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Chapter 1 

Introduction and Overview 

1.1  Introduction 
The frequency of use of steel box girders has increased in the state of Texas and 

throughout the United States over the past 10 years.  Some of the advantages of the 
structural shape that have led to the increased utilization include improved aesthetic, 
maintenance, and structural benefits.  Geometric continuity is achieved since the 
trapezoidal shape of the steel girders match the prestressed concrete U-beams that are 
frequently used in Texas.  The smooth shapes of the girders also provide a sleek 
appearance as shown in Figure 1.1.  In addition, since the girders are closed they tend to 
remain dry and there are fewer places for debris and other corrosion causing agents to 
collect.  However, the primary advantage of box girders is the large torsional stiffness 
that makes the girders ideal for use in curved interchanges for which the bridge geometry 
can lead to large torques.  The torsional stiffness of a box section is generally in the range 
of 100 to more than 1000 times larger than that of a comparable I-shaped section.  While 
the large torsional stiffness has led to increased use in curved girder applications, there 
also have been a number of applications in which the girders have been used in straight 
bridge applications to match adjacent prestressed concrete U-beams.  In these cases, 
straight steel box girders are used in regions where the clear span requirements preclude 
the use of the concrete U-beams.   

 

 
Figure 1.1  Trapezoidal Box Girder Bridge 



2 

 
Although there are significant structural advantages to box girders in many bridge 

applications, the basic requirements and design methodologies for a number of key 
structural elements are not well established for bridge designers.  While there were a 
number of research investigations conducted on steel box girders during the 1960’s and 
1970’s, there was a long period of inactivity during the 1980’s and early 1990’s that led 
to relatively antiquated design methodologies.  In many situations, design methodologies 
did not exist for several key structural elements.  As a result, “typical sizes” have been 
employed for some of the structural elements and the details that have been employed 
have covered a wide spectrum.  The lack of established design methodologies and 
consistent details complicates the design, fabrication, and construction of these bridges.  
The Texas Department of Transportation (TxDOT) has funded a number of studies since 
1995 to improve the understanding of the behavior of curved steel box girders.  These 
studies have focused on the behavior of the overall superstructure as well as the bracing 
systems that are used for the girders.   

 
The purpose of this design guide is to provide a summary of the current 

understanding of the behavior of box girder systems as well as presenting preferred 
practices and design recommendations for the different structural elements that comprise 
single-celled trapezoidal box girder systems.  The recommendations in this publication 
are intended to supplement the codes and standards presented in the AASHTO Bridge 
Design Specifications (2007) as well as the TxDOT Bridge Design Manual (2001).  
Another good source of information for design reference is the Preferred Practices for 
Steel Bridge Design, Fabrication, and Erection (2005). 

 
The remainder of this chapter provides an overview of some of the basic terminology 

and structural concepts applicable to trapezoidal box girder bridges.  Following this 
introductory section, an overview of the geometrical shape of trapezoidal boxes is 
provided as well as a discussion of some of the primary components that comprise the 
box girder systems.  A basic discussion of torsional theory is then provided.  Finally an 
outline of the remaining chapters of the design guide is presented.   

1.2  Trapezoidal Box Girder Geometry 

Conventional single-cell steel box girders are designed to act compositely with the 
concrete deck in the finished bridge.  Since the concrete deck closes the box section, the 
as-fabricated steel girders are typically comprised of a bottom flange, two webs, and two 
top flanges as shown in Figure 1.2.  The sloping webs of the girders lead to a trapezoidal 
shape, which is where the origin of the commonly-used name trapezoidal box girders is 
derived.  While the sloping webs produce a sleek appearance to the girders that enhance 
the overall aesthetics, there are also practical structural reasons for the inclined webs such 
as reducing the bottom flange width.  In addition to reducing the amount of material 
required for the bottom flange, the smaller width helps with local plate buckling in 
regions around supports where the bottom flange is in compression.   
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Top Flange

Web

Shear StudConcrete Deck

Metal Deck Forms

Bottom Flange

 
Figure 1.2 Typical Cross Section of Trapezoidal Box Girder System 

The size of the top flange in the region of positive bending (compression in the top 
of the girder) is often relatively small as depicted in the figure since the composite bridge 
deck will provide a large structural element that dramatically increases the bending and 
torsional stiffness.  In the negative moment region, the combined area of the top flanges 
often approach the corresponding bottom flange area since bending causes tension in the 
top of the girder for which concrete is relatively ineffective.  Although the small top 
flanges reduce the amount of steel required in the girder, the discontinuity in these 
flanges results in an open section that is relatively flexible in torsion.  Therefore, there are 
a number of bracing systems that are required to improve the performance of the girders.  
Most of these bracing systems are required primarily during construction of the concrete 
bridge deck, however much of the bracing is left on the finished bridge.  Both internal 
and external bracing systems are used on the boxes.  Some of the typical internal braces 
are depicted in Figure 1.3.   

 
Figure 1.3a shows a typical internal K-frame.  The individual components that make 

up the trussed brace are referred to as a strut and a diagonal.  The primary purpose of the 
internal K-frames is to control distortion of the box girder.  Although different types of 
truss systems are possible for the internal cross-frames, a K-frame such as the one 
depicted in the figure is most often used since the opening in the middle facilitates access 
in walking down the middle of the box during construction or routine maintenance 
inspections.    

 
A lateral truss such as the one depicted in Figure 1.3b is required at or near the top 

flange of girders to control the torsional flexibility during girder erection and 
construction.  The plan view of the bracing system shows that like the internal K-frames, 
the individual components of the truss are referred to as struts and diagonals.  The strut of 
the top flange truss also serves as the strut of the internal K-frame.  During construction, 
a steel box with the top flange lateral truss is often referred to as a quasi-closed box since 
the primary purpose of the top truss is to simulate the stiffness of a closed box system.  
Even in straight girder systems with little or no torsional load, the top flange truss is 
required for girder stability during construction.  From a torsional perspective, the lateral 
truss may be viewed as a fictitious plate with a purpose to effectively close the open 
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section.  As will be discussed in Chapter 3, this leads to one of the design approaches 
named the “equivalent plate method” that may be used to size the top flange truss.   

 
Figure 1.4 shows a picture of a recently erected twin box girder.  External K-frames 

are often positioned at intermediate points along the bridge length.  The primary purpose 
of these braces is to help control the relative twist of adjacent box girders, thereby 
achieving a uniform slab thickness.  Due to fatigue concerns, these intermediate braces 
are usually removed from the completed bridge.   

(a) Internal 
Cross-Frame

(b) Single Diagonal-
Type Horizontal 
Top Truss

Strut

Diagonal

Top Flange

Top Flange

Strut

Diagonal

 
Figure 1.3 Typical internal box girder bracing systems 

 

 

Figure 1.4  External box girder bracing 
An external K-frame or a solid plate diaphragm is required at the supports of the 

bridge to resist twist of the girder. If a cross-frame is provided, a K-frame system is 
usually employed.  Stiffening plates are typically required at the top and bottom of solid 
plate diaphragms resulting in an I-shaped section.  
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The ends of the individual box girders are closed with a solid plate diaphragm.  Solid 
plate diaphragms are also used within each girder above interior supports of continuous 
girders.  Access ports are required at these intermediate diaphragm locations to allow 
inspection personnel to move from one span to the next during routine maintenance 
inspections.  Since these diaphragms are typically positioned directly over the support 
bearings, vertical stiffeners are typically required to handle the girder reactions.  
Although elastomeric bearing pads have been successfully employed in some steel box 
girder applications, pot bearings have been utilized the most often.  The main purpose of 
these bearings is to allow the girders to expand and contract to accommodate daily and 
annual thermal changes that the bridge undergoes as well as accommodating construction 
and live load rotations.   

 
When establishing the girder geometry for bridges, the preferable layout is for the 

supporting pier lines to be normal to the longitudinal axis of the girders in straight 
bridges and to be oriented along a radial line to the girder curvature in curved bridges.  
However, in some cases, the bridge geometry or geographical aspects necessitate that the 
girder supports must be skewed from the radial lines.  The design requirements for the 
bracing can be affected by the orientation of the supporting piers.  A brief discussion of 
torsional theory is provided in the following section.   

1.3  Torsional Theory 
Torsional moments in thin-walled sections such as box girders are resisted by the 

shear stresses on the components that make up the girder cross-section.  Torsion in thin-
walled members is usually categorized as either Saint-Venant torsion or warping torsion.  
Saint-Venant torsion is the result of pure shear deformations in the plane of the plates that 
comprise the thin-walled member, while warping torsion is associated with the bending 
deformations in the plane of the individual plates.  Although both Saint-Venant and 
warping torsion are developed in box girder sections, Saint Venant torsion often 
dominates the stiffness of the closed cross-section.  The longitudinal normal stresses due 
to warping torsion are usually negligible (Kollbrunner and Basler 1969). 

 
The large Saint-Venant stiffness of a box girder provides a torsional stiffness that may 

be 100~1000 times that of a comparable I-section. The torsional stiffness of a thin-walled 
box section is a function of the shear modulus of the material, G, and the torsional 
constant, KT, which is related to the geometric profile of the cross-section. The following 
expression relates the resistance of the cross-section to the torsional stiffness 
(Kollbrunner and Basler 1969): 

 

M GK
d
dxT T=
φ

 , (1.1) 
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where MT is the torque on the cross-section of the member, G is the shear modulus, φ is 
the rotation of the cross-section, and x denotes the longitudinal axis of the member. The 
torsional constant for thin-walled single cell box girders is given by  

 

K
A

T
0=

∑
4 2

b ti i
i

/
 , (1.2) 

 
where A0 is the enclosed area of the cross-section of the box girder, bi and ti in the 
summation are the respective width and thickness of the ith plate in the box.  

 
The shear stress due to Saint-Venant torsion can be solved using Prandtl’s membrane 

analogy (Kollbrunner and Basler 1969). For example, for girders with a single cell cross-
section, a uniform shear flow, q, develops along the perimeter of the box and can be 
determined using Bredt’s equation as follows: 

 

0

T

2A
Mt=q =τ  , (1.3) 

 
in which t is the thickness o f the plate, and τ is the shear stress, which is essentially 
uniform through the thickness of the plates. The distribution of torsional shear stress is 
demonstrated in Figure 1.5. 

 
q

q

τ
q=  tτ

 
Figure 1.5  Shear Flow in Box Girder Due to Saint-Venant Torsion 

 The torsional warping stresses in the box girder are usually negligible. However, 
significant warping stresses due to the cross-sectional distortion of box girders may 
develop.  The shear flow distribution given by Equation 1.3 is based upon the assumption 
that the cross-section of the box girder maintains the original shape. Torsional loads on 
box girders usually result from either eccentric loads or the bridge geometry. Although 
the torsional moment can be applied so as not to distort the cross-section, under general 
torsional loads, the cross-sections of box girders will distort from the original profile. 
Box girder distortion results in additional longitudinal warping stresses as well as out-of-
plane bending stresses in the individual plates of the box girder sections (Dabrowski 
1968). The distortional stresses in the box girder are a function of the box girder 
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geometry and the magnitude of the distortional load.  A more detailed discussion of 
cross-sectional distortion is presented in Chapter 4.   

1.4  Design Guide Overview 

The research presented in this design guide was sponsored by the Texas Department 
of Transportation.  The Guide provides a summary of several studies on the basic 
behavior of trapezoidal box girders systems.  The studies have included laboratory and 
field investigations as well as parametric finite element analyses.  An analytical tool 
named UTrAp was also developed in the TxDOT sponsored research to aid designers in 
predicting stresses induced in the bracing members and girder cross-sections of 
trapezoidal box girder systems.  The Guide has been divided into five chapters. 

 
Chapter 2 focuses on analysis methods for box girder systems.  The chapter provides 

a discussion of the benefits and shortcomings of commonly used grid models that are 
used to analyze curved girder systems.  In addition, an overview of the UTrAp program is 
provided. 

 
Chapter 3 provides a discussion of the behavior and design requirements of the top 

flange lateral truss that is provided to achieve a quasi-closed box section.  The general 
behavior of the top flange truss as a function of box girder torsion and vertical bending 
due to flexure is discussed.  Simplified hand solutions to capture the truss forces induced 
by both torsion and box girder bending are presented as well as recommended details. 

 
Chapter 4 provides an overview of the basic requirements for the internal K-frames 

that are provided to control box girder distortion.  In addition to presenting equations to 
predict the forces induced by box girder distortion, recommended details are outlined.   

 
Chapter 5 discusses the basic design and detailing requirements for external bracing 

systems such as K-frames and solid plate diaphragms.  Equations are given to estimate 
the spacing requirements between the external K-frames and expressions are also given to 
estimate the design forces in the members.  The design requirements for solid plate 
diaphragms at supports are also discussed.  Expressions for the plate diaphragms that 
consider the strength and stiffness requirements are presented.   
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Chapter 2 

Analysis Methods 

2.1  Introduction 
 Although bridge systems are often complex three-dimensional structures, past and 
present design practices often simplify the modeling of bridges to expedite the structural 
analysis.  For example, a straight multi-girder bridge will often experience significant 
three-dimensional effects from design trucks that can be placed in a multitude of 
positions both longitudinally and transversely on the bridge.  While it would be possible 
to model the multi-girder system relatively accurately, most designers analyze the 
behavior of an individual girder and employ live load distribution factors to account for 
the interaction of girders in resisting the truck loads.  In most straight girder applications, 
the simplified analysis is warranted, and the live load distribution factors have been 
calibrated to produce good estimates of the actual girder moments and shears. 
 
 Although simplified analysis techniques are possible with curved girder 
applications, the system behavior can be quite complex due to the three-dimensional 
nature of the curved profile.  Dramatic improvements in the speed and data storage of 
personal computers throughout the 1990s have made sophisticated three-dimensional 
modeling of bridge systems a viable option for bridge designers.  While a three-
dimensional model of the girder system is preferred, most commercially available 
software for bridges employ a grid analysis in which the complex nature of the girders 
and other structural members are modeled as line elements.  In these analyses, the 
engineer must compute the section properties of the girder and specifically input these 
properties for the different cross-sections of the girders and bracing members.  The 
accuracy of a grid analysis may not be sufficient in certain cases, and an engineer should 
have a good understanding of the basic assumptions upon which the analysis is based.   
 

There are many pros and cons of both grid analysis techniques and three-
dimensional modeling that an engineer must consider when selecting analytical software.  
In many applications, a grid analysis can produce good estimates of the distribution of 
moments, shears, and torques on the girders.  However, the grid analysis will not provide 
any information of local distortions and also does not reflect the behavior of many of the 
bracing systems that are commonly employed.  Subsequent chapters will provide 
expressions that designers can use to predict forces in the bracing members as well as 
lateral bending stresses in the girder flanges.  When these expressions are combined with 
grid analyses solutions, the girder systems can be proportioned to support the design 
loads in an efficient manner.   

 
The design expressions that will be presented in later chapters can help an 

engineer in understanding the origin of the many components that contribute to the 
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resultant forces in the bracing members; however, many of these effects can be accurately 
predicted using a three-dimensional model of the girders.  The program UTrAp is a three-
dimensional finite element analysis (FEA) program that has been configured to permit a 
designer to quickly model a box girder system with a Graphical User Interface (GUI) that 
is relatively simple to use.   

 
The remaining three sub-sections of this chapter focus on methods of analysis for 

box girder systems.  Three different methods of torsional analysis are discussed ranging 
from the very simple to relatively robust methods.  The first technique to be discussed is 
the M/R method, which utilizes analytical results from straight girder systems and 
approximates the effects of horizontal curvature.  The next method to be discussed is grid 
modeling, which although the geometrical curvature is built into the model, significant 
geometrical approximations are employed to simplify the torsional analysis.  The final 
section focuses on three-dimensional modeling, which is the most complex analysis 
method, but it is also the most geometrically accurate procedure.  The section on three-
dimensional modeling highlights the abilities of the program UTrAp. 

2.2  M/R Method 
A relatively simple analysis method for curved box girder bridges is the M/R method 

developed by Tung and Fountain (1970). Although the method is based upon the 
assumption that bridges have a small to medium curvature, the method is effective for a 
wide range of curved highway bridges. For example, bridges with as much as 40° 
subtended angle between two torsionally-fixed supports can be analyzed using the M/R 
method (Tung and Fountain 1970).  Because the radius is assumed to be relatively large 
when applying this method, it is assumed that the effect of curvature on the bending 
behavior of a curved girder is negligible. The bending moment of the girder can be 
determined by neglecting the curvature and using traditional beam theory for straight 
girders. Therefore, bending moments are determined in the first step of the M/R method 
by assuming the girder is straight with the spans equal to the developed lengths of the 
curves.  

 Torsional moments in curved girders can be induced by the curvature of girder 
alignment even without direct torsional load on the girders. This effect can be represented 
by an equivalent distributed torsional load, M/R, for which the method is named. The 
basic mechanics of the procedure are illustrated in Figures 2.1 through 2.3.  Figure 2.1 
depicts a horizontally curved box girder of radius R, and a uniformly distributed load of 
w.  The distributed load will cause bending moments distributed along the length of the 
girder.  The forces in the flanges from bending can be approximated by dividing the 
moment, M, by the depth of beam, h, as shown in Figure 2.2.  The M/h force acting on 
the curved segment is shown in Figure 2.2a.  The curvature in the segment leads to a 
lateral component of (M/h)dθ acting on the flange. If this lateral force is divided by the 
length of the segment, ds, a distributed lateral load equal to M/(Rh) results. The effect of 
the curvature can thus be approximated by a straight model in which the flange segment 
is subjected to the longitudinal force of M/h and an external distributed load of M/(Rh) in 
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the lateral direction as depicted in Figure 2.2b. The bottom flange is also subjected to the 
same amount of the lateral load but in the opposite direction. As a result, these two 
horizontal components form a distributed torsional load equal to M/R acting on the girder 
as shown in Figure 2.3. Therefore, the torsional moments due to the curvature of the 
girder are approximately equal to the torsional moments in a straight beam due to the 
distributed torsional load of M/R. 

 
 In addition, there may exist other direct torsional loads such as those due to 

vertical loads eccentric to the shear center of the girder. The torsional analysis due to 
M/R as well as other torsional loads can be approximated by neglecting the curvature of 
the girder. Therefore, the M/R method does not require a curved beam model for both the 
bending and torsional analysis. If twist is prevented at all supports, the torsional analysis 
can be performed by considering only one span at a time because torsional warping is 
usually very small in box girders, and, therefore the torsional deformation in one span 
does not significantly affect adjacent spans. 

 
 The assumption used in the M/R method is also the basis of the V-Load method 

for curved I-girder bridges. Instead of the shear flow developed on cross-sections of box 
girders, the equivalent torque M/R is resisted by the warping-type non-uniform bending 
of different girders in the I-girder system (Richardson 1963). 
 

w

R

 
 

Figure 2.1 Curved Box Girder Under Vertical Loads 
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Figure 2.2 Approximation of the Effect of Curvature on Box Girder Flanges 
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Figure 2.3 Equivalent Torsional Loads on Curved Box Girder 

2.3  Grid Analyses 
Most commercially available software specifically applicable to bridges is based 

upon a grid analysis.  There are a number of attractive features to these software packages 
including ease of use and automated checks of the AASHTO Specifications.  Dealing 
with an analysis on a large bridge system can be daunting to many engineers, and the 
simplified nature of the grid analysis method can greatly expedite the learning curve on 
the software.   From this perspective, an engineer can create an analytical model of a 
horizontally curved bridge in a relatively short period of time.  In addition, because the 
simplified models often have a relatively small number of degrees of freedom, the user is 
not significantly hindered by the speed of the computer on which the analysis is 
conducted.  Another attractive aspect of these software packages is that the programs 
have been developed to perform live load checks with design trucks or lane loads.   

 
However, while checking the behavior of the bridge in-service is obviously an 

important and necessary design step that an engineer must evaluate, many of the 
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commercially available software packages are relatively ill-prepared to check bridge 
behavior during erection and construction.  From a design perspective, the most critical 
stage for the bracing systems is during construction.  The engineer must be able to 
accurately model the quasi-closed box girder and consider the casting sequence of the 
concrete to evaluate the critical load stages that cause the largest brace forces and girder 
stresses.  A grid analysis cannot provide brace forces in the internal K-frames or top 
flange truss, nor can the engineer directly capture local distortions that might occur in 
complicated regions of the structure.   

 
While the engineer can calculate properties of the closed box section and use 

approximations such as the Equivalent Plate Method (discussed in Chapter 3) to simulate 
the top flange truss, modeling many of the bracing members such as the external cross-
frames can be quite difficult.  For example, consider the twin box system shown in Figure 
2.4.  The spacing between the center of the two boxes is 240 inches.  In a grid analysis, 
the external K-frame would often be modeled as a single line element spanning the full 
240 inches between the center of the two girders.  In reality, the actual bracing consists of 
two internal K-frames and an external K-frame.  Approximating the stiffness of the 
internal and external bracing systems can be complicated, and the results reported from a 
grid analysis are often going to be unreliable for such bracing configurations.  As is 
discussed in Chapter 5, a more reliable approach to designing the intermediate external 
K-frames is to consider these braces to aide in satisfying constructability requirements of 
for the concrete bridge deck.  In designating the external K-frames in a constructability 
role, these braces would not be included in the structural analysis.  As a result, the girder 
and end diaphragms would be sized to have sufficient strength to resist the full 
construction loading.  Typical sizes can then be used on the intermediate external K-
frames so as to control the relative twist of two adjacent box girders.  While this approach 
does not ensure that the external K-frames will be free from problems during 
construction, a safe system will typically result because the diaphragms at the support and 
the girder cross-sections are sized to support the entire torques.  In addition, the resulting 
girder twists from analysis without the external diaphragms will not be too large due to 
the significant torsional stiffness of the quasi-closed section.  Expressions for the spacing 
and force requirements for the external K-braces are provided in Chapter 5.   

120" 120" 120"

 
 
Figure 2.4 Cross Section of Twin Girder Bridge at Intermediate Location 
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While a similar problem as discussed with modeling intermediate cross-frames 

exists with the plate diaphragms at the supports, the line element model as used in a grid 
analysis is perhaps more reasonable in this situation because the interior diaphragm plates 
and exterior solid plate diaphragms form a continuous element.  Problems can still arise 
with grid models of bridges with a skewed support at one end of a span.  At a skewed 
support, the diaphragm has two moment components: one oriented transverse to the 
girder and another oriented in the longitudinal direction of the girder.  With a skewed 
support at one end only, the in-plane rotation of the girder causes forces in the plate 
diaphragm that affect the distribution of torque along the girder length.  As a result, the 
torsion diagram is generally shifted up or down depending on whether the exterior or 
interior girder is considered.  Provided an accurate value for the torsional constant is 
input for the quasi-closed section, the grid analysis will provide reasonable estimates of 
the torque.  However, the accuracy of the grid model is very sensitive to the torsional 
constant that is specified as was shown by Helwig, Herman, and Li (2004).  

2.4  Three Dimensional FEA  
An alternative to utilizing the simplified grid modeling techniques is to explicitly 

model the plate elements that comprise the girders as well as the bracing members using 
three-dimensional FEA.  While grid modeling techniques do result in efficient models by 
limiting the number of degrees of freedom in the analysis, significant increases in the 
speed and data storage capabilities of personal computers over the past decade have made 
three-dimensional FEA modeling a viable option for design engineers.  The limiting 
factor in choosing between a grid model and a three dimensional FEA model is not 
usually related to hardware, but it is often related to the availability of suitable analysis 
programs.  As mentioned in the last subsection, most commercially available software for 
bridges is based upon a grid analysis methodology.  While there are several three-
dimensional FEA programs that can be used to model straight and curved bridges, very 
few of these packages are specifically targeted at bridges.  Instead, these software 
programs are general purpose analysis packages that can be used to model a variety of 
structures.  The flexibility of these programs allows the user to create detailed models of 
very complex structures; however, a great deal of time is often necessary for users to 
become proficient at using the many features offered by such software packages.   

 
With the finite element method, complex structures are divided into a large 

number of elements for which the behavior of each element is well defined.  The 
response of the system being modeled is then computed by simply summing the effects of 
all the elements that comprise the model.  Because the behavior of each element is 
known, the resulting system of equations, while perhaps very large, is readily solved.  
The finite element approach offers the advantages of being able to model the spatial 
configuration of a bridge and the ability to determine the stress and strain distribution at 
any location in a cross-section.  Because the cross-section is modeled by a large number 
of finite elements, its actual shape is used for the analyses.  As such, no assumptions are 
needed for defining section properties such as the torsional constant.  Furthermore, 
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bracing members can be modeled directly using beam or truss elements.  Consequently, 
the analyst need not resort to modeling the section as pseudo-closed using the Equivalent 
Plate Method.   

 
In order to take advantage of the inherent strengths associated with finite element 

modeling, an easy-to-use software package (UTrAp) with a graphical user interface 
(GUI) was developed for the analysis of curved steel box girders under construction 
loads.  The package consists of an analysis module and a GUI, and it was developed for 
use on personal computers.  Unlike commercially available general-purpose FEA 
software, UTrAp allows engineers to quickly and easily define bridge geometry and a 
corresponding finite element mesh.  After the bridge response is computed, analysis 
results are provided through the GUI to allow engineers to visualize the behavior of the 
analyzed bridge system.  Users of the software do not need to have extensive experience 
with FEA to obtain accurate predictions of response.  In the paragraphs below, an 
overview of the software is provided, and the capabilities and limitations are discussed. 

 
The analysis module consists of a three-dimensional finite element program with 

pre- and post-processing capabilities.  Input for the analysis module is provided by a text 
file that is created through use of the GUI.  The module itself is capable of generating a 
finite element mesh, element connectivity data, and material properties based on the 
geometrical properties supplied through the GUI.  The program also generates nodal 
loading based on the values given in the input file.  After the pre-processing is completed, 
the program assembles the global stiffness matrix and solves the equilibrium equations to 
determine the displacements corresponding to a given analysis case.  As a last step, the 
module post-processes the displacements in order to compute cross-sectional forces, 
stresses and brace member forces. 

 
The program is capable of generating output useful to designers based on the 

displacements computed from the analyses.  Output obtained from post-processing is 
written to text files that can be read through use of the GUI.  The program outputs 
vertical deflection of the girder centerline as well as the cross-sectional rotation along the 
length of the bridge.  In addition, the program calculates axial forces for all top lateral, 
internal, and external braces.  Cross-sectional stresses and forces are calculated at two-
foot intervals along the bridge length.  For each cross-section, shear and normal stresses 
are printed out at 26 and 52 locations for single and dual girder systems, respectively.  
These stress components are given in the local directions (i.e., normal and perpendicular 
to the cross-section).  In addition to stresses, cross-sectional shear, moment, and torsion 
are calculated at two-foot intervals along the length of the bridge.  

 
The Graphical User Interface was designed to provide an environment in which a 

user can easily enter the required input data.  In addition, the GUI has the capability of 
displaying both the numerical and graphical output of the analysis results.  Figure 2.5 
shows the main form of the interface, and viewing from top to bottom, it displays the 
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plate thickness properties, pour sequence, and the plan view of the bridge.  Figure 2.6 
shows the interface in which users enter dimensions of the bridge being analyzed. 

 

 
 

Figure 2.5 UTrAp Graphical User Interface (GUI)Main Form 
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Figure 2.6 UTrAp Graphical User Interface (GUI)Showing Bridge Cross-Section 

The GUI allows users to define the plate properties for all webs and flanges 
including web stiffeners, and these properties can vary over the length of a bridge.  Users 
can also define top lateral, internal, and external bracing members.  Any number of 
supports can be defined so that simple and continuous girder systems can be analyzed.   

 
UTrAp is intended to perform both linear analyses and linearized buckling analyses 

of straight or curved steel trapezoidal box girder bridges under construction loading.    
The program is able to model the partially-composite behavior due to concrete curing 
during the bridge deck casting sequence.  UTrAp is limited to elastic analyses, and it does 
not account for nonlinear material behavior.  There are no limits on material stresses in 
the girder, and therefore care must be taken by the designer to ensure that the bridge 
remains elastic under the given loading. 

 
While commercially available finite element software can perform the same 

computations that UTrAp performs, such software packages are usually not used in 
practice by design engineers.  Aside from the complications noted above involving the 
time and effort needed to generate a suitable mesh, such software packages are relatively 
expensive.  As such, many design firms avoid the use of such programs.  UTrAp offers 
several distinctive advantages, as an alternative to such programs.  First, its GUI is 
tailored for the analysis of curved box girder bridge systems, and it is possible to set up a 
problem within a very short amount of time.  Second, the program has been validated 
against measured field data and other FEA software, and the results provided by the 
program accurately depict the response of the bridge system being analyzed.  Third, 
UTrAp is available for free and can be downloaded from the website 
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http://www.ce.utexas.edu/prof/williamson/utrap2.htm.  This website contains a detailed 
User’s Manual with a worked example to allow users to become familiar with the 
program.  The User’s Manual also provides more general background information about 
the program development as well as the capabilities and limitations of the software.  
Because of these features, UTrAp allows engineers a viable alternative to less rigorous 
methods of analysis that may not accurately compute bridge behavior during the critical 
construction stages.  The grid analysis approach can and should be used for initial 
member sizing and detailing, and to check the safety of the bridge in-service.  More 
detailed analyses should be carried out when evaluating the suitability of a candidate final 
design with regards to critical construction stages and the associated stresses in internal 
and external bracing systems.   
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Chapter 3 

Top Flange Lateral Truss 

3.1  Introduction 
Trapezoidal box girders are ideal structural shapes in curved bridge applications due to the 

large torsional stiffness.  However, while the hardened concrete creates a closed box in the 
finished bridge, during transport and erection the steel girder is an open section that is relatively 
flexible in torsion.  To improve the torsional behavior during construction, a top flange lateral 
truss is incorporated such as the one shown in Figure 3.1.   

 

Top Lateral BracingTop Lateral Bracing

 
Figure 3.1 Top Flange Lateral Truss 

The geometry of the top flange lateral truss system plays an important role in the behavior of 
the truss.  While there are a variety of truss systems that might be employed, the most widely 
used system is the Warren truss shown in Figure 3.2a in which a single alternating diagonal is 
utilized.  Another single diagonal truss system that has been proposed is the Pratt truss shown in 
Figure 3.2b (AASHTO 2007).  The proposed Pratt truss layout is an attempt to minimize the 
weight of the truss; however such endeavors generally require extensive modeling that considers 
many load stages during construction and can be quite complicated.  Another truss layout that 
has been used is the X-type truss shown in Figure 3.2c.  Although equations will be presented for 
all three truss systems, much of the past research has focused on the Warren truss shown in 
Figure 3.2a and therefore the design procedures for that system will be the most comprehensive.  
The last section of the chapter includes a discussion of the benefits and negatives of the truss 
systems depicted in Figure 3.2.  

 
The primary role of the top flange lateral truss is to improve the torsional stiffness as well as 

preventing spreading of the top flanges due to the sloping of the webs.  For moderately curved 
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boxes, the resulting top flange truss will have enough strength and stiffness that stability issues 
are generally not a problem.  However, for relatively straight girders the primary stability bracing 
is provided by the top flange truss.  Failures such as the Marcy Pedestrian Bridge occurred due to 
the lack of a top flange truss, which resulted in lateral torsional buckling of the girder during 
placement of the concrete deck.  Although the Marcy Pedestrian Bridge did have closely spaced 
internal K-frames, the torsional flexibility of the open box girder was inadequate to support the 
wet concrete load.  The stability bracing requirements for box girders have been discussed by 
Chen, Yura and Frank (Chen et. al January 2002). 
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Figure 3.2 Geometries for Top Flange Lateral Trusses 

Although the primary function of the top flange lateral truss is to increase the torsional 
stiffness of the girders, from a behavior perspective, the trusses can also develop significant 
forces due to vertical bending of the box girders.  A difficult aspect in the analysis of 
horizontally curved box girders is the combination of bending and torsion under general applied 
loads.   

 
A three-dimensional finite element analysis that models the top flange truss system can 

capture all the force components; however grid models depend on the user to recognize the 
effects of both torsional and flexure on the bracing systems.  A method of accounting for box 
girder bending on the truss forces was presented by Fan and Helwig (1999) [also summarized in 
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Fan, 1999, Helwig and Fan (1999)].  The method depends on separating the bending and 
torsional solutions and then combining the results using the principle of superposition.  

 
The remainder of this chapter focuses on hand solutions for calculating design forces in the 

top flange truss.  A discussion of brace forces from torsion will be presented first followed by the 
effects of the sloping webs on the strut forces.  An overview of forces induced from box girder 
bending is then covered.  The final section of the chapter discusses top flange truss detailing 
issues and suggestions to aide the designer in establishing the basic geometry of the top flange 
truss.   

3.2 Design of Top Flange Truss for Torsion  
Analytical models employed by grid analyses do not directly model the top flange lateral 

trusses.  Instead, an approximate torsional analysis of a quasi-closed box girder is usually 
performed using the Equivalent Plate Method (EPM) developed by Kollbrunner and Basler 
(1969).  According to the EPM, the top lateral truss system is treated as a fictitious plate so that 
the torsional properties of the box can be approximated during the structural analysis using the 
following expression: 
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where, A0 is the area enclosed by the box measured to the center of the plate elements, and bi and 
ti in the summation are the respective width and thickness of the ith plate that make up the cross 
section.   

 
The equivalent thickness of the fictitious plate was developed by Kollbrunner and Baslar 

(1969) for various truss systems using energy methods.  The expressions for the equivalent 
thicknesses of the common truss systems used in trapezoidal box girders are given in Figure 3.3 
(Kollbrunner and Baslar 1969).   
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Figure 3.3 Expressions for Equivalent Thickness of Top Flange Truss System 

The resulting torsional properties are used in the structural analysis to determine the 
torsional moments in the girders. Once the distribution of torsional moment is known, the shear 
flow, q, can be determined and can be used to determine the forces in the top flange lateral truss.  
For single-celled box girders, the expression for the shear flow is given by the following 
expression (Kollbrunner and Basler, 1969):     

 

0

T

2A
Mt=q =τ  (3.2) 

 
where, τ is the shear stress, t is the thickness of the plate under consideration, MT is the torque a 
the particular location, and A0 is as defined in Equation 3.1.  
  

The shear flow acting on the fictitious plate is then transformed into diagonal member forces 
in the lateral truss as demonstrated in Figure 3.4b and 3.4c.  The nature of force (compression or 
tension) is important with regards to superimposing the torsionally-induced force with the other 
force components that will be discussed subsequently.  The torsional loading in the Warren truss 
leads to alternating tension and compression in the diagonals along the length.  In the X-type 
truss, the torsional loading causes one diagonal to be in tension while the other diagonal is in 
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compression.  For designing the compression diagonal, the unbraced length can be taken as half 
the diagonal length provided the two diagonals are connected at the middle.   

 
Although the Warren truss is shown in Figure 3.4b, the same expression would be used for 

the Pratt truss except the forces would generally be all tension provided the diagonals are 
oriented properly.  In regards to the orientation, the designer must be very careful to consider all 
possible construction loads so that the diagonals do not experience compression under certain 
stages which may lead to buckling of the member.   
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Figure 3.4 Diagonal Brace Forces Due to Torsion According to the Equivalent Plate Method 
(EPM) 

Because the torque typically varies along the girder length, the struts in the top flange truss 
should be designed for the unbalanced force between adjacent panels in the Warren and X-type 
layout.  For example, considering the diagonals for the truss in Figure 3.4b, the forces in the two 
adjacent panels can be taken as DSD1 and DSD2.  The torsional component of the design force in 
the strut would be the unbalanced horizontal component given by the following expression: 

 
αsin)( 21 SDSDStrutT DDF −=  (3.3) 

 
While the torsion-induced components in the struts were not specifically discussed in Fan and 
Helwig (1999), the values were taken into consideration in the equations.  A short discussion on 
the torsional behavior of the struts was provided in Helwig et. al 2004.  A more detailed 
discussion is provided in Kim and Yoo (2006).   
 

As with the torsional component of the diagonal force from above, the nature of the strut 
force is important for the purposes of superimposing this torsional force with other force 
components that will be discussed subsequently.  In a Pratt truss the strut force is the full value 
of qb and is compressive.   
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3.3 Effect of Sloping Webs on Strut Forces in Horizontal Top Flange Truss 
The sloping webs of the trapezoidal girders also induce a lateral load component on the top 

flange. This lateral load component causes additional lateral bending stress as well as axial 
forces in the lateral struts of the top flange truss. The struts for the top flange truss are typically 
designed to carry the horizontal component due to the sloping webs. Historically, some past 
design aides (Highway 1982, and Four 1997) provided recommendations for the design of the 
struts for the lateral load component as well as accounting for lateral bending of the flanges 
between the struts.  One of the assumptions in these past recommendations for evaluating the 
required forces in the struts and the lateral bending stresses in the top flange is that the top and 
bottom flanges each carry half of the horizontal web components of the applied load. Based on 
this assumption, the half acting on the bottom flange does not generate any top flange lateral 
bending stress or forces in the struts.  While this assumption would be relatively accurate for the 
girder self-weight, the sloping web component from external loads from sources such as the 
fresh concrete deck must be resisted by the top flange lateral truss.  This can be demonstrated by 
considering a free body diagram of the top flange with an externally applied distributed load of 
W/2 applied to each flange.  Figure 3.5 demonstrates the transformation of the vertical load into 
a web shear and a horizontal component, p (force per unit length).  For a truss panel length of s, 
the recommended design tensile force for the struts is therefore equal to ps. The maximum lateral 
bending moment in the top flanges due to the horizontal component is therefore equal to (ps2)/12, 
assuming the flange behaves like a continuous beam supported at the strut locations (Fan 1999, 
Helwig and Fan 2000).  The tensile component in the struts can be superimposed on the torsional 
components discussed in the last section as well as other components from vertical bending and 
box girder distortion that are discussed in the next section and the following chapter. 
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Figure 3.5 Horizontal Component of Applied Loads on the Top Flanges 

3.4 Design of Top Flange Truss for Box Girder Flexure  

In addition to torsionally-induced forces, the top flange truss also develops forces due to 
vertical bending of the box girder.  These force components are generally undesirable since the 
primary purpose of the lateral truss is for torsional stiffening.  The cause of these forces is 
demonstrated in Figure 3.6, which shows a box girder with a horizontal truss located near the top 
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flange.  The distribution of longitudinal bending stress is also depicted in the figure.  Due to 
strain compatibility between the top flange of the girder and the truss, forces will develop in the 
top truss as a result of vertical bending of the girder.   
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Longitudinal 
Stresses due to 
Vertical Bending

z

fx top – Top flange stress

 
 

Figure 3.6 Box Girder Vertical Bending Stresses     

The behavior of the top truss to vertical box girder bending for the Warren and X-type 
systems have been discussed in past literature (Fan and Helwig 1999, Fan 1999, Helwig and Fan 
2000).  Equations for predicting the truss forces induced due to vertical bending of the box girder 
are summarized in Figure 3.7.  The Warren truss layout also results in a lateral load on the 
flanges that cause the flange stress denoted by fL bend in the figure.  Considering the Warren truss 
layout, although the forces due to torsion tend to alternate tension and compression, the forces 
due to bending have the same state of stress as the top flange box girder stresses, fx top.  As 
mentioned earlier, the state of stress for the bending-induced component in the top flange truss 
should be maintained for the purposes of superposition of the stress effects from various sources 
such as torsion, bending, and box girder distortion.   

 
The expressions given in Figure 3.7 were developed for the specific case of internal K-

frames positioned in every other panel, which is a spacing of 2s, where s is the spacing between 
the struts of the top flange truss.  Bending induced forces in the top flange truss are sensitive to 
the spacing between the internal K-frames.  When internal K-frames are spaced at every panel 
point of the top flange truss (spacing of s), the bending induced forces are actually larger (Li 
2004, Helwig et al. 2004).  As covered in the next chapter, the recommended layout of the 
internal K-frames is therefore at a spacing of 2s (every other panel point).  At the truss panel 
points between the internal K-frames only a strut is provided.   
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Figure 3.7 Equations for Bending Induced Forces in Top Flange Truss 

The authors are aware of no work reported on the bending behavior of box girders with 
the Pratt layout.  Since a relatively limited amount of study has been conducted on the Pratt 
layout, the behavior to bending induced forces has not been documented.  While it may seem the 
above referenced expressions should be directly applicable, this conclusion is not possible 
without significant parametric investigation.  A conservative estimate of the bending induced 
forces for the Pratt layout could probably be obtained by using the equations for the Warren 
layout.  However, the use of the Pratt layout is strongly discouraged unless a three-dimensional 
finite element analysis is conducted on the system and even then the engineer must carefully 
consider the entire construction procedure. 
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3.5  Top Flange Truss Details  

3.5.1  General Detailing  
Several factors should be considered in establishing the geometry for the top flange truss.  

The number of panels that are used as well as the orientation of the diagonals can have a 
significant effect on the efficiency of the design as well as the performance of the girder system.  
In specifying the number of panels along the span length, the engineer should try to keep the 
angle of the struts, α (defined in Figure 3.7), within the range 35° < α < 50°.  The upper limit on 
this range is related to economics since larger values of α will lead to more panels which results 
in more connections and larger fabrication costs.  The lower limit on this range is related to the 
compression behavior of diagonals from both torsional and vertical bending.  With a smaller 
angle of inclination, the diagonals become relatively long and therefore possess a lower buckling 
capacity.  In general, diagonals with orientations outside of the range 35° < α < 50° are 
inefficient and should be avoided.   

 
Structural T-sections are often used for the diagonals, while angles are commonly used for 

the struts.  For practicality of the connections and safety of the construction workers, the T-
sections should be oriented with the stem pointing downwards.  The construction personnel often 
must walk on these members during erection and early stages of construction.  In addition, the 
stem should be pointed downward to avoid clearance issues with the metal deck forms.  In 
detailing the connections for the diagonals, care should be taken not to employ excessively thick 
connection plates or shims that will increase the eccentricity of the connection.  The thickness of 
the connection plate should be approximately equal to the thickness of the WT flange.  Diagonals 
in compression should be treated as a beam-column with a moment equal to the design axial 
force acting at an eccentricity equal to the distance from the centroid of the T-section to the plane 
of the connection.  Provided the WT flanges are wide enough, better economy in the connection 
can be achieved by bolting the diagonal directly to the top flange.  In addition to reducing the 
fabrication costs by eliminating the connection plate, this connection results in less eccentricity.  
However, in some cases it can be difficult to fit an adequate number of bolts onto the flange in 
the positive moment region and connection plates may have to be provided.   

 
As shown in Figure 3.8, the strut for the top flange truss also serves as the top member of an 

internal K-frame if one is provided at the panel point.  To avoid congestion at the intersection of 
the struts and the diagonals, some designers connect the strut to the web stiffener at an 
eccentricity denoted as e in Figure 3.8.  This eccentricity generally doesn’t have too significant 
of an effect on the performance of the top flange truss; however the eccentricity should be 
limited to a maximum value of 3 or 4 inches.  In many cases, dropping the strut due to concerns 
about congestion between the diagonals and the struts is unnecessary due to the inclination of the 
diagonals and the length of the connection.  In cases where the Pratt truss geometry might be 
considered, the eccentricity in the strut can lead to relatively poor load paths as is discussed in 
the following pages. 



 28

3.5.2  Diagonal Geometry (Warren and Pratt Truss Layouts)  
For a given design force, the stability requirements of compression members require larger 

member sizes than for equally loaded tension members.  Proper orientation of the diagonals can 
lead to more efficient designs with regards to sizing members for compression.  Figure 3.9 shows 
the plan view of the suggested layout near the end panels of the top flange truss.  The maximum 
top truss diagonal forces to resist torsion due to girder curvature will occur at the ends of the 
span.  To minimize the required member sizes, the diagonals in these panels have therefore been 
positioned so that torsion causes tension in the diagonals.  The second panels in from the 
supports are then the critical panels for compression.   
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Top Flange
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e

 
 

Figure 3.8 Potential Eccentricity in Strut Connection 
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Diagonals of end panels 
oriented for tension due to 
torsion from girder 
curvature.   

 

Figure 3.9 Orientation of End Diagonals so Torsion Produces Tension in Diagonals 

To optimize the layout of the top flange truss and avoid compression in the diagonals the 
Pratt truss geometry that was shown in Figure 3.2b has been proposed (AASHTO 2007).  The 
idea behind the Pratt truss is to orient the diagonals so that they are only subjected to tension, 
thereby getting smaller member sizes.  Figure 3.10 shows a typical layout that would result in a 
simply-supported curved box.  A sketch of a typical distribution of torque is also shown in the 
figure.  With simply supported boundary conditions the location where the torsional diagram 
changes sign is relatively simple to predict and therefore the location to flip the orientation of the 
diagonal so as to avoid compressive forces from the torque is readily apparent.  However, in the 
more common uses of curved box sections the girders are continuous over multiple spans.  In 
these applications, predicting the optimum layout of the diagonals is much more complicated.  
The designer must carefully consider the many stages during erection and casting of the concrete 
bridge deck to evaluate the safety of the top flange truss with respect to potential diagonal 
compression.  The distribution of torque and bending moment can vary significantly throughout 
the construction process and some of the diagonals will likely experience compression during 
these phases.  As a result, engineers should pay extra attention to analyzing for the proper layout 
and critical design forces when considering using the Pratt layout for the top flange truss.   
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Figure 3.10 Diagonal Orientations in Pratt Truss Layout  

One other drawback to the Pratt layout of the top flange truss is the complicated load path 
that results along the girder length when compared to the Warren truss geometry.  In the Pratt 
layout, the struts become major members in the load path along the girder length.  While the 
struts in the Warren truss layout are important members, their primary role is in transferring 
loads locally within two adjacent panels.  The load paths are depicted in Figure 3.11 for the two 
truss systems.  In the Pratt truss in Figure 3.11a, the strut must handle the entire lateral 
component of the diagonal force induced from torsion.  Depending on the connection detail that 
is used for the strut, the resulting load transfer may have to follow a relatively indirect path.  
With an eccentric connection such as the one depicted in Figure 3.8, forces from the diagonal in 
the Pratt truss would be transferred into the web/stiffener of the girder, down to the strut and 
across the girder, back up the web/stiffener of the girder and into the diagonal of the adjacent 
panel.  In the Warren truss layout depicted in Figure 3.11b, the role of the struts at resisting 
torsional loads is primarily local in that they must handle the unbalanced load from the diagonals 
in the two adjacent panels.   
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Figure 3.11 Role of Struts in Load Path of the Pratt and Warren Truss Systems 

The purpose of the discussion of the Pratt truss geometry presented herein is not to 
necessarily discourage the use but instead to emphasize the necessity of carefully considering the 
loading stages so that a safe design results with good behavior.  In general, the authors would not 
recommend employing the Pratt layout without a three-dimensional finite element analysis that 
considers the various load stages of the concrete placement.   

3.5.3  Top Flange Truss Details in Girders with Skewed Supports 
The design requirements of the top flange lateral truss for both torsion and bending are 

generally not sensitive to whether or not the supports are skewed or radial.  However, the 
detailing of the truss can be affected.  With skewed supports, the end panels of the top flange 
trusses of adjacent boxes may have to be irregular to the other panels; however the decisions on 
the final layout are mainly a function of geometrical considerations with several viable solutions.   

 
While the design requirements of the truss are not affected too significantly due to the 

presence of skewed supports, the combination of the skew angle and the use of external K-
frames can affect the performance and detailing of the top flange truss.  External K-frames are 
often used in box girder system to control the relative twists of adjacent boxes and are discussed 
in detail in Chapter 5.  In most situations, the forces that develop in the external K-frames are 
relatively small.  With skewed supports, the forces in the external K-frame will generally be 
larger than for cases with radial supports and designers may want to consider modifying the top 
flange truss details.  The reason for the larger external brace forces with skewed supports is 
because the external K-frame connects to the adjacent girders at different locations along the 
girder lengths.  As a result the two ends of the cross-frame undergo different vertical 
displacements, which can lead to larger forces developing in the external K-frame.   
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Figure 3.12 shows a recommended detail that was presented and discussed in Li 2003 

(Helwig et. al 2004).  Two layouts are shown in the Figure with labels “Parallel Layout” and 
“Mirror Layout”.  In the parallel layout, the truss diagonals of the adjacent girders are parallel 
along the girder lengths in the respective panels.  For example, in the first panels on the left of 
the plan view the strut connects the box girder interior top flange at the support to the exterior 
top flange at the end of the first panel.  In the mirrored layout, the corresponding diagonal on the 
interior girder connects the exterior flange at the support to the interior flange at the end of the 
panel.   
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Figure 3.12 Parallel Versus Mirrored Layout of Top Flange Lateral Truss 

The benefits of the mirrored layout can be seen by considering the region around the 
external K-frames as depicted in Figure 3.13.  With the parallel layout, the external K-frame 
connects to the exterior girder at a location where the truss diagonals frame into the top flange 
while on the interior girder the truss diagonals do not restrain the flange with the external K-
frame connection.  The forces in the top strut of the truss/internal K-frame can therefore become 
quite large.  In the mirrored layout, the top truss diagonals on both girders frame into the box 
girder flange at the location of the external K-frame help to distribute the force into the girder.  
The mirrored layout should generally be considered for girders with support skews exceeding 
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approximately 20 degrees.  An alternative to the mirrored layout might be to add an additional 
diagonal to either one or both of the panels at the external K-frame location thereby forming X-
type top flange truss diagonals at these locations.  The additional diagonal would therefore help 
to distribute the forces from the external braces to the girders.   

 

(b) Mirror layout(a) Parallel layout 

External K-frame

Strut of top flange 
truss/internal K-frame

Top diagonal

 
 

Figure 3.13 Parallel Versus Mirrored Layout Provides Better Restraints at External K-Frame 
Locations 
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Chapter 4 

Internal K-Frames 

4.1  Introduction 

The primary role of internal K-frames is to maintain the shape of the cross section against 
torsional forces that tend to distort the shape of the box girder.  Box girder distortion is 
generally caused by torsional forces that are not distributed to the elements of the girder cross-
section in proportion to the St. Venant torsional stresses.  This chapter outlines the design 
requirements for internal K-frames to properly control distortion and provides 
recommendations on detailing practices for the internal K-frames.  A brief discussion of the 
nature of distortional components of the external loads is presented in the following section 
along with expressions that can be used to determine distortional induced forces in the internal 
K-frames.  The final section of the chapter outlines detailing recommendations for the braces so 
as to result in predictable behavior of the girders in the final system. 
 
4.2  Controlling Box Girder Distortion   

The torsional stiffness of a cross-section consists of both warping and Saint Venant 
components; however the high torsional stiffness of boxes is primarily due to the large St. 
Venant component that results from a closed cross-section.  Since the St. Venant term 
dominates the torsional stiffness, torsional warping stresses in boxes are usually relatively 
small (Kollbrunner and Basler 1969).  However, depending on the distribution of the applied 
torsional loads, the cross-section of a box girder may distort from its original shape.  This 
distortion of the cross-section can lead to significant warping stresses, which are in addition to 
torsional warping stresses.  Warping stresses that develop as a result of distortion of the cross-
section are appropriately referred to as distortional warping stresses.  While torsional warping 
stresses in box girders may be relatively small, without proper bracing distortional warping 
stresses can be quite significant.   
 

Box girder distortion is usually controlled by internal cross-frames that are spaced along the 
length of the girder.  Forces develop in these cross-frames and other bracing members due to 
the distortion of the box section.  Before expressions are presented for the distortion-induced 
brace forces in the cross-frames, an overview of how external loads cause box girder distortion 
should be presented.  Torsion in box girders is usually the result of either horizontal curvature 
of the girder or unbalanced gravity loading that results in an eccentricity of the load on the 
cross-section.  Depending on the type of loading, the torque on girders can be visualized as 
either a horizontal or vertical couple as depicted in Figure 4.1.  The M/R method that was 
discussed in chapter 2 results in an effective torque similar to that depicted in Figure 4.1a.  In 
the cases of unbalanced gravity loading, the effective torsional loading can be idealized as 
shown in Figure 4.1b.  In the case of eccentric loading, the full loading can be modeled as 
depicted in Figure 4.2 in which the gravity loading is divided into a pure flexural load plus a 
torque consisting of a vertical couple.   
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Figure 4.1 Representation of Torque on Box Girder 
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Figure 4.2 Effective Loading from Eccentric Gravity Loading 

Cross-sectional distortion of box girders is induced by the components of the external 
torsional loads that are not directly distributed in proportion to a uniform Saint-Venant shear 
flow on the cross-section.  All practical loading cases cause some form of box girder distortion 
since the load application is never distributed in proportion to the Saint-Venant shear flow.  
The load application can be divided into a torsional component and a distortional component.  
For example, depending on the nature of the applied torque, Figures 4.3 and 4.4 demonstrate 
resulting pure torsional and pure distortional components.  Although the sections shown are 
rectangular in shape, the same basic principals apply to trapezoidal sections.  The pure torsional 
components are distributed around the cross section in proportion to the St. Venant shear 
stresses.  While the distortional components of the applied load yield zero net torque on the 
cross-section, these components can lead to large cross-sectional stresses if proper bracing is 
not provided.  Although the resulting torque depicted in Figures 4.3 and 4.4 have the same net 
torque (mT), the distortional components are in opposite directions.  A distortional analysis 
therefore requires the separation of the distortional components from the applied torsional 
loads.  
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Figure 4.3 Pure Torsional and Distortional Load Components for Torque Resulting from 
Horizontal Couple 
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Figure 4.4 Pure Torsional and Distortional Load Components for Torque Resulting from 
Vertical Couple 

Vlasov (1961) was the first to study distortion of box girders while investigating the 
torsional behavior of thin-walled beams with a closed cross-section.  Dabrowski (1968) 
established a more rigorous theory when he developed the governing equation for box girder 
distortion and provided solutions for several simple cases.  A discussion of the distortional 
components of torsional loads was provided by Fan and Helwig (Fan and Helwig 2002, Fan 
2000).  A detailed treatment of box girder distortion can be found in the above cited references 
from Vlasov and Dabrowski; however the presentation in this section will summarize the 
approximate methods presented in Fan and Helwig (2002).   

 
Figure 4.5(a) shows the basic geometry of the box with the bottom flange width denoted as 

a, and the width between the top flanges as b.  The distortional induced forces are depicted in 
Figure 4.5(b) as S and D for the respective struts and diagonals for the internal K-frame.  As 
discussed above, the source of the torsional loading may come from either horizontal curvature 
or eccentricities in the applied loading.  Fan and Helwig (2002) presented the following 
expressions for the distortional induced components in the struts and diagonals of the internal 
K-frames based upon the horizontal curvature and eccentric gravity loading: 
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Where:  D = distortional induced force in the K-frame diagonal; 
   S = distortional induced force in the K-frame strut; 
 sK = spacing between internal K-frames measured along the girder length; 
 LDK=length of the K-frame diagonal; 
 A0=area enclosed by box=(a+b)/2h; 
 a and b = box girder dimensions as depicted in Figure 4.5a; 
 e = effective eccentricity of resultant distributed load; 
 w = distributed load (weight/ft.); 
 M= box girder bending moment; and 
 R = radius of horizontal curvature of box. 
 
The M/R term in the parentheses is directed at the torsional effects of horizontal curvature 

while the ew term in the parentheses captures the effects of eccentric gravity loading.  The 
plus/minus sign on the expressions indicates that the distortion induces tension and 
compression as indicated in Figure 4.5b.  One diagonal experiences compressions while the 
other experiences tension.  In the case of the strut, equal magnitudes of tension and 
compression are induced on either side of the two diagonals.  Since the struts serve as members 
of both the internal K-frames and the top lateral truss, these members have torsional 
components from box girder bending, torsion, and distortion.  The components due to torsional 
and bending are uniform across the strut while the distortional components have equal 
magnitudes of tension and compression as indicated by the plus/minus sign in Equation 4.1b.  
The distortional component can therefore be isolated from the bending and torsional 
component by averaging the magnitudes of the strut force on either side of the two diagonals.   

 

D D

S S
b

a

(a) (b)

h

 

Figure 4.5 Strut and Diagonal Forces in Internal K-Frame 

4.3  Detailing of Internal K-frames 

The equations presented in the last section provide estimates of the distortion-induced forces 
in the internal K-frames as a function of the spacing between the brace points.  The original 
derivation of the expressions was outlined in Fan and Helwig (2002) and the expressions had 
excellent agreement with parametric studies using FEA models of twin box girder systems.  
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The geometry that was utilized in the original study matched the internal K-frame layouts for 
box girders that had been encountered in the early 1990’s.  These girders had internal K-frames 
positioned at every other panel point of the top flange lateral truss as depicted in Figure 4.6.  
The plan view of a box is shown in Figure 4.6a with the labels K and S used to denote sections 
of the box girders at the panel points of the truss.  At panel points with a K, an internal K-frame 
was provided as shown in Figure 4.6b while in cases with an S, only a top strut was provided as 
shown in Figure 4.6c.   

 
By the mid to late 1990’s, many of the box girder applications in Texas utilized internal K-

frames at every panel point of the top flange truss.  After the paper by Fan and Helwig (2002) 
was published, Fan discovered that the accuracy of these expressions was dependent on the 
geometrical layout of the cross-frames relative to the panel points of the top flange lateral truss.  
This finding was later confirmed by Li (Li 2004, Helwig et. al 2004) in a parametric study that 
considered several factors including top truss panel geometry, K-frame spacing, radius of 
curvature and several other parameters.  The results clearly showed that positioning the internal 
K-frames at every other panel point produced better behavior than the current practice of using 
these internal K-frames at every panel point.  Therefore, the authors recommend an internal K-
frame spacing of every 2 panel points of the top truss.   
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Figure 4.6 Girder Bracing Details at Top Truss Panel Points 
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Chapter 5 

External Bracing for Box Girders 

5.1  Introduction 

Chapters 3 and 4 focused on bracing systems that are internal to the box girder.  This 
chapter discusses the role and the design requirements for braces that are external to the box 
sections.  The primary external bracing for the box girders consist of diaphragms that control 
the twist of the cross section.  External diaphragms are always provided at the supports and 
may also be placed at intermediate locations along the length of the bridge.  Solid plate 
diaphragms are typically provided at the supports while the intermediate diaphragms usually 
consist of K-frames.  Plate diaphragms at the supports are critical members for torsional 
equilibrium of the box girder system.  The external K-frames that are positioned along the 
bridge length may often not be necessary for strength of the girders but play an important role 
controlling relative twist of the adjacent box girders.  The following two sections of this 
chapter provide a discussion of the behavior and design requirements for these two critical 
bracing systems.  External K-frames will be covered first followed by solid plate diaphragms.   
 
5.2  External K-frame Braces  

The primary role of the intermediate external diaphragms is to control the relative 
deformation between adjacent girders during casting of the concrete bridge deck.  Figure 5.1 
depicts the effects of relative deformations without external K-frames versus the better control 
achieved when the K-frames are included as shown in Figure 5.2.   
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Figure 5.1 Relative Deformation Between Adjacent Girders Result in Variability in the Slab 
Thickness 
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Figure 5.2 Intermediate Braces Help Control Girder Twist to Achieve Better Uniformity in 

the Slab Thickness 

The deformations depicted in Figure 5.1 are exaggerated; however a small amount of 
relative deformation between adjacent box girders can have detrimental effects on the slab 
durability.  The critical regions for the slab deformations are generally at the top flange tips 
labeled B and C in Figure 5.1 since the relative movement of these points can have detrimental 
effects on the slab geometry.  The concrete finishing machine is supported on rails at points A 
and D at the edge of the bridge and the resulting top of the slab will be finished along parallel 
to a straight line between these two screed rails.  Because the steel mat in the slab is tied 
together and supported on the formwork, the twist of Girder E in Figure 5.1 can lift the mat of 
steel and result in a significant reduction in the concrete cover of the reinforcement in the top lf 
the slab.  The reduction in concrete cover can lead to durability problems in the slab, resulting 
in costly rehabilitation costs during the service life of the bridge.  The presence of intermediate 
cross-frames helps to control the relative deformation between adjacent girders, thereby 
resulting in better uniformity in the slab thickness across the width of the bridge.   
 

Good control of the slab thickness can often be achieved with bracing at only a few 
intermediate points between the supports.  Three-dimensional finite element analyses have 
shown that in many situations diaphragms at a few locations along the girder length are often 
just as effective as several cross-frames along the girder length (Li 2004, Helwig et. al 2004).  
The cross-frames near the middle of the span are generally the most effective at controlling the 
relative girder twist.  Therefore, engineers may be better served by skewing the cross-frames 
towards the middle of the span instead of spreading the braces out equally along the bridge 
length.  Although the deformations often don’t differ substantially with the addition of several 
braces, the forces induced in the intermediate cross-frames will be smaller as more braces are 
added.  However, the forces in the intermediate cross-frames from the construction loading are 
often relatively small.  With skewed supports, the forces in the cross-frames do become larger; 
however unless the support skew becomes large (greater than approximately 30 degrees), the 
forces can often be handled with “typical” size members.   
 

External intermediate K-frames are primarily needed on horizontally curved girders.  In 
straight girders, if diaphragms are provided at the supports and a top flange lateral truss is 
utilized, the girders are very stiff and no intermediate external diaphragms are required.  Two 
exceptions to this case would be if a large unbalanced load (ie. Large torque) is applied or if the 
supports have significant skew.  The problem with the large support skew is that the ends of the 
girders may tend to twist due to the angled diaphragm.  The twist at the support results in a 
rigid body rotation of the girders that can result in problems with the uniformity in the slab 
thickness as outlined earlier.  Most practical applications of straight girders do not need 
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external bracing.  The following two subsections will cover analysis approaches and 
approximate design expressions.   

5.2.1  Analysis Approach for Intermediate External Diaphragms 
The treatment of the external braces in the structural analysis as well as the accuracy of the 

resulting forces depends heavily on the analysis method that is used.  If a three-dimensional 
finite element model is utilized, the braces can be modeled relatively accurately and the 
member forces can be obtained directly from the analysis.  However, incorporating the external 
K-frames into a grid model poses a complicated geometrical problem.  Although the internal 
and external K-frames are trusses made up of several members, the grid models often treat 
these braces as a line element that spans between the centerlines of the adjacent girders.  
Therefore estimating the stiffness of these external braces can create a difficult problem.  In 
addition, the analytical estimates of the intermediate diaphragm moments from a grid model 
may often be of questionable accuracy.   
 

As mentioned in Chapter 2, another possible analysis approach is to designate the 
intermediate external K-frames solely as members to help control the constructability of the 
slab.  With this approach, the analysis would be carried out only modeling the girders and solid 
diaphragms at the supports.  The girders and support diaphragms would therefore be sized to 
support the entire load.  This will often result in larger member sizes for the top flange lateral 
truss, when compared to an analysis that includes the external braces; however the economics 
of the top flange truss should not change too dramatically.  The cost of the top flange truss is 
mainly related to fabrication costs, which are often primarily a function of the number of pieces 
required to fabricate.  Increasing the size of a member by a few pounds per foot should not 
have too large of an impact on the design economics, however the behavior and safety of the 
design are much easier to predict with this approach.  Although they are not included in the 
analysis, the intermediate external K-frames are provided to ensure better uniformity in the slab 
thickness.  As mentioned above, a few external cross-frames skewed near the middle of the 
span often provide excellent control over the relative twist between adjacent girders.  Although 
“typical” sizes can probably be used on these members, approximate design expressions are 
developed and discussed in the following two subsections.   

5.2.2 Required Spacing of Intermediate External K-frames 
The approximate expressions that are outlined in this subsection are for use in determining 

how many intermediate cross-frames are needed.  The following subsection is focused on 
developing an estimate of the magnitudes of forces in these members.  Since the material 
presented in these subsections was not presented in a previous report, an overview of the 
development of the expressions is provided in this report.  While an understanding of the 
development of these expressions can help provide designers a better feel for the origin of the 
equations, simply reviewing the numerical example presented later in the chapter can also 
provide engineers with a good understanding of the deformational control provided by the 
external braces.   
 

The goal of the end result of this derivation is to determine the required spacing, Lmax, 
between the external K-frames to adequately control the girder twist to some desired tolerance.  
The desired tolerance will be based upon control of the relative deformation between adjacent 
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girders that was labeled ∆REL B-C in Figure 5.1.  To develop expressions for this control, an 
understanding of the vertical and torsional deformations that occur in the box girder is 
necessary.  In general, the external braces provide control of the relative vertical deformation of 
adjacent girders.  Considering the behavior of one girder, the total vertical deformation can be 
summarized in the following equation: 

 
Local
Rotation

Global
Rotationbending ∆+∆+∆=∆  (5.1) 

 
The components of the deformation are demonstrated pictorially in Figure 5.3.  Figure 5.3a 

represents the total deformation of the box girder that can be divided into three components.  
The component ∆Bending is shown in Figure 5.3b, which represents the vertical girder deflection 
related to flexural bending of the box girder.  This component can be found by treating the 
curved girder as a straight girder and computing the flexural deformation.  While expressions 
are available for the variation in deflection along the girder length, the maximum value is 
typically of interest and that occurs at midspan.  Treating the girder as simply supported with a 
uniform distributed load of w, the maximum centerline bending deformation is: 

 

EI
wL

Bending 384
5 4

max =∆  (5.2) 

 
where, w is the magnitude of the uniformly distributed load (wt./length), L is the span length, E 
is the modulus of elasticity of the girder material, and I is the moment of inertia about the axis 
of bending.  For continuous girders this is obviously a conservative representation. 
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Figure 5.3 Midspan Components of Vertical Box Girder Deformation 

The deformation due to twisting of the girders from horizontal curvature has been broken up 
into a component from “Global Rotation” and a component from “Local Rotation”.  The 
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component due to “Global Rotation” depicted in Figure 5.3c represents the vertical deformation 
that the centerline of the box experiences due to the girder twisting about the chord line of the 
horizontal curvature of the girders.  The chord line of the girders relative to the curved 
centerline of the box is depicted in Figure 5.4. 

Curved Profile of 
Centerline of Girder 

Chord line between 
support points 

do (at midspan)

R = radius of 
horizontal  
curvature

βo = subtended 
angle

 
 

Figure 5.4 Plan View of Girder Centerline Relative to Center of Horizontal Curvature 

Based upon the geometry in Figure 5.4, the distance from the girder centerline to the chord 
line at midspan is given by the following expression: 
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cos1 o
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where, R is the horizontal radius of curvature and βo is the subtended angle as denoted in the 
figure.  Therefore, at midspan the centerline deformation due to global rotation of the girder 
would be given by the expression: 
 

( )o
Global
Rotation dφ≈∆                       (5.4) 

 
where φ is the midspan twist of the girder give by the expression: 
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All of the terms in Equation 5.5 have been defined above except G and J, which are the 
respective elastic shear modulus and the torsional constant.   
 

The first two components that are discussed above, Bending∆ and Global
Rotation∆ represent vertical 

deformations of the centerline of the box girder.  The last component, Local
Rotation∆ , that is depicted 

in Figure 5.3d is a local deformation that varies across the width of the girder cross-section.  
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Since the girder rotates about the shear center, points inside of the shear center along the radius 
of curvature will “deflect” upwards relative to points outside the radius of curvature due to 
local twisting of the girder.  If the distance from an axis through the shear center to the point 
“i” that is under consideration is represented as “Ci”, the deformation due to this local rotation 
is given by: 
 

( )i
Local
Rotation Cφ≈∆  (5.6) 

 
Figure 5.5 shows the 4 points of primary interest that define the values of the critical slab 

thickness.  Points A and D represent the locations at the edge of the slab where the slab 
finishing machine (screed) rides on the rails.  The slab will be finished to a line that is parallel 
to the line joining A and D.  Points A and D can therefore be taken as the anchor points for a 
straight line that would represent a uniform slab thickness.  The points labeled B and C 
represent the tips of the top flanges.  Because of the local twists of the girders, φext and φint, the 
slab thickness will deviate from a uniform thickness by the amounts ∆*

B and ∆*
C as denoted in 

the Figure 5.5b.  The distances to the points A, B, C, and D are represented as CA, CB, CC, and 
CD, respectively.  In most practical cases, CA=CD and CB=CC and for simplicity, this 
assumption is applied below. 
 

To predict the errors in slab thickness, the deformed positions of Points A, B, C, and D need 
to be evaluated using Equation 5.1.  If the deck were to have a uniform thickness, points B and 
C would lie on the straight line drawn between the screed rails in Figure 5.5b.  The slope of this 
line relative to the horizontal is represented by φ* and is given by the following expression: 
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a) Undeformed Section

a ab
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Figure 5.5 Critical Locations Affecting Slab Thickness 

Since the screed rails are supported on the overhang brackets, the line joining the top flanges 
with twists labeled φext and φint will pass through the respective points labeled A and D.  
Therefore the expression for ( )( )BAextB CC +−=∆ ** φφ  and a similar expression exists for *

C∆  
such that the relative deviation from the uniform slab thickness is given by the expression:  

 
( )( )BAextCBCBREL CC +−+=∆+∆=∆=∆ −

*
int

**
max 2φφφ         (5.8) 

 
The goal of this derivation is to determine the maximum spacing between the external 
diaphragms that will limit the value of ∆max less than some critical value ∆critical, specified by 
the designer.  If the respective spans of the exterior and interior girders are Le and Li, the 
following variables can be defined: ( ) 2/max ie LLL += , and the difference in length between the 
exterior and interior girders is ( ) ( ) 2/2/ baLLL oie +=−=∆ β .  Using these definitions and 
substituting Equations. 5.2-5.7 into Equation 5.8 and simplifying produces the following 
expression for the maximum change in thickness from a uniform slab thickness, ∆max: 
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Further simplifications can be made by recognizing that ( ) ( )2max
2 LL <<∆  and the terms 
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expression: 
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For design the maximum permissible deviation in slab thickness (∆max) can be set equal to 
some critical value, ∆critical and the maximum spacing between cross-frames can be solved for, 
which yields the following expression: 
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The terms in the numerator next to the ∆critical are simply dimensions based upon the geometry 
of the bridge which in most cases is between approximately 1.2 and 1.3.  A value of 1.2 will be 
conservatively assumed. The value of ∆critical represents the relative displacement between the 
flanges and was depicted as ∆REL B-C in Figure 5.1.  Although the designer can establish any 
desired limit for ∆critical, a reasonable limit can be taken as 0.5 in.  Applying these assumptions, 
Equation 5.11a reduces to the following: 
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5.2.3  Forces in Intermediate External K-frames 
To develop expressions for the forces in the external diaphragm, the case of a single 

external K-frame located at midspan will be considered.  The lengths, Li and Le, of the 
respective interior and exterior girders in these derivations are taken as the total arclength of 
the respective girders between the supports.  In cases with more than one intermediate cross-
frame, it would be conservative to still use the total arclength of the span to determine the 
design K-frame forces.  Another reasonable approach might be to use the total distance 
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between the braces on either side of the brace in question, which is denoted as Leff in Figure 
5.6.   

K-frames

L space 1

Lspace 2

K-frame in question
Leff=Lspace 1 + Lspace 2

Support Support
 

 

Figure 5.6 Effective Length With More Than One Intermediate Brace 

The external diaphragms help to restrain twist and vertical deflections of the box girders at 
the location of the braces.  The basic geometry of the external K-frame and box girder system 
are shown in Figure 5.7.  The width of the boxes between the middle of the top flanges is 
denoted as “a”, while the clear spacing between the girder top flanges is represented by “b”.  
The angle of the diagonal of the K-frame is represented as ψ, while the depth of the K-frame is 
denoted as hK.  The rotation of the two girders and the K-frame system are assumed to be the 
same and are represented as φ.  The distance from the center of a girder to where the top chord 
of the K-frame connections is shown as LT.  The distances hK and LT will be used to represent 
the torque exerted by the external K-frame on the girders.   
 

Interior

a
a

b

ψ

φ LT

a+b

hK

Exterior

 

Figure 5.7 Geometry of Girders and K-Frame 

The K-frames exert restraining forces H and V on the girders in the respective horizontal and 
vertical directions.  The equal and opposite forces that act on the K-frame are depicted in 
Figure 5.8a.  The corresponding member forces that develop in the K-frames are depicted in 
Figure 5.8b.     
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Figure 5.8 Forces on K-Frame 
 
Considering equilibrium of the K-frame in Figure 5.8 leads to the following expressions: 
 

TDi FFH −= ψcos                     (5.12) 

TDe FFH += ψcos                     (5.13) 
ψsinDei FVVV ===                    (5.14) 

 
The forces from the K-frame on the girders result in a torque TK and a vertical force V.  Based 
upon the hK and LT distances depicted in Figure 5.7 and the reactive forces in Figure 5.8a, the 
torque from the K-frame on the girder are given by the expression: 
 

TKK VLHhT +=                      (5.15) 
 
The maximum twist occurs at midspan (Appendix A2) and the change in twist caused by the 
diaphragm is given in the following expression: 
 

( )
GJ
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The vertical deformation from the vertical shear, V, that comes the shear is given by the 
following expression (Ko expression given in App. A2): 
 

( )
EI

VLKLat oV 482
3

=∆                    (5.17) 

 

where:  ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛ ++=

2
cos111 o

o GJ
EIK β             (5.18) 

 
and E is the modulus of elasticity, I is the moment of inertia about the axis of bending, G is the 
shear modulus, J is the torsional constant, and βo is the subtended angle.    
 

Assuming the axial deformations in diaphragm is very small compared to the girder twist 
that is restrained, the two girders and diaphragm would all have the same rotation, which is 
given by the following expression: 
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( ) ( )
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Where ∆w and ∆V are the are the respective vertical deformations due to the gravity load, w, 
and the K-frame shear, V.  Equation 5.17 gives the value for ∆V, while ∆W would be given by 
Equation 5.2.   
 

The twist can also be found by simply considering the twist rotation that comes from the 
applied load (w) minus the change in twist from the diaphragm given in Equation 5.16.  This 
leads to the following expression: 

 
int,int, φφφφφ ∆−=∆−= wextextw                 (5.20) 

 
The equations for the K-frame member forces can then be found by substituting equations 5.12-
5.19 into Equation 5.20.  This therefore yields the expressions given below. 
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TDB FFF −±= ψcos                    (5.23) 
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5.2.4  Design Example of Intermediate External Diaphragm 
[Note:  A new example is currently being formulated with a longer span (~250 feet) so that an 
external K-frame is required.  The example will appear in the final printing of the document.]   
 
A sample twin box girder section property is given in Figure 5.9. It is a 160 feet single span 
curved bridge with 600 feet radius of curvature. The width of the bridge deck is 37.5 feet. The 
box girders are simply supported at the center of the bottom flange for bending at end supports. 
The twist of the curved girder is restricted at end supports. A 2 kip/ft dead load is applied on 
each girder.  

18"×0.75"

80"×0.6875"

125"125"

4

190"
0.625"Int-K

L4×4×5/16 Top Lateral Truss

WT8*20

 
Figure 5.9 Section Property of Curved Box Girder 

Using equivalent plate method (Kollbrunner and Basler, 1969), the torsional constant of the 
quasi-closed section of trapezoidal box girder is computed. 
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Since maximum unbraced '160'177max >=l , which is the span length, the intermediate 
external diaphragm is not necessary.  
 
To check the proposed force equation, one intermediate external diaphragm is assumed. 
Here, a diaphragm with 60% depth of the box girder height will be designed and the diaphragm 
is vertically placed in the middle. 
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Choose proper size of angles from LRFD menu with consideration of Euler buckling. The 
procedure is omitted. 
 
The 3D FEA results with the same model detailed above gives similar results, see Figure 5.10, 
in which the equation results are bolded. 
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Figure 5.10 Axial Forces of 3D FEA and Equation  

 
5.3  Solid Plate Diaphragms 

5.3.1  Introduction  
 In addition to the external intermediate K-frames, diaphragms are always provided at the 
ends of the girders.  The diaphragms are required for torsional equilibrium of the girder system.  
Diaphragms resist the girder twist at the ends of the girders based primarily upon the shear 
stiffness of the diaphragm plates.  The ends of the girders are typically closed by solid plates 
and the diaphragm that connects the adjacent girders is typically trapezoidal in shape.  The 
detailing requirements of the support diaphragms typically depend on the aspect ratio of the 
end diaphragms.  Although the end diaphragm is typically trapezoidal in shape and is often 
bolted to the two adjacent girders, for establishing the detailing requirements the effective 
length of the diaphragm can be assumed to be measured as the spacing between the center of 
the bearings of two adjacent girders as shown in Figure 5.11.  For most girder geometries, the 
practical range of spacing between the bearing centerlines and therefore the effective 
diaphragm length is in the range of 14 ft. < Ld < 20 ft.  Provided the aspect ratio of the 
diaphragm, Ld/hd < approximately 5 the diaphragm will generally be governed by the shear 
stiffness.  Considering practical values for Ld range from 14 and 20 feet, the lower range of the 
diaphragm depth so that shear stiffness dominates the behavior can be established.  Shear will 
dominate the diaphragm stiffness provided the diaphragm hd is greater than 2.8 feet at the lower 
Ld range (14 ft.) and 4 feet at the upper Ld range (20 ft.).  The end diaphragms are often deeper 
than these lower bound values, which means that shear stiffness governs the behavior of these 
braces. 
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Figure 5.11 Typical End Diaphragm Geometry 

The fact that most end diaphragms have aspect ratios less than 5 is important from a 
detailing perspective.  The end diaphragms usually have top and bottom stiffening plates that 
increase the out of plane stiffness of the diaphragm plates.  Many designers associate the top 
and bottom plates as flanges of a beam and then associate the connection requirements with 
what is frequently required in the beams of a frame.  The flanges of beams in a frame are often 
fully connected to columns to create a “moment connection” between the beam and column.  In 
the case of the plate diaphragms, the primary mechanism of restraint provided by the 
diaphragm comes in the shear stiffness of the plates and connecting the flanges has very little 
effect on the behavior of the system. This is illustrated in Figure 5.12, which shows a three 
dimensional finite model of the end diaphragm in a twin box girder model. 
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Figure 5.12 Non-Continuous Flanges for Connection Details of plate Diaphragms 

The end connections of the solid diaphragm were modeled with both continuous top and 
bottom plates as well as discontinuous plates as illustrated in Figure 5.12.  There was virtually 
no difference in the behavior of the two girder systems.  Only in cases where a relatively 
shallow diaphragm with an effect aspect ratio in excess of 5 should designers consider making 
the stiffening plates continuous across the ends of the girders.  In most applications, simply 
bolting the end diaphragm will provide exactly the same behavior as if the top and bottom 
stiffening plates were connected.   

5.3.2  Diaphragm Strength Design Requirements 
 There are two criteria that the designer should consider when proportioning the solid end 
diaphragms for box girder applications.  The most obvious consideration is the basic shear 
strength of the plate diaphragm.  The other consideration is related to excessive shear 
deformations at the ends of the beams that can result in rigid body rotations of the girders along 
the length.  The strength limit state is relatively well-understood; however an expression based 
upon stiffness criteria is also presented in the following sub-section.   
 

Figure 5.13 shows girder torsional demand that acts on diaphragms and the resulting shears 
that develop as a result of these torsional moments.  The moments T1 and T2 are the torsional 
moments that come as output from the results from a grid model.  The girders are generally 
subjected to vertical gravity loading and although the net end reaction will typically be 
upwards, the diaphragm tends to redistribute the gravity load so that more of the gravity load 
shifts towards the exterior girder.  Figure 5.13 shows the redistribution in the form of a 
downward shear on one girder and an upward shear on the other girder.  The shear, V, 
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represents the design shear for the end diaphragm.  In terms of the girder end torques, the shear 
is: 

dL
TTV 21 +=                       (5.24) 

 

T2T1

V V

Ld

 

Figure 5.13 Force Demand on External Plate Diaphragm 

In a curved girder Ld is the difference in the radii of the two girders.  The design approach 
for shear is based upon a uniform shear stress through the depth of the plate.  Referring to the 
area of the diaphragm plate as Ad = hdtd, the shear stress would be given as follows:  

 

dddddd thL
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Based upon a uniformly distributed load on a simply supported girder, the end torque 
(neglecting the presence of intermediate K-frames) is given by the following expression 
(Appendix A1): 
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Where w is the uniformly distributed load, Li and Ri are the respective chord length and 

radius of curvature of the ith girder, and βo is the subtended angle within the span.  This leaves 
the designer with several options to design the plate diaphragm for strength.  The torques from 
Equation 5.26 will also provide reasonable estimates of the design torques.  Although the 
equation was derived for a simply supported girder, there is not much torsional interaction 
between adjacent spans in box girders since the diaphragms are relatively stiff and the St. 
Venant stiffness tends to dominate the behavior.  Therefore Equation 5.26 provides reasonable 
estimates of the end torques on each girder.  Alternatively, analysis results can also be used 
such as getting the torques from a grid analysis.  With the end torques in the two adjacent 
girders, the diaphragm shear V can be found using Equation 5.24.  Once the diaphragm shear is 
found it can be compared with shear strength (ie. φVn from the LRFD Specification).  For 
example if the web slenderness satisfies the requirements for full shear yielding, the material 
shear τ=0.58Fy can be applied with Equation 5.25 to give:   
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where Fyw is the material yield stress of the web of the diaphragm.  For a diaphragm web not 
satisfying the slenderness limits for full yielding, the appropriate expression for shear buckling 
can be utilized.   

5.3.3 Diaphragm Deformational Limits 
Instead of the diaphragm strength limit, an alternative limit on the diaphragm may be shear 

deformation.  The section on the intermediate external K-frames discussed the deformational 
characteristics of the girders in detail.  The role of the intermediate braces was to control the 
relative vertical movement between adjacent girders.  The limit of the relative vertical 
movement between adjacent girder flanges was labeled ∆critical.  A value of ∆critical = 0.5 in. was 
selected by the authors as a reasonable limit of the relative vertical deformation that is tolerable 
between adjacent girders.  The relative movement that occurs in the section on intermediate K-
frames is due to the torsional flexibility in the girders along the bridge length. Relative vertical 
deformation between the adjacent girder flanges can also occur due to deformations in the end 
diaphragms.  To develop a deformational limit, some geometrical approximations of the portion 
of the end diaphragm restraining girder twist must be established.  Although the diaphragm 
itself is usually viewed as a trapezoidal plate, since the plate is fully bolted to the two girders 
with slip critical bolts, the portion of the diaphragm resisting girder twist will be idealized as a 
rectangular plate extending form the middle of the two girder bearings as depicted in Figure 
5.14 for a total diaphragm effective length of Ld. 

VV

hd
hGirder

Ld  

Figure 5.14 Idealized Rectangular Diaphragm Plate 

 Figure 5.15 shows the girder end deformations at the diaphragm and then the resulting 
deformations of the idealized rectangular diaphragm plate.  As discussed above, the girder 
deformations result in a rigid body deformation that causes a relative vertical movement 
between the two flanges of the box girder.  The vertical flange deformations are denoted as ∆f 
in Figure 5.15.  The relative value between the two flanges is then given by the expression: 
 

rofdial xφ22.Re =∆=∆                      (5.28) 
 

where φo is the end twist due to the shear deformations in the end diaphragm, and the distance 
xr is denoted in the figure.  Since the end diaphragm deformations result in rigid body 
movements of the entire girder, these deformations are very undesirable and should be kept to a 
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minimum.  As a result the diaphragms should be made relatively stiff to avoid large relative 
movements between the adjacent girder flanges.  The value of tolerable relative movement due 
to torsional flexibility along the girder length for the intermediate K-frames was denoted as 
∆critical and a value of 0.5 in. was selected by the authors.  The limit for rigid body movement 
due to deformation in the end diaphragm should be substantially less than this.  So as to obtain 
a stiff external diaphragm, the authors imposed a limit of 2∆f < 5% ∆critical = 0.05(0.5 in)=0.025 
in.  Solving for ∆f= 0.0125 in.  Equation 5.28 can then be rearranged to solve for the limiting 
value of end twist, φo:   
 

     
r

o x
in0125.0

≤φ                 (5.29) 

 
This limit can then be utilized to determine the required diaphragm characteristics to maintain 
an end twist less than this value.  From Hooke’s law the relationship between shear stress and 
shear strain are given by the expression: 
 

 
Gd
τγ =                        (5.30) 

 
Where τ is the shear stress, G is the shear modulus and γd is the shear strain in the diaphragm. 
The shear strain in the diaphragm plate is shown as a value γd in Figure 5.15b.  In actuality, 
from compatibility between the shear diaphragm and the box girder deformation, the shear 
strain γd is equal to the girder end twist φo, shown in Figure 5.15a.  Therefore applying the limit 
given in Equation 5.29 to the shear strain and combining Equations 5.25 with 5.30 yields the 
following requirement:   
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Simplifying this equation, the required web area of external solid diaphragm to satisfy the 
stiffness criteria is specified in following equation: 
 

d

r
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The controlling diaphragm area would be the larger value from Equation 5.31 or the strength 
criteria discussed in the last sub-section.   
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Figure 5.15 Girder and Diaphragm Deformations 
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Appendix A1 

Moment, Torque, Vertical Deflection and Rotation of the Curved 
Box Girder 

 
A single span girder with radial support is employed in the derivation to show the 

behavior due to curvature, as shown in Figure A1. 
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Figure A1  Geometry of Curved Girder 
For curved girder under self-weight or gravity of concrete deck (distributed 

vertical load), the girder’s deformation has an interaction of bending and twisting. 
Tung and Fountain (1970) described the deformation of curved girder with some 

basic differential equations, shown as Equation A1 ~ Equation A3. 
For an infinitesimal segment at subtended angle β, the force equilibrium equation 

is shown as 
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Assumption: R
T

 term is small and its effect can be neglect for moment. 
 
Then Moment can be approximated as straight girder 
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Integrating Equation A5 and get the general expression of )(xT  
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Boundary conditions: 
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Thus, the approximate Torque is 
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Similarly, deformation equilibrium is shown in Equation A9 and Equation A10: 

GJ
T

Rdx
d

Rd
d

+==
θφ

β
φ

       (A9) 

EI
M

Rdx
d

Rd
d

+==
φθ

β
θ

       (A10) 
Where, θ is rotation about the radially (about R-axis) and φ is rotation 

longitudinally. Differentiating Equation A9 by x and substitute Equation A10 and 
Equation A3, the equation will transform into Equation A11. 
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2R
φ

 usually has small value compared with other terms in the Equation A11. If no 
distributed torque t is applied, the equation is simplified as Equation A12. 
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Thus, the longitudinal rotation of the curved girder is presented as 
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For curved girder with vertical load w, if substituting the torque Equation A8 into 
Equation A13, the rotation would be 
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At mid-span, the maximum rotation is 
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The deflection of curved girder can be approximate by straight girder deflection 
and curved effect, such as 
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From Figure A1, ( )( )2cos1 00 β−= Rd , which can be substituted into Equation 
A17 to give  
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Appendix A2 

Behavior of Curved Girder under Point Torque T 
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Figure A2 Point Torque on Curved Girder 

The torque at the support A and B is approximately in proportion to the distance 
of loading location to the other support, seen in Equation A20. 
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If the load is applied at mid-span,  
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Appendix A3 

Behavior of Curved Girder under Force V @ Mid-Span 
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Figure A3 Force on Curved Girder 

 
From LRFD Manual, the maximum deflection for straight girder occurs at the 
mid-span and the magnitude is 
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And for the curved girder, similar with the case of distributed load,  
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