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CHAPTER 1.  INTRODUCTION 

1.1 BACKGROUND 
To prevent members in steel bridges from fatigue failure, one usually needs to perform frequent 
periodic bridge inspections and employ detailed inspection methods.  This is especially true for 
fracture-critical members or details.  Carrying out these inspections puts a large burden on a 
transportation agency’s bridge maintenance budget.  A systematic reliability-based method for 
inspection scheduling is proposed to yield the most economical inspection strategy for steel bridges 
that, at the same time, guarantees an acceptable safety level through the planned service life.  The 
inspection scheduling problem is modeled as an optimization problem with a well-defined objective 
function, that includes the total expected cost of inspection, repair and failure formulated on the basis 
of an event tree framework, and appropriate constraints in inspection intervals and minimum (target) 
structural reliability.  An optimal inspection-scheduling plan can thus be obtained for any specified 
fatigue details (fracture-critical details) in steel bridges.  Examples presented demonstrate the 
advantage of the reliability-based optimal inspection scheduling in cost saving and structural 
reliability control over alternative periodic inspection plans. 

A reliability-based inspection scheduling procedure that can yield an optimal inspection schedule and 
can maintain a specified safety level for fracture-critical members in steel bridges through their 
planned service lives is presented.  This procedure is based, in sequence, on a stress range analysis, a 
fatigue reliability analysis, and an optimization analysis.  In the stress range analysis, the “effective” 
stress range for the identified member or detail may be obtained from a stress spectrum analysis, an 
assumed stress probability distribution (e.g., Rayleigh) based on data, or a fatigue truck analysis.  
Once this effective stress range distribution representative of the actual traffic on a bridge is obtained, 
a fatigue reliability analysis of the member or detail of interest may be performed.  For all details 
classified in specific AASHTO fatigue categories, a limit state function related to the number of stress 
cycles to failure that is based on Miner’s Rule may be used; for all other details (i.e., not classified in 
specific AASHTO fatigue categories), a limit state function based on crack growth rates, as proposed 
by Madsen (1985), may be used.  An optimization problem for inspection scheduling that 
incorporates fatigue reliability calculations (for details of interest) along with an event tree approach, 
is formulated with an objective function includes costs and appropriate constraints on the inspection 
intervals and on acceptable minimum levels of structural safety.  Solution of the optimization 
problem yields the optimal inspection schedule.  Numerical examples from two case studies on steel 
bridges – one including a plate girder, the other including a box girder – are presented to demonstrate 
the proposed reliability-based optimal inspection scheduling procedure. 

1.2 ORGANIZATION OF THE REPORT 
Chapter 2 of this report provides a description of the various approaches that may be followed in the 
stress range analysis studies needed for any fatigue assessment of a steel bridge member or detail.  
Chapter 3 covers topics related to the fatigue reliability analysis for details classified according to 
AASHTO category as well as for those that are not.  Chapter 4 presents the formulation of the 
optimization problem for inspection scheduling.  Chapter 5 includes numerical examples that contain 
optimum inspection schedules for two details on two different bridges.  Chapter 6 includes some 
general conclusions and discussions related to this research study. 
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CHAPTER 2.  STRESS RANGE ANALYSIS OF FATIGUE  
LOADINGS IN STEEL BRIDGES 

2.1 BACKGROUND 
The operating stress range for steel members or details in bridges is a key factor that directly affects 
the fatigue performance of members or details in steel bridges.  Therefore, obtaining an accurate 
description of the effective stress range, SRE, applied on the identified detail is very important in 
fatigue reliability analysis.  Generally, any one of three methods: a stress spectrum analysis, a 
Rayleigh distribution analysis; or a fatigue truck analysis, may be applied to establish the effective 
stress range. 

2.2 STRESS SPECTRUM ANALYSIS 
If stress range data on a desired detail are systematically collected and sufficiently representative of 
actual traffic loads, a stress range spectrum can be derived from such data.  For variable-amplitude 
stress ranges on details, Schilling et al. (1978) proposed an effective stress range SRE to characterize a 
stress range spectrum and this value can be applied in Miner’s Rule (see Miner, 1945) for fatigue 
analysis.  This effective stress range SRE is defined as the root mean cube (RMC) of the collected 
stress range data: 

3/1

1

3
,
⎭
⎬
⎫

⎩
⎨
⎧ ⋅= ∑

=

n

i
iRiRE SS γ                                     (1) 

where γi is the ratio of the number of SR,i stress range amplitude cycles to the total number of cycles.  
Schilling (1978) concluded that this definition of an effective stress range satisfactorily relates 
variable- and constant- amplitude results.  Effective stress ranges, SRE derived thus from a 
representative stress spectrum of a desired detail can be very accurate descriptions of the stresses for 
fatigue analysis of the detail.  However, collecting stress data using strain gages is costly as well as 
difficult or restrictive for complex details.  Another way to circumvent this problem is to convert the 
stress data collected from one detail to other uninstrumented details but this conversion can lead to 
large errors.  Hence, this stress spectrum analysis approach is suitable only for those details 
monitored by strain gages that can yield the necessary stress spectrum. 

2.3 RAYLEIGH DISTRIBUTION ANALYSIS 
On the basis of the analysis of 51 sets of stress range spectrum data on bridges from 6 sources 
including Interstate and U.S. routes in semi-rural and metropolitan locations, Schilling et al. (1978) 
showed that a Rayleigh distribution can provide a reasonable model for the stress range spectrum of 
details in steel bridges.  The Rayleigh probability density function for the stress range, SR, can be 
expressed as: 
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The mean stress range effect of (SR)B can then be computed in closed form and applied in a Miner’s 
rule format as follows: 
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2.4 FATIGUE TRUCK ANALYSIS 
Another convenient way to evaluate SRE for a desired detail is to apply an “effective” fatigue truck 
(representative in a fatigue sense of all the actual trucks on the bridge) in a structural analysis to 
obtain an effective stress range SRE.  According to the Weight-In-Motion (WIM) data research from 
FHWA in 1981 (see Snyder et al, 1985), an HS15 (weight = 54 kips) fatigue truck was proposed and 
has been adopted in the AASHTO Specifications (1998).  Due to the different volume and 
characteristics of current traffic from that of the 1980s, this definition of an HS15 fatigue truck 
suggested in the AASHTO Specifications needs to be re-examined.  Weight-In-Motion (WIM) data 
collected directly from the traffic site, especially without the knowledge of drivers, can help to 
establish an improved definition of the effective fatigue truck.  The effective gross vehicle weight, 
GVWE, calculated from the RMC of the load spectrum from WIM data can be taken as the weight of 
the fatigue truck. 
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where αi is the relative likelihood of trucks with gross vehicle weight, GVWi in the overall truck load 
spectrum.  One can take this value of GVWE as the weight of a new fatigue truck and then distribute 
this weight to the fatigue truck in a similar manner as is done with the HS15 effective fatigue truck in 
the AASHTO Specifications.  A more detailed study on axle spacings can help and is a topic of 
ongoing study.  With such information, one could apply WIM data to simulate actual truck passages 
along a bridge.  The moment range, MR, resulting from each truck can be obtained from a moment 
influence line analysis using standard structural analysis programs.  An effective moment range, MRE, 
can then be computed: 
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where MR,i is the moment range resulting from the truck with weight, GVWi.  The effective of fatigue 
truck configuration in terms of axle spacings and weights, then, is that which results in the moment 
range, MRE, on the same bridge and where the total axle weights equal GVWE.  Suitable axle spacings 
and axle weights for the fatigue truck can then be derived.  After applying an effective fatigue truck 
as a live load on the bridge with an appropriate impact factor (I) and a distribution factor (DF), an 
influence line analysis may be performed and the effective stress range, SRE, can be obtained (see 
Schilling, 1982a, b). 
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CHAPTER 3. FATIGUE RELIABILITY ANALYSIS  
FOR FRACTURE-CRITICAL MEMBERS 

3.1 OBJECTIVES 
Our objective here is to apply reliability theory to evaluate the safety of fracture-critical members 
(details) under fatigue loadings in their service lives.  The AASHTO fatigue analysis approach is 
presented for details classified according to AASHTO fatigue categories.  After defining a target 
reliability, a minimum acceptable level for structural safety, the actual reliability for the chosen 
fracture-critical detail may be compared with this target to provide information for subsequent 
inspection schedules. 

3.2 TARGET RELIABILITY INDEX 
The target reliability index, βmin, is defined as the minimum safety level approved and accepted by all 
or most of the individuals in a specific application.  In our problem, this value can be applied as a 
standard, against which one can measure the safety of the identified detail or member.  The target 
reliability index, βmin, can be given in terms of the inverse of the cumulative distribution function of a 
standard Gaussian random variable, Φ, and a maximum acceptable probability of failure, PF : 

 )1(1
min FP−Φ= −β  (6) 

3.3 FATIGUE RELIABILITY ANALYSIS FOR DETAILS CLASSIFIED IN AASHTO 
CATEGORIES 

In the AASHTO Specifications, empirical S-N curve relations were established from fatigue tests 
conducted in the 1970s to prevent design details in steel bridges from fatigue failure.  Eight 
categories, designated as A to E’ in the specifications, are tabulated to classify details in steel bridges 
and to provide information for the S-N curve relation that can be expressed as: 

 
3−⋅= RSAN  (7) 

where N is the number of constant-amplitude stress cycles of range, SR, applied on the specified detail 
that cause failure, and A is a parameter than can be obtained from fatigue tests (each fatigue category 
has a different value of A).  Thus, for any detail, one can obtain either the expected fatigue life N in 
terms of number of stress cycles under a design stress range, or a limit stress range for desired service 
life. 

Because of randomness in the actual traffic loadings, stress ranges are not of constant amplitude.  
Therefore, Miner (1945) proposed an empirical rule to evaluate the fatigue damage, D, under 
variable-amplitude stress ranges as follows: 
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where D is Miner’s damage accumulation index, ni is the actual number of cycles with constant stress 
range amplitude, SR,i, and Ni is the number of cycles that that the detail can sustain under the same 
constant stress range, SR,i.  Fatigue damage of the specified detail occurs when D exceeds ∆.  The 
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parameter, ∆, is around 1.0 for metallic materials based on Miner’s observations.  Combining the 
S-N curve relation with Miner’s rule, we have: 
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where N is the total number of stress cycles at all stress levels, �i is the ratio of ni to N, and SRE is the 
effective stress range calculated, for example, from the RMC (root mean cube) of the stress spectrum 
for the specified detail. 

When D equals ∆ in Eq. (9), the critical number of stress cycles Nc to fatigue failure under the 
variable-amplitude loading with effective stress range, SRE, can be represented as: 
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The fatigue property, A, of a specific detail may be modeled as a lognormal random variable based on 
the statistical stress range data derived by Moses et al. (1987) from the test results reported by 
Keating and Fisher (1985).  It is assumed here that for each of five fatigue categories (A to E), A 
followed a lognormal distribution with a mean value, µ, and coefficient of variation, COV or δ, as 
shown in Table 1.  In addition, Wirsching and Chen (1988) studied the test data reported by Miner 
(1945) and found that ∆ may also be modeled by a lognormal distribution with a mean value of 1.0 
and a COV of 0.30.  Since A and � are random variables, according to Eq. (10), Nc is also a random 
variable.  Similar to the treatment by Zhao et al. (1994), we propose a limit state function g(X) for 
fatigue reliability analysis, which is defined in terms of Nc (the number of cycles to failure for the 
detail) and N (the actual number of cycles to which the detail is subjected): 
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where g(X) < 0 implies failure.  The number of stress cycles, N, is computed from truck passages.  
With knowledge of the number of stress cycles per truck passage (Cs) and the Average Daily Truck 
Traffic (ADTT), the number of stress cycles, N, can be related to the number of years of operation, Y: 

 ( ) YCYN s ×××= ADTT365  (12) 

The fatigue failure event of a detail can then be defined as  

 ( ) ( ) 0≤−= YNNg cX  (13) 
The probability of fatigue failure for the detail in question can then be related to a reliability index, β, 
and evaluated as: 

 )()0)(( β−Φ=≤= XgPPf  (14) 

If the random variables A and ∆ are assumed to follow lognormal distributions, the reliability index β 
can be directly expressed as: 
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where the parameters, λ∆, λA, ζ∆, and ζA are given in terms of the mean (µ) and the coefficient of 
variation (δ) of A and ∆ as follows: 
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Note that SRE in Eq. (15) can be evaluated from a stress spectrum analysis, a Rayleigh distribution 
analysis, or a fatigue truck analysis as described earlier.  This AASHTO reliability analysis approach 
can be applied to any detail classified by AASHTO fatigue category. 

3.4 FATIGUE RELIABILITY ANALYSIS FOR DETAILS NOT CLASSIFIED IN AASHTO 
CATEGORIES 

To analyze the fatigue reliability of details that are not categorized in the AASHTO fatigue categories, 
a fatigue limit state function, g(X), related to crack size, as proposed by Madsen (1985), is applied.  
This limit state function, g(X), is expressed as: 

 ( ) 0)()(X ≤−= Nc aag ψψ  (17a) 
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where ac = the critical crack size associated with failure; aN = the crack size corresponding to N stress 
cycles; a0 = initial crack size; ψ(a) = a damage accumulation function resulting from change in crack 
size from a0 to a; C = a material property; B = an equivalent-damage material property consistent with 
Eq. (3); Y(a) = a geometry function accounting for the shape of the specimen and mode of fracture. 

As before, the probability of failure and associated reliability index may be evaluated using Eq. (14).  
Solution for PF or β may be obtained by FORM, SORM, or Monte Carlo simulation once all the 
random variables and their distributions are defined. 

TABLE 1  Mean and Coefficient of Variation (COV) of the Fatigue Parameter, A. 

AASHTO 

Category 
µA 

(Mean Value) 

δA 

COV 

A 1.50×1011 0.54 

B 7.85×1010 0.35 

C 1.10×1010 0.15 

D 4.76×109 0.25 

E 2.01×109 0.26 
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CHAPTER 4.  OPTIMAL INSPECTION SCHEDULING 

4.1 BACKGROUND 
Currently, scheduling of inspections to prevent steel bridges from fatigue failure is based on a 
two-year periodic pattern required by the Federal Highway Administration (FHWA) and the 
responsible engineer’s experience.  However, every steel bridge has its own specific geometric shape, 
design philosophy, and traffic condition, and even on a single bridge, details may be classified into 
any of eight fatigue categories and might experience quite different levels of stress ranges.  The 
different fatigue category and the stress range can result in different fatigue lives for each detail.  
Hence, a specific fixed inspection interval schedule may not meet the inspection demands of all types 
of fatigue details in a steel bridge.  Besides, a periodic inspection schedule will lead to a fixed 
number of inspections over the service life of the bridge.  This number of inspections may be more 
than the demands for some fatigue details and less for others.  If the cost of an inspection is high, 
such as is the case for a FCM (Fracture-Critical Member) inspection which is usually expensive to 
perform and causes other traffic inconveniences, a greater number of inspection times will increase 
the budget burden for the transportation agency.  Thus, the present strategy of inspection scheduling 
may be not only uneconomical but also inadequate from a safety point of view.  A method of 
inspection scheduling for steel bridges based on reliability theory and optimization that can yield a 
balanced solution that takes into consideration both economical and safety aspects is proposed. 

Reliability-based inspection scheduling has been applied in many areas of engineering. 
Thoft-Christensen and Sorensen (1987), Madsen (1989) and Sorensen et al. (1991) applied such 
reliability-based inspection strategies to offshore structures.  Frangopol et al. (1997) utilized such 
inspection strategies for reinforced concrete bridges.  For corrosion problems in steel girder bridges, 
Sommer et al. (1993) proposed a reliability-based strategy for inspection scheduling.  The general 
approach in all such applications is to formulate the inspection scheduling problem as an optimization 
problem that seeks to minimize a cost function (the objective function) by adjusting inspection times 
within appropriate constraints and simultaneously maintaining safety constraints as well. 

In our problem, let us first consider a single fatigue detail.  The cost function for this detail is 
composed of the cost of inspections, repairs and structure failure during the service life.  An event 
tree analysis that simulates all the possible scenarios after every inspection during the service life can 
be formulated.  Fatigue reliability results obtained using the AASHTO approach are applied and 
transformed into appropriate probabilistic form for the event tree analysis. 

4.2 EVENT TREE ANALYSIS 
After every inspection of a fatigue detail, possible actions of “repair” and “no repair” are enumerated 
to construct the event tree for this detail over the service life.  An example of an event tree, which is 
similar to one suggested by Frangopol et al. (1997), is shown in Fig. 1.  From the year T0 when the 
detail is assumed to come into use till the year T1

-  when the first inspection is about to be performed, 
the detail is assumed not to have had any repair; so, a single horizontal branch can represent the status 
of the detail from T0 to T1

-.  The time spent during inspection is assumed to be negligibly short.  
After the first inspection at T1

+, a repair decision has to be made according to the inspection results 
for the fatigue detail.  If a crack is detected and the crack size is over the size limit defined to be that 
needing repair, a repair action is assumed to be implemented immediately.  The time spent during 
repair is also assumed to be negligibly short in this study but this assumption can easily be relaxed.  
If no crack is detected or the crack size can be tolerated (i.e., it is smaller than a size that warrants 
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repair), no repair action should be taken.  Hence, the original single horizontal branch modeling the 
fatigue detail’s status at T1 is bifurcated into two branches; one branch models the detail status after 
repair from T1

+ to T2
- (the time just preceding the second inspection) and the other branch models the 

status without any repair from T1
+ to T2

- (in Fig. 1, a branch designated “1” represents a repair action 
and a branch designated “0” represents a no-repair action).  Both branches are bifurcated again at T2

+ 
just after the second inspection is completed to model the repair status of the detail.  Continuing 
onward, each branch in the event tree will be bifurcated again and again immediately after every 
inspection is completed until the service life, Tf, is reached.  Therefore, the event tree simulates all 
the possible repair realizations in all of the branches during the planned service life.  If n inspections 
are performed during the service life of a detail, 2n branches will be generated at the end of the event 
tree, implying that 2n possible scenarios will happen in the future.  Note that in the optimization 
problem to be formulated, we will be attempting to determine the number n of inspections and the 
times of these inspections, T1, T2, … Tn. 

The fatigue reliability, modeled as a decreasing function, β(T), obtained from the AASHTO fatigue 
analysis for the desired fatigue detail will be greatly affected by the repair realizations after each 
inspection.  In this study, an assumption is made that the detail after repair will be as good as new.  
Thus, the fatigue reliability at every inspection time point will be raised (or updated) to the same level 
as that at the starting point, T0 if a repair action is taken (i.e., on all “1” branches). Fatigue reliability 
patterns for all of the 2n branches are related to repair realizations for the detail.  Figure 1 shows a 
schematic representation of the fatigue reliability patterns for every branch in a typical event tree 
when n equals 2.  Note that the “as good as new” assumption may be modified to conditions where 
either the detail is “not as good as new” or is “better than new” when sufficient data are available for 
the repair procedure and the altered reliability of the repaired detail.  Both the subsequent reliability 
curve following the repair and the associated costs might in general change for these assumptions 
relative to the “as good as new” case but such changes are easy to implement. 

4.3 LIKELIHOOD OF NEEDED REPAIR 
The decision whether or not to repair that needs to be made after every inspection of a detail can be 
interpreted in a probabilistic form.  The probability of repair, PR, will be employed to describe the 
decision made after every inspection.  This probability may be thought to be the same as the 
probability of first observation of a crack in the identified detail.  An associated limit state function, 
H(X), similar to the one employed for fatigue failure in the AASHTO approach described earlier, may 
be defined as follows: 

( ) N
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where N is the number of stress cycles to which the detail is subjected, and Nc is the critical number of 
stress cycles to fatigue failure for the detail.  Choosing 75 percent of the critical number of stress 
cycles to correspond to observation of the first crack in fatigue tests was found to be acceptable by 
Fisher et al (1970).  The probability of repair for the detail in question can then be related to an index, 
γ, and evaluated as: 

PR = P(H(X) ≤ 0) = Φ(-γ)                                 (19) 

Considering the event tree branches, it is found that the probability of repair at every inspection, i.e. 
PR(Ti), depends on the elapsed time since the last repair.  It is assumed that the probabilities of repair 
at the various inspection times are statistically independent, i.e., PR(Ti) and PR(Tj) are statistically 
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independent for i not equal to j.  The probability, P(Bi), of a branch, Bi, that includes NR repairs can 
be expressed as the product of NR probability of repair terms and (N-NR) probability of non-repair 
terms. 

With the help of this event tree approach, and branch probabilities, we can now define the cost of 
inspections, the cost of repairs, the cost associated with failure for a specified detail.  These costs will 
then be employed in the objective function for the optimization problem. 

4.4 COST OF INSPECTIONS 
Let KI represent the cost of a single inspection of the specified detail.  Then, the total cost of 
inspections over the service life, CI, can be represented as: 

∑
=

=
n

i
II KC

1
                                     (20) 

4.5 COST OF REPAIRS 
Let KR represent the cost of a single repair of the specified detail.  Because of the different repair 
realizations of the detail as given by the event tree, the cost of repair at the time Ti is the product of KR 
and E[Ri], the expected number of repairs at Ti.  Let Ri denote the repair event at time, Ti and Bj

i 
denote branch j of the event tree at time, Ti.  The expected number of repairs at Ti can be expressed 
as: 

[ ] ( )∑
−

=

∩=
12

1

i

j

i
jii BRPRE                                  (21) 

The total cost of repairs for the detail over the service life, CR, can be represented as: 

[ ]∑
=

⋅=
n

i
iRR REKC

1
                                    (22) 

4.6 COST OF FAILURE 
The cost of failure, CF, is meant to represent the expected cost resulting from consequences of a 
failure.  If the detail/member under consideration is fracture-critical, its failure could cause failure of 
the span where the detail is located or even failure of the entire steel bridge.  Hence, the cost of 
failure should include the possible cost of rebuilding a span or the entire bridge, as appropriate, as 
well as costs due to lost use, injuries, fatalities, etc. – not all of which are easily and uncontroversially 
estimated.  Nevertheless, all of these potential costs associated with a failure are summed to yield a 
quantity, KF.  The possibility of the failure consequence is the other term that should be included in 
the cost of failure.  In addition, the scenarios created by the event tree should also be concerned in 
the evaluation of cost of failure.  Let F denote the event that the detail in question fails and Bi denote 
branch i of the event tree.  Then, the expected cost of failure for the specified detail overt the service 
life may be defined as: 
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Considering all the possible scenarios of the event tree for the detail, the reliability index E[β] can be 
represented as: 
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Substituting Eq. (24) into Eq. (23), the cost of failure may finally be expressed as: 
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4.7 TOTAL COST 
With definitions of the cost of inspections, repairs, and failure for the specified detail, the total cost, 
CT, may be represented as: 

CT = CI + CR + CF                                 (26) 
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4.8 CONSTRAINTS 
The number of inspections, n, and the inspection times, T1 … Tn, are variables for the optimization 
problem.  One obvious constraint on the inspection times may be expressed as: 

fn TTTT <<<< Κ10                                 (28) 

Usually, restrictions are placed on the time between inspections such that this inter-inspection interval 
is neither too large (upper bound, Tmax) nor too short (upper bound, Tmin).  Such constraints on the 
inspection interval may be required by local and state transportation agencies.  Hence, a second 
constraint on inspection times for the optimization problem is: 

max1min TTTT ii ≤−≤ − , i = 1, 2, … n                        (29) 

It is also usually required to keep the safety (or reliability) above a certain level.  This requirement 
can be achieved by defining a target reliability index, βmin, which is the minimum acceptable safety 
tolerance for the specified detail.  Thus, a constraint to be included in our optimization problem may 
be defined as: 
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( )[ ] minββ ≥iTE , i = 1, 2, … (n+1)    where Tn+1 = Tf            (30) 

4.9 FORMULATION OF THE OPTIMIZATION PROBLEM 
In summary, the optimization problem for the inspection scheduling may be formulated as follows: 
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  s.t. fn TTTT <<<< Κ10  

  max1min TTTT ii ≤−≤ − ,   i = 1, 2, … n 

  ( )[ ] minββ ≥iTE ,   i = 1, 2, … (n+1) 

Minimizing the total cost, a set of inspection times, Ti, may be found.  In addition, changing the 
number of inspections, n, the total cost corresponding to the different number of inspections may be 
compared so as to finally yield the optimization solution. 
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FIGURE 1  Representative Event Tree showing Inspection and Repair Realizations (similar to 
one defined by Frangopol et al (1997)). 
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CHAPTER 5.  NUMERICAL EXAMPLES 

5.1 PLATE GIRDER BRIDGE EXAMPLE 
The example bridge studied here is the 680-ft long Brazos River Bridge in Texas, which was built in 
1972.  Figure 2 shows the layout of the Bridge as well as a magnified view of the selected fatigue 
detail, which is classified as a Category E detail as per the AASHTO Specifications.  This detail 
located in the leftmost 150-ft span is analyzed.  The stress range parameter, SR0, applied on this detail 
is 6.13 ksi as a Rayleigh distribution is assumed for the stress ranges (see Eq. (2)).  The target 
reliability βmin for the detail is assumed to be 3.7, corresponding to a failure probability of 
approximately 1/10000.  Additionally, Tmin = 0.5yr and Tmax = 2.0yr are taken to be constraints on the 
inter-inspection times.  Two sets of relative costs of inspection, repair and failure: (i) KI : KR : KF = 1 : 
1.3×102 : 4×105; and (ii) KI : KR : KF = 1 : 2.6×102 : 4×105 are considered for illustration.  The 
number of stress cycles per truck passage, Cs, and the Average Daily Truck Traffic, ADTT, are taken 
to be 1 and 84, respectively (see Eq. (12)).  The service life is taken to be 50 years. 

After applying the AASHTO fatigue analysis approach, the fatigue reliability, β, of the specified 
detail over the service life is shown in Fig. 3.  The target reliability level, βmin, of 3.7 is also shown in 
the figure.  It can be seen that the fatigue reliability of the chosen detail is below the target reliability 
by the thirteenth year. 

First, we will assume that in year 2002 (i.e., 30 years after 1972), no crack was found or that the crack 
in the detail was repaired to its original condition.  To avoid too many inspections and to 
simultaneously meet the 2-year inspection interval required by the Federal Highway Administration 
(FHWA), the constraints on inspection intervals, Tmin and Tmax, are taken to be 0.5 and 2 years, 
respectively.  With an “as good as new” repair policy, and for the relative costs of KI : KR : KF = 1 : 
1.3×102 : 4×105, it is found in Fig. 4 that the optimal number of inspections for the next twenty years 
is eleven and the associated optimal inspection schedule is as shown in Fig. 5 where, for comparison, 
an ad hoc periodic inspection schedule is also shown.  The optimal inspection times in years are T = 
(2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 13.5, 14.0, 14.5, 15.0, 15.5) + 30.  On comparing the optimal 
inspection schedule with the periodic two-year interval schedule, the total relative cost (162.7) of the 
optimal schedule is found to be less than the total cost (168.9) of the periodic schedule.  Though the 
optimal schedule requires two more inspections than the periodic schedule, these additional 
inspections and the short interval between inspections after the bridge reaches 42 years of age reduces 
the risk of the detail’s failure.  This fact can be confirmed by the reduced cost associated with failure 
in the total cost for the optimal schedule.  Therefore, the optimal schedule clearly represents the 
preferred choice for inspecting this detail over its planned service life. 

Upon releasing the constraints on Tmax, it is found as shown in Fig. 6 that only five inspections are 
required to achieve the optimal schedule with an associated total cost of 157.6, which is less than the 
total cost (162.7) of the previous optimal schedule with Tmax = 2 yrs.  The inspection times in years 
are T = (13.2, 14.1, 14.6, 15.1, 15.6) + 30 and note that the reliability index, β, is equal to exactly 3.7 
at T1 (13.2 yrs) and Tf (20 yrs).  No inspections are needed before the reliability curve first hits the 
target reliability level at 13.2 yrs; also, no inspections are needed after the bridge has completed 45.6 
yrs of its planned life.  Because of this, the total cost is lower than for the case where the constraint 
on Tmax is included. 

For the second case with Tmax = 2 yrs and the relative costs of KI : KR : KF = 1 : 2.6×102 : 4×105, nine 
inspection times for the next twenty years are needed and the optimal inspection times in years are T 
= (1.7, 3.4, 5.4, 7.4, 9.4, 11.4, 13.4, 15.1, 17.1) + 30 as shown in Fig. 7 where again a two-year 
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periodic inspection interval schedule is also shown.  Though the number of inspections (nine) is the 
same as with the periodic schedule, the total cost (200.5) for the optimal schedule is still lower than 
the total cost (211.7) for the periodic schedule.  After removing the constraint on Tmax, again, it is 
found in Fig. 8 that fewer (four) inspection times, T = (10.8, 13.5, 15.1, 17.1) + 30, are needed to 
reach the optimal schedule with the total cost of 195.0, which, again, is lower than the total cost of 
200.5 for the optimal schedule that uses the constraint, Tmax = 2 yrs. 

5.2 BOX GIRDER BRIDGE EXAMPLE 
We consider a newly built box girder bridge with a center crack in the bottom flange (width = 42 in) 
as shown in Fig. 9.  This example bridge is adapted from one described by Zhao et al. (1994) for 
which we seek an optimal inspection schedule for the next twenty years. 

Two cases of relative costs of inspection, repair and failure: (i) KI : KR : KF = 1 : 3×102 : 3.6×106; and 
(ii) KI : KR : KF = 1 : 6×102 : 3.6×106 are considered here.  The variables, Cs, βmin, and ADTT, are 
taken to be 1, 3.7 and 300 respectively.  The random variables related to considerations for a center 
crack in the bottom flange are listed in Table 2 and the geometry function (see Eq. (17b)) for this 
crack geometry may be expressed as: 

[ ] ⎟
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sec)/(06.0)/(025.01)( 42 π                  (32) 

Since the detail shown in Fig. 9 is not specifically defined in the AASHTO Specifications, the 
procedure described for non-AASHTO type details is applied and a fatigue reliability curve from a 
FORM (First-Order Reliability Method) computation leads to the time-dependent reliability curve 
shown in Fig. 10.  It can be seen that, without intervention or repair of some sort, the fatigue 
reliability of the chosen detail would fall below the target reliability of 3.7 by the fifteenth year. 

For the relative costs of KI : KR : KF = 1 : 3×102 : 3.6×106, the reliability curves for optimization 
schedules in two cases, where Tmax = 2 yrs as well as where no Tmax constraint is imposed, are shown 
in Fig. 11.  It may be seen that, for the optimal schedule constrained by Tmax = 2 yrs, the optimal 
number of inspections is ten with a total cost of 322.4 and the inspection times in years, T = (2.0, 4.0, 
6.0, 8.0, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5).  Not unexpectedly, the optimal schedule without a Tmax 
constraint required fewer (six) inspections and costs less (318); the associated inspection times in 
years, T = (10.3, 10.8, 11.3, 11.8, 12.3, 12.8).  Both optimal schedules result in lower costs than the 
total cost (396.9) for a two-year periodic inspection schedule that is required by the FHWA. 

For the second case with higher repair costs, similar findings as in the case with the lower repair costs 
are noted as shown in Fig. 12.  The optimal schedule without a constraint on Tmax requires fewer 
inspections (four) in twenty years and costs less (395.8) than the inspection times (nine) and 
associated cost (430.1) for the optimal schedule when Tmax = 2 yrs.  The inspection schedules in years 
for the cases with Tmax bounded and unbounded are T = (0.5, 1.0, 1.5, 2.9, 4.9, 6.9, 8.9, 10.9, 12.9) 
and T = (0.5, 1.0, 1.5, 14.6), respectively. 

5.3 GENERAL CONCLUSIONS 
The illustrations presented above demonstrate the application of the optimal inspection scheduling 
procedure for both, a plate girder bridge and a box girder bridge.  Discussions related to the results 
are presented in Chapter 6. 
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Table 5.1.  Variables related to Center Crack Growth  
in the Bottom Flange for the Box Girder Example. 

Variable Type Mean COV 

a0 lognormal 0.010  0.500 

ac constant 1.000  0.000 

aR  constant 0.200  0.000 

C lognormal 2.05×10-10 0.630 

B normal 3.000 0.100 

SR0 constant 6.334  0.000 
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(a) 

 
(b) 

 
(c) 

FIGURE 2.  Brazos River Bridge showing (a) entire bridge in elevation; (b) a typical 
transverse section; and (c) a detail of interest for fatigue reliability. 
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FIGURE 3.  Fatigue Reliability of the Chosen Detail over 50 years for the Plate Girder 
Numerical Studies. 

 

FIGURE 4.  Optimal total cost as a function of the number of inspections for the chosen detail 
(KI : KR : KF =1 : 1.3×102 : 4×105). 
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FIGURE 5.  Optimal inspection schedule (Tmin = 0.5 yrs, Tmax = 2 yrs)  
for the case of KI : KR : KF =1 : 1.3×102 : 4×105, CT = 162.7. 

 

FIGURE 6.  Optimal Inspection Schedule (Tmax unbounded)  
for the case of KI : KR : KF = 1 : 1.3×102 : 4×105, CT = 157.6. 
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FIGURE 7.  Optimal inspection schedule (Tmin = 0.5 yrs, Tmax = 2 yrs)  
for the case of KI : KR : KF = 1 : 2.6×102 : 4×105, CT = 200.5. 

 

FIGURE 8.  Optimal Inspection Schedule (Tmax unbounded)  
for the case of KI : KR : KF = 1 : 2.6×102 : 4×105, CT = 195.0. 
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FIGURE 9.  Illustration of the Box Girder Section and Center-Notched Crack in Bottom 
Flange studied in the Numerical Example. 

 

 

FIGURE 10.  Fatigue Reliability of the Chosen Detail over 50 years for the Box Girder 
Numerical Studies. 



 23

 

FIGURE 11.  Optimal Inspection Schedules with Tmax = 2 yrs and for unbounded Tmax  
for the Case of KI : KR : KF = 1 : 3×102 : 3.6×106. 

 

FIGURE 12.  Optimal Inspection Schedules with Tmax = 2 yrs and for unbounded Tmax  
for the Case of KI : KR : KF = 1 : 6×102 : 3.6×106. 
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CHAPTER 6. DISCUSSION AND CONCLUSIONS 

From the results presented, it can be observed that an increase in the number of inspections, n, tends 
to increase inspection and repair costs but typically decreases expected failure costs.  The optimal 
result (or lowest cost) occurs for a number, nopt, of inspections where the decrease in failure costs 
starts to become smaller than the increase in inspection and repair costs.  Comparing the optimal 
schedules in the two examples studied, the lower relative repair cost cases required more inspections 
to reach the optimal point while the higher relative repair cost cases required fewer inspections to 
yield the minimum costs.  Clearly, the relative costs of inspection, repair, and failure all affect the 
optimization results in a very direct manner, regardless of whether or not a constraint on Tmax is 
imposed. 

The maximum time between inspections, Tmax, is an important constraint that influences the number 
of inspections, the total cost, and the inspection strategy.  When the inspection scheduling is 
constrained by Tmax, a greater number of inspections results which raises the fatigue reliability of the 
detail and, thus, lowers the expected cost of failure.  However, the cost of inspections and repairs 
increase and the total cost grows as a result.  When the constraint on Tmax is removed, the repair 
strategy changes so as to require inspections only when the reliability curve gets close to the target 
reliability; this results in lower total costs. 

It is seen that a periodic two-year inspection schedule over the planned service life as is required by 
the FHWA for steel bridges will not be the optimal schedule for some details if one is interested in 
keeping costs low as well as maintaining safety.  Though this periodic schedule keeps the fatigue 
reliability at a higher level than the optimal schedules obtained for the example bridge studied here, a 
larger number of inspections and repairs over the service life cause an increase in total cost.  The 
reliability-based fatigue inspection strategy presented here yields the optimal inspection schedule 
maintaining prescribed safety levels for lower costs.  The optimization results are affected by the 
time-dependent fatigue reliability of the detail in question, the imposed constraints (i.e., on the 
minimum acceptable reliability and on the inspection interval), and the relative costs of inspection, 
repair and failure.  The influences of the constraints on the interval between inspections (at least on 
the upper bound of this interval), and of the relative costs of inspection, repair and failure were 
highlighted in the numerical examples presented. 

Reliability-based inspection scheduling offers a rational method to arrive at inspection and 
maintenance strategies for steel bridges.  Applying the procedure described for various types of 
details, bridge authorities can optimally allocate their maintenance budgets in an efficient manner 
without compromising the safety of their bridges.  This optimal scheduling procedure may also be 
applied to other degrading civil infrastructure systems if the reliability, costs, and the related random 
variables affecting performance can be quantified. 
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