronic linear displacement gauges. To obtain
an accurate measure of lateral deflection directly from the gauge readings, the lateral
displacement gauges were placed four feet from the test beam in order to minimize the
error due to the vertical component of the gauge displacement. This resulted in an accuracy
of 0.05 inches at the maximum vertical deflection experienced during testing. Displacement
gauges were connected to the top and bottom flanges of each beam at the quarter-span,
midspan, and three-quarter span, giving a total of 12 lateral displacement readings at each
load level. By placing gauges at both the top and bottom flanges, the average twist of the
cross section could be calculated at each gauge location.

Lateral Bracing System3.4

Additional measurements of twist were recorded using two electronic tilt meters.
These meters were located at the midspan of one beam, one on the top flange and one on
the bottom flange. Since these meters recorded the tilt of each flange near the brace point,
an estimate of the cross section distortion was obtained for each test. All displacement and
load readings were recorded using a computer controlled data acquisition unit in which all

data during a load cycle could be recorded
within a few seconds.

Movable Support±C)
~I ~..)

•• 8 0=t li

Lateral Force F

Brace Stiffness =FJli

Figure 3.8 Schematic of lateral brace.

Figure 3.9 Lateral bracing system.

The lateral bracing was provided by a
simply supported aluminum bar with an
adjustable overhang (Figure 3.8). Six different
levels of stiffness were provided in this fashion
by simply changing the size of the aluminum
bar or the location of the adjustable support.
Figure 3.9 shows the lateral bracing system
used in the test setup. The stiffness of the
lateral bracing system was significantly affected
by the stiffness of the accompanying supports,
so it was necessary to obtain the effective
stiffness of the bar-support system
experimentally. The measured value of
stiffness for each lateral brace configuration is
shown in Table 3.1.

3.5 Torsional Bracing

Torsional bracing was provided by
connecting a flexible aluminum bar to each test
beam spanning between the two beams. During
testing, the lateral deflection of the test beams
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Figure 3.10 Torsional bracing.

Figure 3.11 Torsional brace fixtures.

Lateral Brace Stiffness
Configuration kips/in

1 0.22

2 0.36

3 0.65

4 0.75

5 1.20

6 1.90

Measured Lateral Brace
Stiffness

forced the aluminum brace into double Table 3.1
curvature as shown in Figure 1.4. Since the
brace is bent in double curvature, the brace
stiffness is equal to 6E1/L of the aluminum
brace. The torsional braces were attached six
inches on each side of the midspan of the test
beam to avoid interfering with the loading
beam and to provide symmetry. Figure 3.10
shows a typical torsional brace used in the test.

The torsional brace attachment fixtures
were designed to prevent the addition of any
significant warping restraint to the test beams,
especially as they buckled into the second
mode shape. This required the brace and
fixtures to provide a high stiffness in the
vertical plane while simultaneously providing
little or no restraint in the horizontal plane.
Figure 3.11 shows a photo of the overall fixture
assembly and Figure 3.12 shows the individual

~~~~~fiXture componen~Item 1 in Figure 3:1Zist"ne
base of the fixture. This was rigidly attached to
the test beam and contained a two-inch fixed
dowel at the center. Item 2 was placed over the
dowel on Item 1 and was secured with the use
of a bearing nut. Roller thrust bearings were
placed between both contact surfaces formed by
the attachment of 1 and 2. The aluminum
bracing, Item 3, was rigidly connected to the
fixture by the use of a cover plate (Item 4).
All rotation in the horizontal plane occurred
between Items 1 and 2. Each of the eight
brace end fixtures was calibrated and found to
vary from 1600 to 3700 k-in/rad with an
average stiffness of 2900 kip-in/rad. By
repeated trials, it was found that a large
variation in stiffness would occur depending on
the tension that was applied to the bearings in
the fixture assembly. Since measuring the
brace fixture stiffness between each test would
have been prohibitive, the average stiffness of
2900 kip-in/rad was used for all fixtures. The
total stiffness of the brace-fixture combination
was determined from the use of the fixture
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Figure 3.12 Brace fixture components.

flexibility and the brace flexibility as
shown in Equation 3.1. Based on the
original stiffness measurements, the use
of the average fixture stiffness could
result in an error of 3 percent for the
lowest level of brace stiffness and an
error of 17 percent for the highest level
of brace stiffness. Thus, the total
stiffness of each brace-fixture
combination was calculated using an
average value of 2900 k-in/rad for the
fixture stiffness. The total brace stiffness
given in Figure 3.13 was calculated for
the bar configuration shown and then
doubled to account for the bracing on

Inertiia Bar Fixture lotal each side of the loading tube.
DESCRIPTION Stiffness StlffneSll Brace

No.
In 4 Stlffne~

In'k/rad In·k/rad In·k/rad

1 3/4" X 3/4" Bar
0.026 27.1 2900 53.7 1 1 1

~ -=--+-- (3.1)
PT Pbrace Pfixture

~
1-1/4" X 3/4" Bar

0.044--45,0- --2900- -BUi
~

3
where {3T = torsional brace stiffness, {3brace

~
O.OBB 90.3 2900 175 = stiffness of brace alone, {3f1xture =

3/4" X 1-1/4" Bars stiffness of brace fixture alone.
4

~ 0.244 250 2900 462

5
Many tests were performed with

~ 0.366 375 2900 666 stiffeners placed directly beneath the

6
brace attachment points. They were

~ 0.4BB 501 2900 B55 made of l1-inch-Iong steel angles bolted
to the web of the test beam. This

7
~ 0.610 626 2900 1030 permitted both the stiffener size and

... ..... I······· ...
1

vertical location of the stiffener to be
B
~

0.732 752 2900 1190 easily adjusted.

Figure 3.13 Adjusted torsional brace stiffness.



CIIAPI:'ER FOUR
TEST RESULTS

4.1 Test Procedure

ok------;;r,0.2,-------..0....4 ------,0""'.6.-------"'0.8

Lateral Deflection (in)

The experimental program of 76 tests
was divided into six groups. Group A is
composed of tests that contained no bracing.
Group B is composed of tests with lateral
bracing located at midspan attached to the
compression flange. Group C contains tests
with compression flange torsional bracing
located at midspan as discussed in Chapter 3.
Group D contains results from tests with
forced imperfections. Group E contains
tension flange torsional bracing and Group F
contains a combination of tension flange and
compression flange torsional bracing.

6

5

~4
g
~ 3

2·

Figure 4.1

Quarter Point

'- Midspan

l> Midspan
~
First Mode Shape

Typical load - deflection
-curves for first mode test.

The test procedure for each test started
with an initial reading of all gauges. A load of

------'~~..-~___c.___.__--,__,,_-~-__._.-~.~-_._-~-~~--~
approximately one kip was applied to the beams before the vibration equipment was
activated so that the knife edges would seat in the grooves on the top flanges of the test
beams. Readings were then taken at a constant increment of about 500 pounds until the
load on the beams was near the buckling load; the frequency of the readings were then
increased. The number of readings taken at or near the buckling load varied greatly
between tests and can be seen in the load-deflection curves located in Appendix A. During
each test, the inclinations of the compression and tension flanges were measured near the
brace point. These readings were not taken as
frequently since the data were recorded
manually.

Figure 4.2 Typical load - deflection
curve for second mode test.

2

1

0.1 -0. 5 -0.5 -0.25 0.25 0.5 O. 5
Lateral Deflection (in)

4.2 Determination of Critical Load

The lateral torsional buckling load of a
beam can be defined as the load at which the
member has zero lateral stiffness. Figure 4.1
shows a typical load-deflection curve from a
test where the beam buckled in the first mode
and Figure 4.2 shows a typical load-deflection
curve from a test where the beam buckled in
the second mode. The critical load for these
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....... 6

~ 5 Quarter-spanJ

~ 4
3
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l> 1/4 Point

~
2nd Mode Shape
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tests is characterized by a horizontal or near
horizontal line on the load-deflection curve.
Since the beams buckled in an "S" shape for all
second mode tests, the midspan deflection was
small or zero for all values of load. The
critical load can also be found from the
horizontal line on the load-twist curve as shown
in Figure 4.3. Due to the high yield strength of
the W12x14 beam material (approximately 65
ksi), the large deflections needed to reach the
critical load of the test beam were achieved
without yielding.

Top fig defl

Ratio of Twist To Moment
vs. Deflection

TestC5
89 k·lrVtad TOl'lllonai Brace 011 Top Flange
Z'x1/4" StIffener

Typical load - twist curve
for first mode test.

Twist

5

2

....... 4

i
'C 3

.9

Ratio of Deflection To Moment
vs. Twist

Figure 4.4 Meck plotting technique.

Centroid defl/ M

Figure 4.3
Alternative methods have been

developed to determine the experimental
buckling strength of beams that cannot be
loaded to the actual buckling load. For

Deta Points Twist/ M example, in Figure 4.2, the test was stopped
Z / before a flat plateau was reached. Some of the

better known procedures for this type of
ZJ~~~~I~~~lIc-----~~analysis incluoe teclm1ques presenteQ~D=y~~~~~

« Southwell (1932) and Meck (1977). The Meck
Plotting Technique is applied specifically to
beams by using two equations which involve
linear relations between functions of the
measured lateral deflection and measured
twist. The applied moment is plotted against
the experimental twist and lateral deflection as
shown in Figure 4.4. For beams loaded on the
top flange, the inverse slopes of the lines of

best fit through the data points for these plots are defined as Ot and {3 where the critical

2 dP + A _ P - a A = 0
cr t-' 2 cr t-'

(4.1)

The initial lateral twist, ()o, and deflection, Vo, are found from negative horizontal intercepts
of the plots shown in Figure 4.4

The Meck Plotting Technique for the determination of Mer gives results practically
identical to the load level corresponding to a horizontal line on the load-deflection curve
for all tests without bracing. However, the Meck Plotting Technique did not work for tests
in which there was local distortion such as when the load was applied through a flexible



Measured Initial Top Flange
Deflection and Twist

Test Number Initial Deflection Initial Twist
(in.) (degrees)

Al 0.04 0.26

A2 0.45 0.95

AS 0.16 0.01

A6 0.22 0.13

D1 0.26 0.17

D~ 0.15 OJ}']

D3 0.12 0.05

D4 0.31 0.12
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member or for torsionally braced beams without stiffneners. For these cases, usually a peak
load was reached which was taken as the buckling load. The critical load for all tests was
obtained from the horizontal portion of the load-deflection curve. The Meck Technique
also established the initial imperfection of each beam which was checked independently.
In general the critical load given in the subsequent tables were obtained by the Meck
Plotting Technique unless a peak load was reached.

4.3 Determination of Initial Imperfections

Two types of initial imperfections Table 4.1
were studied during the testing program.
The first type of imperfection will be
referred to as natural imperfections. All
tests, except group D, were performed with
permanent out-of-straightness. Tests AI,
AS and A6 in Table 4.1 give values of
initial top flange displacement and initial
twist at midspan for the three levels of
imperfections used during testing. The

~~~~~s~e~c=o=ndtYPeofimpeffecrlon wirroe referred
to as forced imperfections. These were
applied at the quarter point of the beam by
displacing the compression flange of the
test beam laterally with a rigid stop and
then securing the stop in the displaced
position. Tests Dl through D4 give measured values of initial deflection and initial twist
at the midspan of the test beams for tests with forced imperfections. All forced
imperfections listed are in addition to the O.04-inch natural out-of-plane sweep of test beam
AI.

4.4 Test Series A - No Bracing

The first test series consisted of six tests with different loading beams. Test Al was
loaded with knife edges between the loading member and the test beam, and can be
considered a basically straight beam with no bracing other than the friction in the gravity
load simulator. Test A2 had the same configuration as Al with a forced imperfection
imposed at the quarter point of one beam.

The term "tipping effects" describes tests in which the loading beam was placed
directly on the compression flanges of the test beams without the use of the knife edges.
Tests A3 and A4 were performed to study the effects of the externally applied flange
rotation which occurs when the loading member is placed directly on the compression
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Table 4.2 Test Series A, No Bracing

Test Description Stiffener Size Initial Critical Load "S" Shape
No. Imperfection (kips)

(inches)

+Al Knife edge loading None 0.04 155 No

A2 Knife edge loading None 0.45 1.59 No

+A3 Tipping effects None 0.04 3.91 No

A4 Tipping effects 2" xl/4" 0.04 6.2 Yes

+A5 Knife edge loading None 0.16 1.56 No

+A6 Knife edge loading None 0.22 1.67 No

+ Test was repeated

flanges of the test beams. Tests AS and A6 were loaded with the original knife edge loading
and are similar to test Al except for the level of initial imperfection present. Table 4.2
gives a summary of these tests and the corresponding experimental buckling loads. The
reported buckling load is an average of the two test beams. Tests marked with a plus sign
were reproduced to check for repeatability. With the exception of tests C4 and C29
presenteolIlSecfion 41>, aUouplicatel:ests gave a crit1cal~loaowif11inO percent oftn=e~~~~~
original test. Test C4 had a variation of 20 percent and test C29 had a variation of 8
percent.

4.5 Test Series B . Lateral Bracing

The second series of tests, as well as subsequent tests, were loaded using the steel
loading beam and knife edges as shown in Figure 3.7. All boundary conditions were the
same as Test Series A except that a lateral brace was added as shown in Figures 3.8 and 3.9.
Six levels of lateral bracing and two levels of initial imperfections were tested. Table 4.3
shows the amount of lateral bracing attached to the test beams through the bracing device--------------------------------------------------------------------------------------------------------------------------------------- -- -----------------------------------------------------------------------------------------------------------------------_ ... - .- -------------------------_._----------------- - ---------------------------

and the corresponding critical load per beam.

4.6 Test Series C . Compression Flange Torsional Bracing

Test Series C consisted of 40 tests with varying levels of torsional brace stiffness,
initial imperfection and stiffener size. A total of eight levels of brace stiffness, three levels
of initial imperfection, and two stiffener sizes were tested. Tests were also performed with
no stiffener and with the 4"xl/4" stiffener touching the compression flange at both brace
locations. Tests performed with the stiffeners touching the compression flange are marked
with an asterisk in the table.
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Table 4.3 Test Series B, Lateral Bracing

Test Number Brace Stiffness Stiffener Size Initial Imperfection Critical Load "S" Shape
(kips/in) (inches) (kips)

Bl 0.22 4" x 1/4" .19 3.17 No

B2 0.75 4" x 1/4" .24 6.02 No

B3 0.36 4" x 1/4" .36 4.11 No

B4 1.20 4" x 1/4" .35 6.54 No

B5 0.36 4" x 1/4" .15 3.97 No

B6 1.20 4" x 1/4" .16 6.73 Yes

B7 1.90 4" x 1/4" .15 6.62 Yes

B8 0.65 4" x 1/4" .15 5.39 No

B9 0.65 None .15 5.47 No

Bl0 1.90 None .16 6.75 Yes

As described in Chapter 3, the torsional bracing was attached to the compression
flange of each test beam with half the indicated amount being placed six inches on either
side of the mid-span. Table 4.4 contains a summary of these tests and the corresponding
experimental buckling loads.

4.7 Test Series D, E and F

Test Series D consists of six tests where the initial imperfection was applied to the
beam by a forced displacement at the quarter span of one beam. The forced displacement
was transferred to the other beam through the loading tube. As mentioned in the previous
sections, the initial imperfection reported for all other test series was the natural state of
the test beams due to a previous yielding or manufacturing process. Test Series E consisted
of ten tests similar to those in Series C except the torsional bracing was attached to the
tension flange instead of the compression flange. Test Series F consisted of 6 tests similar
tQtllQs~ill~~l"i~s.C~){G~pt ....llglftll~jllcIiGgt~c1 ...yglll~QfJQl"~iQllg1.bl"gGillgwgs .. gttgGll~c1JQtb~
compression flange and half was attached to the tension flange. Table 4.5 contains a
summary of these tests and the corresponding experimental buckling loads.
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Table 4.4 Test Series C, Compression Flange Torsional Bracing.

pgg

Test Number
Brace Stiffness

Stiffener Size
Initial Imperfection Critical Load

"S" Shape
(k-in/rad) (inches) (kips)

C1 55 NONE 0.22 2.87 NO

C2 55 2"X1/4" 0.22 3.13 NO

C3 55 4"X1/4" 0.22 3.17 NO

+ C4 89 NON 0.22 3.44 NO

+ C5 89 2"X1/4" 0.22 3.49 NO

+ C6 89 4"X1/4" 0.22 355 NO

C7 175 NONE 0.22 4.37 NO

+ C8 175 2"X1/4" 0.22 4.40 NO

C9 175 4"X1/4" 0.22 4.54 NO

ClO 462 NONE 0.22 4.83 NO

C11 462 2"X1/4" 0.22 5.17 NO

C12 462 4"X1/4" 0.22 5.31 NO

C13 666 NONE 0.22 5.05 NO

C14 666 2"X1/4" 0.22 5.45 NO

CIS 666 4"X1/4" 0.22 5.73 NO

C16 855 4"X1/4" 0.22 5.80 NO

+~G1+~~~~~~~~1030 4"Xlf~~~~~O02.~ S.7~~~~~~~NQ

C18 1190 4"X1/4" 0.22 5.98 NO

C19 1190 * 4"X1/4" 0.22 6.83 YES
C20 1030 * 4"X1/4" 0.22 6.82 YES

C21 666 * 4"X1/4" 0.22 6.81 YES
C22 462 * 4"X1/4" 0.22 6.87 YES
C23 175 * 4"X1/4" 0.22 5.45 NO

C24 89 * 4"X1/4" 0.22 3.38 NO

C25 55 NONE 0.16 2.89 NO

C26 55 2"X1/4" 0.16 3.03 NO

C27 55 4"X1/4" 0.16 2.96 NO

C28 89 NONE 0.04 4.48 NO

+ C29 89 2"X1/4" 0.04 4.33 NO

C30 89 4"X1/4" 0.04 5.14 NO

C31 175 NONE 0.04 5.55 NO

+ C32 175 2"X1/4" 0.04 6.38 YES

+ C33 175 4"X1/4" 0.04 6.54 YES
C34 175 * 4"X1/4" 0.16 4.83 NO

C35 462 * 4"X1/4" 0.16 6.58 YES

+ C36 462 4"X1/4" 0.16 5.71 NO

+ C37 666 4"X1/4" 0.16 5.92 NO

C38 855 4"X1/4" 0.16 6.33 NO

C39 1030 4"X1/4" 0.16 6.50 YES

C40 1190 4"X1/4" 0.16 6.41 YES

~t1nener touchm tension flan e + Test was re eated



Table 4.5 Test Series D, E, and F

Test Number Brace Stiffness Stifrener Size Initial Critical Load usn
(k-in/rad) Imperfection (kips) Shape

(inches)

Forced Imperfections

D1 89 NONE 0.26 359 NO

D2 175 NONE 0.15 4.13 NO

D3 175 4"X1/4" 0.12 5.8 NO

D4 175 4"X1/4" 0.31 5.27 NO

Tension Flange Torsional Bracing

E1 175 NONE 0.22 4.25 NO

E2 175 * 4"X1/4" 0.22 6.53 YES

E3 666 * 4"Xl/4" 0.22 6.69 YES

E4 666 4"Xl/4" 0.22 6.79 YES

E5 666 NONE 0.22 4.72 NO

E6 17'5 N0NE----0~16 3:83~~~~~-N0

+ E7 175 * 4" X 1/4" 0.16 5.15 NO

E8 666 • 4"Xl/4" 0.16 6.99 YES

E9 666 4"Xl/4" 0.16 7.03 YES

EI0 666 NONE 0.16 4.78 NO

Combined Compression and Tension Flange Torsional Bracing

Fl 462 NONE 0.22 6.53 YES

F2 175 NONE 0.22 4.89 NO

F3 175 4"Xl/4" 0.22 4.99 NO

F4 462 NONE 0.16 6.94 YES

F5 175 NONE 0.16 4.87 NO

F6 175 4"Xl/4" 0.16 4.86 NO

* Stiffener Touching Tension Flange
+ Test was repeated
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CHAPrER FIVE
CO:MPARISON AND DISCUSSION OF TEST RESULTS

The experimental buckling loads of unbraced beams is presented first, followed by
a discussion of the importance in over-designing the brace stiffness in order to keep brace
forces low. Then, using the test results presented in Chapter 4, the effects of brace stiffness,
brace location, stiffener size, and initial imperfections on the lateral buckling of beams will
be evaluated. Test results will be compared with the theoretical solutions developed by
BASP and the bracing equations presented in Chapter 2.

5.1 Unbraced Beams

Series A had no apparent lateral or torsional bracing other than the lateral restraint
provided by the friction in the loading device (gravity load simulator). The seven tests with
knife-edge loading on the top flange varied between 1.53 and 1.69 kips, with an average of
1.60 kips. All test loads reported herein include the weight of the loading beam. With no
bracing, BASP gives a predicted buckling load of 1.29 kips which indicates that some lateral
restraint is present. At a ram load of 3.2 kips corresponding to the average unbraced beam
test load, the lateral stiffness of the loading device given in Figure 3.5 is 0.083 k/in. For one
beam with a lateral restraint of 0.042 k/in., the BASP buckling load is 1.65 kil:Js which is

----W1~·..,tllln three percent of the average test load. The small vibration motor probably reduced
the restraint below that given in Figure 3.5.

Figure 5.1 Tipping effect.

Cross section Distortion
(b)

When the loading beam without knife
edges was placed directly on the top flange of
the twin test beams, the budding load
increased from 1.60 kips to 3.91 kips when no
web stiffener was used. The 244 percent
increase was due to the tipping effect. When
the beam tried to twist at 1.6 kips, the top
flange load was then applied at the flange tip
and a restoring torque (shown in Figure 5.1(a))
kept the beam in the straight position. This Restoring Torque

tipping effect phenomenon has been studied by (a)

Flint (1951a) and Fischer (1970) assuming no
cross section distortion. Under this condition,
they found that no twist could occur at the load
point, so this position would be a brace point.
Buckling could only occur between supports. The test beam A3, however, did twist at the
load point at 3.91 kips because of cross-section distortion, as illustrated in Figure 5.1(b).
When a 2-x-1/4 web stiffener was attached at the load point (to control distortion), the
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beam load (Test A4) reached 6.2 kips corresponding to buckling between the midspan and
the end support (S shape).

The program HASP cannot determine the tipping buckling load because it assumes
that the load is in the plane of the web. Linder (1982, in German) has developed a solution
for the tipping effect which considers the flange-web distortion. The test data indicates that
a cross member merely resting (not positively attached) on the top flange can significantly
increase the lateral buckling capacity. The tipping solution is sensitive to the initial shape
of the cross section and location of the load point on the flange. Because of these
difficulties, it is recommended that the tipping effect be considered in design only when
cross section distortion is prevented by stiffeners. In this case, the load point can be
considered a brace point. Unfortunately, in a bridge structure subjected to moving
concentrated loads, stiffening the web at the load point is impractical.

5.2 Effect of Imperfections on Lateral Bracing Requirements

In a column braced at midspan, the ideal brace
stiffness, (3j = 2P / ~ from Table 1.1 This stiffness
requirement is applicable to columns that are straight. For P

~~~~a~'""'c~olumn witb: an iID'tlal out-of"straightness A~ in Figure 5:2~

the brace requirements can be derived by taking moments
about point n,

(5.1)

Solving Eq. 5.1 for brace stiffness

/-

and for brace strength

(5.2)
Figure 5.2 Imperfect

column.

(5.3)
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If .10 = 0, then (3L = 2P / ~, the ideal stiffness given in Table 1.1. However, for any
out-of-straightness, the design stiffness must be greater than the ideal stiffness. In general,
the relationship between initial displacement .10 and deflection under compressive load, P,
is given by

(5.4)

Substituting LlT = .1 + .10 in Eq. 5.4 gives:

(5.5)

Equation 5.5 shows that when P approaches the buckling load Per, .1 gets very large. This
---~reli1ICes-llresttffne1rSlequirement,Equation 5:z;Ll>lne ideal value, but ummtunatelytn"e---­

brace force given by Equation 5.3 gets very large. In order to develop a reasonable solution
for brace force, it is necessary to choose a design brace stiffness greater than the ideal value
so that .1 at the brace will be small when the desired load P for buckling between braces
is reached. For example, if a brace stiffness of twice the ideal stiffness is chosen, then from
Eq. 5.5 .1 = .10 since Per = 2P and the brace force, Eq. 5.3, gives Fbr = 4PLlo /~. For an
initial out-of-straightness .10 = ~ / 500, Fbr becomes 0.008P or only 0.8% of the column
load. In general, substituting Eq. 5.5 into 5.3 gives the brace strength formulation in terms
of brace stiffness

(5.6)

where (3L is the brace stiffness provided and (3i is the ideal brace stiffness for a perfectly
straight system. The brace force is a linear function of .1

0
' If a brace stiffness ten times the

ideal value is available and the initial out-of-straightness is ~ / 500, Eq. 5.6 gives a brace
force of 0.44 percent of P. For this same .10' a brace stiffness of 1.67 (3i will require a one
percent brace force. For a brace force of two percent, a stiffness of 1.25 (3i is required. For
simplicity a brace stiffness of 2(3j and a brace force = 0.008P is recommended.

The effect of initial out-of-straightness on bracing requirements for beams follows a
similar trend. Figure 5.3 shows the theoretical response of Test B9: 24-f1. span, W12X14
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Brace Stiffness - 0.65 kiln.
Initial Deflection - 0.16 In.

o±----O=.5=------,--------c1=.5,--------:r-----='2.5

Lateral Deflection ( in.)

Beam with initial out - of
straightness.

: _\~~~__-e::~~~~.2'~~~n~~~~~~_

i 4 ABAQUS Theory r;.
:s::......
~ 3
.9

2

Figure 5.3

section midspan load at the top flange,
lateral brace stiffness = 0.65 klin which is
less than ideal, top and bottom flange out­
of-straightness = 0.16 in. and 0.13 in.
respectively. The finite element computer
program, ABAQUS, was used to develop
the load-deflection response and Pcr = 5.18
kips at very large deflections. The BASP
buckling program gave Pcr = 5.34 kips.
These two Pcr estimates are within three
percent of eaoh other. The experimental

- Pcr from a Meck plot of test data gave Pcr =
5.47 kips as listed in Table 4.3. The
experimental lateral deflections are much

less than the theoretical values. This is probably due to the fact that the experimental
midspan lateral deflection is for two beams with some difference in out-of-straightness. The
test result is an average of two beams. Even though the measured lateral displacements are
one-third of the expected, the buckling loads are very similar. Equation 5.5 developed for
columns gave results very close to the ABAQUS solution when .6.0 is taken as the initial out­
of-straightness of the compression flange. The out-of-straightness did not affect the elastic

~~~~1Jucliling load associated WIt1i very large1ateraIClisplacements.

5.3 Beams with Lateral Bracing

9

"-BASP

Top Fltr Load

A -------nfM,
I. W12x14· 24 ft.•1
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Restraint

I 6 ",/r
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A summary of the Series B lateral
bracing tests is given in Figure 5.4. The
test results show good agreement with the
BASP theory. At brace stiffness below 0.8
k/in., the beams buckled in a single half
sine curve as predicted. For brace
stiffnesses greater than 0.8 k/in., full
bracing is achieved and the test beams

oi--~O.c,:;-5----y-----:;1""'.5-----r---=2.5 buckled into an S shape between brace
LATERAL BRACE STIFFNESS (k/in) points. The dashed line is the theoretical

Figure 5.4 Lateral bracing tests. solution assuming that the gravity load
simulator provides additional lateral

restraint. The test results are closer to the theory neglecting this fixture restraint which
indicates that the vibration motor was effective in reducing the friction.

The tests had initial top flange out-of-straightness between 0.15 in. and 0.36 in. but
there was no apparent effect on the buckling loads. The experimental buckling loads
obtained from Meck plots of the load-twist-Iateral deflection data give the expected buckling
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load if the beams would have been deformed beyond the 1 in. displacement limited in the
experiments to control yielding of the beams.

98

Revised Winter Ideal Stiffness

Eq 2.6, Cbb -1.75, Cbu - 1.32

7

o±-------=-c=------.------::-r::-------:I,..----""""::'
0.5 1.5 2.5

Lateral Brace Stiffness (k/in)
Comparison of tests and Eq.
2.1.

Figure 5.5

A comparison of the test results with
the continuous lateral bracing formulation,
Equation 2.8, is shown in Figure 5.5 by the
solid line. The figure shows that Equation
2.8 gives conservative results at brace
stiffness near the ideal value, but in general
the results are similar. As discussed in
Chapter 2, the use of an equivalent
continuous bracing formula for discrete
braces produces the most error for the
single brace at midspan. While Equation
2.8 was developed to handle all bracing
arrangements and magnitude of brace
stiffness, it may be simpler to adapt
Winter's ideal bracing approach to the case
of a concentrated load at midspan which
controls design for most short span bridges.

For beams under uniform moment the Winter brace lateral stiffness required to force
buckling between the braces is {3L* = #Pf / ~ as given in Table 1.1 where Pf = "r Elf / ~2,

If is the out-of-plane moment of inertia of the compression flange, Iy / 2, and # is a
coefficient depending on the number of braces within the span. For other moment diagrams
and top flange load, Winter's ideal bracing stiffness can be modified as follows,

(5.7)

where <; is the moment diagram modification factor given in by Eq. 1.2 for braced beams
and Ct is defined by Equation 2.8. For the test beams braced only at midspan, # = 2, <;
= 1.75, Ct = 1 + 1.2/1 = 2.2, ~ = 144 in. and Pf = "r (29000) ( 2.32/2 ) (144)2 = 16.01
kips, {3L* = 0.856 k/in which is shown by the * in Figure 5.5. A linear response between
zero bracing and ideal bracing is assumed and shown by the dashed line. Equation 5.7
compares very favorably with the test results and is a simpler alternative to the use of
Equation 2.8.

The Series B tests with no stiffener, B9 and BlO, gave approximately the same results
when a 4 x 1/4 web stiffener was used in B8 and B7, respectively. The test results and
theoretical studies indicate that web distortion is not an important factor when lateral
bracing is attached to the top compression flange of a beam.
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Beams with Torsional Bracing5.4
-----_ ...

\
Torsional Brace

o TESTB2

+ TESTC10

Meek Buckling Load· Test B2 ....."

"'Lateral Brace

ot-------:=---:;or-;----;:T:;"------=:--------r-------"
0.2 0.4 0.6 0.6 1.2

TOP FLANGE LATERAL DEFLECTION (in.)

Figure 5.6 Typical test results
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The Series C torsional bracing tests
were designed to study the influence of
brace stiffness and the effect of cross
section distortion. A typical load-lateral
displacement response (Test C10) is shown
in Figure 5.6. A peak load was reached at
a displacement of approximately 0.2 in.
which is taken as the buckling load. This
behavior is very different from the typical
response for the lateral bracing tests

represented by Test B2 in Figure 5.6. For lateral bracing, no peak was reached in the
experiment and the buckling load had to be determined by the Meck plotting technique.
The Meck buckling load is the load that would be reached at large lateral displacement
represented by the dash line. The difference between the two responses is caused by local
distortion of the cross section at the points at which the torsional bracings are attached.
Without distortion, the two flanges and the web should have the same angle of twist. The
twist of the top flange and the bottom flange were measured near the brace at midspan in
all experiments. The twist data show that at the brace there is no difference in the

~~~~II"IrPe"""asIT'u~red""twist·of each-ilan:g{f"forlatenrl-ITnrctrrg-but-tITer{f"wa-s-a-stgnifrcanLdiffen~m~e"io"-r ~~~­

torsional bracing as the peak load was reached. In Test C10 at the peak load, the bottom
flange twist of 1.230 was 2.3 times the top flange twist.

o ±--=r=-----=::------::ce =--::-r::----:-
1ooo

==--1,....,,2oo

BRACE STIFFNESS (kip-in/radian)

Figure 5.7 Torsional bracing - no stiffener.
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Cross-section distortion can be controlled by properly attached stiffeners. In Series
C there were three general stiffener arrangements, namely, no stiffener, a stiffener in
contact with the flange where the brace is attached which controls cross section distortion,
and a web stiffener which does not touch either flange. This latter type of stiffener
arrangement controls bending of the web but each flange is permitted to twist relative to
the web. Figure 5.7 shows a comparison of the Series C tests with no stiffener and the
buckling load predicted by BASP. In all of these tests, the beam buckled in a single half
W'ave. No brace was sufficient to force beam to buckle into an S-slIape "because of local

distortion at the brace point. The test
loads are significantly greater than the
BASP solution assuming no lateral
restraint by the loading fixture (heavy solid
line). Two additional BASP solutions are
shown which indicate that the effect of
lateral restraint is very significant. The
0.026 k/in. for each beam is approximately
1/4 of the restraint calibrated in Figure 3.5
for no vibration motor and is a lower
bound to the test data. The highest BASP
solution corresponds to the full calibrated
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lateral restraint by the gravity-load simulator. The test results fall within the bounds of the
BASP solutions. In the lateral bracing tests, Series B, the effect of the fixture restraint was
relatively minor, but this is not the case for torsional bracing. As indicated in Figure 2.8,
the interaction of lateral and torsional bracing is very effective. For example, a lateral brace
of 10 percent of the required lateral bracing reduces the torsional bracing requirement by
40 percent.

The data in Figure 5.7 indicates that the beams with the smallest initial sweep had
the largest buckling loads. This was probably due to smaller lateral displacements and the
likelihood that friction in the test fixture was not broken. The test results for initial sweep
equal to 0.04 in. are very close to the BASP solution with full fixture restraint.

InlUal Sweep On.)

* 0.22
o 0.16

"

14x1f4 STIFFENER I

Initial Sweep On.)
* 0.22

14x1f4-STIFFENERI~~~~~~~~~~~
o 0.16

--------BASP - No FIXture Restraint

Torsional bracing tests - Full
stiffener.

BASP - 0.026 kiln Fixture Restraint

BRACE STIFFNESS (kip-in/radian)

.. ~ Bracing Eq. 2.9
Cbu -1.32, Cbb -1.75

2

0+---=2,."---:-r=----::-r:---e===---:-:1000"="=--1,,,,200

TORSIONAL BRACE STIFFNESS (kip-in/radian)

3

8

7

e
5

4

Figure 5.9 Eq. 2.9 - Full stiffener.
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Figure 5.8

The torsional bracing fonl111I~,

Equation 2.9, is compared to the test
results for the stiffened and unstiffened
cases in Figures 5.9 and 5.10, respectively. '
The difference between these two cases is
caused by cross section distortion. In the
torsional bracing formula, f3sec = 114 kip­
in/radian for the unstiffened web and
11030 for a beam with a 4 x 1/4 stiffener at
the brace points. As f3sec get smaller, the attached brace becomes less effective. An
attached brace with a stiffness of 250 kip-in/radian is almost fully effective (247 kip­
in/radian from Eqs. 2.5 and 2.6) but the same brace is effectively reduced to 119 kip-in/rad,

The Series C results for a stiffener in
contact with the torsionally braced flange
compare very well with the BASP results,
as shown in Figure 5.8. These tests
simulate the typical design situation of a
stiffener welded to the compression flange
and cut short of the tension flange. The
effect of possible fixture restraint is not as

~~~~impnrTIrnt~urthts~(;ase where cross section
distortion is prevented by the 4 x 1/4
stiffener at each brace location. The ideal
brace stiffness is approximately 320 kip­
in/radian. At the ideal stiffness, the
buckled shape changes from a single half
wave to the S-shape corresponding to full
bracing at midspan. All the tests with
bracing greater than 320 kip-in/radian
buckled into an S shape.
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about a fifty percent reduction, if the web
is unstiffened. The design equations follow
the trend of the data very well.

x

Full 4x1/4 Web 4x1/4x11

x \

x '"

'"

8

8

Initial Sweep (in.)
;IE 0.22
o 0.16

I NO STIFFENER I 004
I --::-r::--~.~=~=~.:r=-~x~.~~.Of- 8 1000 1200

BRACE STIFFNESS (kip-in/radian)

Figure 5.10 Eq. 2.9 - No stiffener.
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When the stiffener is not welded or
in contact with the braced flange, then the
web can twist relative to the flange as
illustrated in Figure 5.1(b). In such a case,
the effectiveness of the stiffener in
controlling distortion is reduced and
Equation 2.9 is not applicable. Tests in
which the 4 x 1/4 web stiffener did not
touch the braced flange are summarized in
Figure 5.11. The web was stiffened, not the
flanges in these tests. The tests are similar
for a 2 x 1/4 stiffener. The tests compare
favorably with BASP solution in which the
web stiffener is assumed to be 10 in. long

~ or 11 in. long. The actual stiffener was an
9 angle eleven inches long but it was bolted

----~§!~~IIJ-------li'5nl~t18="1S;;;;'w~e~e~p"(In=cc.)~-~to~······~······~th:;c;:e~·cc-;w·~··~eb~·····~······~a~l1dthe aisfance between
~ 0 0.22 connectors was 9 in. Therefore it iso 2
ii5 1 14 x 1/4 stiffener I '" 0.16 questionable that the total length of the

x 0.04 stiffener is effective. Stiffeners that do not
00 200 400 600 800 1000 1200 contact the braced flange are not

BRACE STIFFNESS (kip-in/radian) recommended and these tests illustrate the
Figure 5.11 Web stiffened test results. reduced strength when compared with the

results in Figure 5.9.

5.5 Effect of Torsional Brace Location

Theoretically, the attachment height of a torsional brace should have no effect on the
buckling load if the beam web does not distort. Figure 5.12 and 5.13 show values of critical
load for tests with torsional bracing placed on the compression flange, tension flange or split
evenly between the compression and tension flanges (combined bracing). Figures 5.12 and
5.13 show that the combined bracing produced a slightly higher critical load for beams with
no stiffener, however, the beam with a 4x1/4-in. stiffener and a brace stiffness of 175 k­
in/rad also showed an increase in critical load. Based on these tests, the brace location did
not significantly affect the critical load regardless of the cross-section stiffness of the test
beam.
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Figure 5.12 Effect of brace location.
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5.6 Forced Imperfections

In the experiments, two types of
imperfections were tested; natural
imperfections and forced imperfections. Since
a natural imperfection requires equilibrium of
internal stresses and a forced imperfection
requires equilibrium with an applied external
reaction, there is no theoretical basis for
assuming that both types of imperfection would
have the same impact on the effective brace
stiffness.

7

o

IO.22"lmperfecllonl Brace location

~TenFlg

.CompFlg

o Combined

Based on Figure 5.14, a forced
imperfection has an effect similar to a natural
imperfection. Since lateral-torsional buckling
involves both a twist and a lateral
displacement, the magnitude of initial twist
may also have an effect on the brace stiffness.

175 175
4"x1/4' None

688 Brace Stiff (I<-In /rad)
None Stiffener Slze

Figure 5.13 Forced O.22-in. imperfec­
tion.
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00.31' Forced

175 k-injrad Brace - 4"x1/4" Stiffener

Figure 5.14 Forced initial imperfections.





CHAPTER SIX

SUMMARY AND CONCLUSIONS

6.1 Summary of the Investigation

The purpose of the investigation was to evaluate the effects of intermediate lateral
and torsional bracing on the lateral-torsional buckling of steel beams. Bracing equations
were developed to determine the critical load for beams braced by lateral and/or torsional
bracing.

The effects of brace stiffness, brace location, and stiffener size were studied
experimentally and also analytically using the program BASP. The effects of imperfections
were studied mainly with the experimental program. The bracing formulas, Eqs. 2.8 and 2.9,
are presented and compared to finite element solutions for straight beams in Chapter 2 and
are compared to experimental results in Chapter 5.

6.2 Conclusions

The analytical and experimental study indicated that cross section distortion has a
significant effect on tIle tor~i()l1al1J!a.cil1g!eCllliI"~1l1~l1ts.)J1l1Jlisl1~c1JQIlI}lJ1atious, whichd~~
not account for the distortion, should not be used for design. Equations 2.5, 2.6. and 2.9
directly account for the distortion. They can also be used to design adequate stiffeners to
make the attached bracing more effective. The distortion effect is mainly related to the web
thickness.

Lateral bracing at the top flange of simply supported beams was very effective and
was not affected by cross section distortion (stiffeners are not necessary). The shape of the
moment diagram and top flange loading have significant effect on the bracing requirements
and the bracing formulas were developed to account for these two effects.

The BASP program and bracing equations developed from the analytical studies
showed good correlation with the test results. The tests verified that cross section distortion
is very important for torsional bracing. The W12X14 test beams could not reach the load
level corresponding to buckling between braces unless web stiffeners in contact with the
braced flange were used. Torsional bracing at the bottom tension flange was just as
effective as bracing on the compression.

The Meck technique for obtaining experimental buckling loads worked very well for
lateral bracing, but was not useful for torsional bracing because of the effect of local cross
section distortion. In the torsional bracing experiments, the results were sensitive to the
slight lateral restraint provided by the test fixture especially for very straight beams.

43
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Combined lateral and torsional bracing is very effective in controlling lateral buckling of
slender beams.

The initial sweep of the beam did not affect the buckling load of laterally braced
beams, but did influence the results in the torsional buckling experiments. The experimental
buckling were all larger than the BASP prediction regardless of the level of initial
imperfection, so the apparent out-of-straightness effect was related to lateral fixture
restraint.

6.3 Recommendations for Design

Equations 2.8 and 2.9 should not be used directly for design. While they show very
good agreement with the theoretical and experimental results, they need to be adjusted to
keep brace forces low as described in Section 5.2. Beams with initial out-of-straightness
(sweep) deflect laterally under any loading. The lateral displacement and twist get very
large as the buckling load is approached which introduces large forces into the braces.
These lateral deflections can be controlled by over-designing the braces. If a brace with
twice the stiffness required by Eqs. 2.8 or 2.9 is used, then the additional lateral deflection
will be no greater than the magnitude of the initial sweep itself when the load reaches the
buckling load. Thus, a doubling of the theoretical brace stiffeners reduces the lateral
displacement 6ftliebracej56inffrOili·i:rifiiiitY t()~~artliebl.ic1illiigIoad.Thei-esl1.ii1ngbi-ace

forces will then be limited to 0.008 of the compression force in the flanges for an initial
sweep of L/500.

The recommendations for design are given in Appendix B. They are the same as
Eqs. 2.8, 2.9 and 5.7, with the brace stiffness divided by a factor of two. Eqs. 2.8 and 2.9
give the buckling load for any magnitude of bracing. Eq. 5.7 is a simpler expression which
can be used to determine the lateral bracing stiffness to force the beam to buckle between
braces.
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APPENDIX B
BRACING EQl]:ATJQl~KEORDESIGN- ~..~ .

~~._~._~_ ....,~, ...,"'-~.~._~ ...~,."'''_._~'~ ..~_ ...~

Brace Stiffness - discrete or continuous bracing

(Bl)

where

(B2)

l¥L

L
DISCRETE BRACE STlFFNESS

'\. kil¥in. or Iir kip-in/radian

Convert to continuous brace stiffness by:

CONTlNUOUS ~L, T X ( # of Discrete Braces)
BRACE STlFFNESS· PL, T·

l¥ • 0.75 for one midspan brace
• 1.0 for two or more braces

Figure B1. Equivalent continuous bracing.

Ad ~ .17]1L (B3)L --
c;. PYI:

CL
1 1.2 (B4)+-

n
(top flange load)

1.0 (centroid or moment
loading)

Mo (Ib-in. units) = 91 X 106 {C 0.772 {c + ~ ) 2 (BS)

For top flange loading adjust Eq. (B5) as given in the SSRC Guide (Galambos, 1988) or omit the second term
under the square root. In the equations above

M o buckling strength assuming the beam is laterally unbraced along the span
M. buckling strength between braces; Eq. (B5) with ~ instead of L and Cbb (same as M r in

AASHTO)
CL top flange loading factor
Cbu the Cb factor assuming the beam is unbraced
Cbb the C b factor assuming the beam braces are fully effective

and

n

L

~

number of discrete braces

span length

distance betwecn braces

67

G

J

h

shear modulus (E/2.6 for steel)

St. Vcnant torsion constant

distance between flange centroids
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E

~ ··weakaxismomenrof iiiertia~of
compression flange

modulus of elasticity d

yield moment

beam depth

Full Bracing Stiffness Reguirement - Discrete or Relative Bracing

(B6)

where # ~ 4 - (2/n) or the coefficient in Table 2.1 for discrete bracing
# 1.0 for relative bracing

Pf 1'i2Elycl~

Strength Reguirement

Discrete bracing: Fbr = 0.008 M f I h
Relative bracing: Fbr = 0.004 M f I h

where Mf is the maximum beam moment at factored load

"111111111111:11:1:1:.1:11111:
Allowable Stress Design

Stiffness: Mallow = 0.55 Mer :S 0.55 My or 0.55 M.
See Eq. (B1-B5)

Full Bracing Stiffness:
Use Eq. (B6) - no change

Strength:
Discrete bracing: Fbr = 0.008 Mlh
Relative Bracing: Fbr = 0.004 M/h

where M is the maximum beam moment at
service load.

top flange of girder
relative brace

Figure B.2

(B7)

(BS)



Diaphragms or Decks Through Girders

~
._' lib I''- ..,-/= _.: I '----camp flg~"/ \........:=::.:.. - ! •• \

". s~··" ~~~~;m

through girder

69

Cross Frames

Ln==~-==~=-"===l
LI (N + 1.5h)

'F~

1wC:::'..~/,
I

stiffener at least 3/4 depth

Torsional Brace

Effective Web Width for Distortion

Ph (see Fig. 5.10 )

effective torsional brace
stiffness of attached brace
accounts for cross section
distortion

3 3

f}sec=
3.3 E (2 (N + 1.5 h) +

t
s

bs )-
h 12 t 12

use 1 In. for continuous bracing

Brace Stiffness - discrete or continuous bracing

and 1 1 1
-=-+-
~T ~b ~sec

(B9)

M =er
(B10)

where

Brace Strength

1.2 for top flange loading

1.0 for other loading

M = P h _ 0.02 L M2

br brb- 2
nEI,.cCbb

where M =maximum factored moment

(B.ll)

1·1.11!1111·1.11·.··l11·111.11111.: -
Allowable Stress Design

Stiffness: Mallow == 0.55 Mer :S 0.55 My
or 0.55 M. (See Eq. (B.9 - B.10)

Strength: Same as B.ll but with M as the
maximum moment at service load
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